
KIT – University of the State of Baden-Württemberg and

National Research Center of the Helmholtz Association ces.itec.kit.edu

Chair for Embedded Systems

Error Characterizations

SlackHammer: Logic Synthesis for Graceful Errors

Under Frequency Scaling
Tanfer Alan and Jörg Henkel

Circuit Level Timing Speculation

Delay Reductions

Proposed: Non Critical Path Optimizations

[1] Kahng, Andrew B., et al. "Slack redistribution for graceful degradation under voltage overscaling." Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific. IEEE, 2010.

Idea

Most input combinations do not invoke the critical

path and can be accomplished in a shorter time or

lower voltage.

Observation

Synthesis algorithms result in circuits that contain a

large number of near-critical paths.

 Under aggressive voltage or frequency scaling

either no error occurs, or a very large number of

paths fail at the same time.

 Timing speculation benefits are limited.

Motivation

1. Reduce the number of near-critical paths

2. Enable graceful errors under frequency scaling

 increase the performance

Accuracy – Frequency

Tradeoff

Reductions in error rate

and error magnitude can

be achieved with

proposed non critical

path optimizations.

Isolated
Analysis

(Design Compiler)

RTL Description

Isolated
Analysis

(Design Compiler)

Isolated
Analysis

(Design Compiler)

Isolated
Analysis

(Design Compiler)

Constraining
Function

Netlist

PO1 Delay PON Delay

Gate-Level Simulation
(ModelSim)

Power Analysis
(PrimeTime)

.v

.spef

.v

.saif

S
la

ck
H

a
m

m
e

r
S

y
n

th
e

si
s

Analysis - phase 1

Iterative - phase 2

iterate Synthesis
(Design Compiler)

t=0
t=tckt

t=tcktt=0 t=tckt

t=tckt

Path A

t=0

Path B

Path C

Path D

t=tckt

Before Optimizations Traditional SlackHammer

critical critical critical

near-critical

𝑷𝑬(𝑪𝒌𝒕𝟐) = 𝑷𝑬 𝑨 ∪ 𝑩 ∪ 𝑪 𝑷𝑬(𝑪𝒌𝒕𝟏) = 𝑷𝑬 𝑨 ∪ 𝑩 𝑷𝑬(𝑪𝒌𝒕𝟑) = 𝑷𝑬 𝑨

Methodology

Set tightest, successful delay constraints

for each primary output in 2 phases:

1) Analysis
• Identify non-critical paths

• Asses the delay improvement margin
• Set initial delay constraints

2) Iterative constraining
• Relax the worst violator constraints

until synthesis successfully finishes

constraint[s] = constraint[s]+ δ

Results

The number of near-critical paths are

reduced by up to 93%.

Better optimizations: area and power

overheads are significantly less than

the state-of-the-art, post-synthesis

cell resizing method [1].

Limitations

Inherits synthesis heuristics

Design time overhead 15x – 623x

depending on:

• Number of primary outputs

• step size (δ) in iteration phase

Delay Distribution Comparison

Most primary output delays can be

reduced lower than what traditional

synthesis methods produce.

Cross-Layer

Effectiveness

SlackHammer circuits

start producing errors

later when frequency is

overscaled.

93%

14%

12%

Better

optimizations

14%

27%

Clock Period

Overclocked

Timing

Errors

