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Idea 

Most input combinations do not invoke the critical 

path and can be accomplished in a shorter time or 

lower voltage. 

 

Observation 

Synthesis algorithms result in circuits that contain a 

large number of near-critical paths. 

 Under aggressive voltage or frequency scaling 

either no error occurs, or a very large number of 

paths fail at the same time.  

 Timing speculation benefits are limited. 

 

Motivation 

1. Reduce the number of near-critical paths 

2. Enable graceful errors under frequency scaling 

 increase the performance 

 

Accuracy – Frequency 

Tradeoff 

Reductions in error rate 

and error magnitude can 

be achieved with 

proposed non critical 

path optimizations. 
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Before Optimizations Traditional SlackHammer 

critical critical critical 

near-critical 

𝑷𝑬(𝑪𝒌𝒕𝟐) = 𝑷𝑬 𝑨 ∪ 𝑩 ∪ 𝑪  𝑷𝑬(𝑪𝒌𝒕𝟏) = 𝑷𝑬 𝑨 ∪ 𝑩  𝑷𝑬(𝑪𝒌𝒕𝟑) = 𝑷𝑬 𝑨  

Methodology 

Set tightest, successful delay constraints 

for each primary output in 2 phases: 

1) Analysis 
• Identify non-critical paths 

• Asses the delay improvement margin 
• Set initial delay constraints 

 

2) Iterative constraining 
• Relax the worst violator constraints 

until synthesis successfully finishes 

constraint[s] = constraint[s]+ δ 

Results 

The number of near-critical paths are 

reduced by up to 93%. 

Better optimizations: area and power 

overheads are significantly less than 

the state-of-the-art, post-synthesis 

cell resizing method [1].  

 

Limitations 

Inherits synthesis heuristics 

Design time overhead 15x – 623x 

depending on: 

• Number of primary outputs 

• step size (δ) in iteration phase 

 

Delay Distribution Comparison 

Most primary output delays can be 

reduced lower than what traditional 

synthesis methods produce. 

 

 

Cross-Layer 

Effectiveness 

SlackHammer circuits 

start producing errors 

later when frequency is 

overscaled. 
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