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Energy Efficiency on Multi-core Architectures
with Multiple Voltage Islands
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Abstract—Efficient and effective system-level power management for multi-core systems with multiple voltage islands is necessary for
next-generation computing systems. This paper considers energy efficiency for such systems, in which the cores in the same voltage
island have to be operated at the same supply voltage level. We explore how to map given task sets onto cores, so that each task
set is assigned and executed on one core and the energy consumption is minimized. Due to the restriction to operate at the same
supply voltage in a voltage island, different mappings will result in different energy consumptions. By using the simple Single Frequency
Approximation Scheme (SFA) to decide the voltages and frequencies of individual voltage islands, this paper presents the approximation
factor analysis (in terms of energy consumption) for simple heuristic algorithms, and develops a dynamic programming algorithm, which
derives optimal mapping solutions for energy minimization when using SFA. We experimentally evaluate the running time and energy
consumption performance of these algorithms on Intel’s Single-chip Cloud Computer (SCC). Moreover, we conduct simulations for
hypothetical platforms with different number of voltage islands and cores per island, also considering different task partitioning policies.
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1 INTRODUCTION

FOR modern computing systems, energy and peak
temperature reduction have become important issues

to cut the power bills in server systems, to prolong
the battery lifetime of embedded systems, or to reduce
the packaging cost. Moreover, to balance the power
consumption and the computation performance, multi-
processor systems on chip and multi-core platforms have
been widely applied for modern computing systems.

In the past decade, task scheduling and partitioning
have been explored in academia and industry for energy
reduction, while the performance indexes can still be
met. However, most researches either assume individual
voltages for the cores, e.g., [1], [3], [5], [17], or assume
a global voltage for all the cores [6], [11], [16], [18].
Providing only one global supply voltage for all the
cores is energy-inefficient, whereas providing individual
supply voltages for each core locally can be energy-
efficient but costly for implementation. Moreover, based
on VLSI circuit simulations, it has been suggested in [7]
that per-core Dynamic Voltage and Frequency Scaling
(DVFS) suffers from complicated design problems.

For the next-generation many-core systems, a trade-
off between global-voltage and local-voltage (known as
per-core voltage scaling or per-core DVFS) platforms is
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Fig. 1: Intel’s Single-chip Cloud Computer Architecture
[9], with two IA (P54C) cores per tile, one router (R)
associated with each tile, four memory controllers (MC)
for off-die (but on-board) DDR3 memory, and a Voltage
Regulator Controller (VRC) to set the voltage of islands
and frequencies of cores.

to adopt multi-core architecture with different voltage
islands, in which several cores in a voltage island share
the same supply voltage [2], [7] (the cores in a volt-
age island are naturally consolidated as a cluster). For
example, Intel has recently released a research multi-
core platform with such a feature, called Single-chip
Cloud Computer (SCC) [9] shown in Figure 1. Effective
and efficient management of such clusters would be an
ultimate objective for the next-generation systems [2], [7].

Motivations: Even though hardware platforms of
multi-core systems with different voltage islands have
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been developed in academia, e.g., [4], [7], [8], [10], [14],
and industry, e.g., Intel [9], adopting existing system-
level power management schemes, that do not consider
the characteristics of different voltage islands, may not
work well. When using multiple voltage islands, tasks
on the same island are forced to be executed at the same
supply voltage (at any given time point), whereas differ-
ent islands might still use different supply voltages. To
meet the timing constraints, a particular task set (group
of tasks assigned together on one core) has to be executed
at a certain frequency/voltage. When several task sets
are mapped onto the same island, one of them may
dominate the required supply voltage and significantly
increase the energy consumption of the other task sets.
Moreover, mapping tasks to a voltage island enforces
the activation of the island, which might consume more
energy due to the static/leakage power consumption.

As a result, with multiple voltage islands, task set
mapping and island activations have to be done carefully
to minimize the energy consumption. To the best of
our knowledge, there is little research regarding multi-
core architectures with multiple voltage islands when
the hardware platform is fixed, i.e., when the number of
voltage islands is not decided based on the applications.
The closest research for mapping can be found in [13],
where the Extremal Optimization meta-heuristic is applied
to solve a similar problem. In [13], a task graph and
communication costs between cores are considered, but
only one task can be assigned to each core and no
theoretical analysis for performance is provided.

Objective: Motivated by the above discussions, it is
important to consider the mapping/assignment of given
task sets of periodic tasks onto cores that belong to
different voltage islands, where the hardware platform,
e.g., SCC [9], is given (that is, the number of voltage
islands and cores per voltage island is fixed). For such
systems, the objective of this paper is to map each task set
onto an individual core so that the energy consumption
is minimized. We denote the studied problem as the
multiple voltage islands assignment problem.

Related Work: For per-core voltage scaling, power-
aware and energy-efficient scheduling for homogeneous
multiprocessor systems has been widely explored, e.g.,
for real-time embedded systems, [1], [3], [5], [17]. It
has been shown in [3] that applying the Largest-Task-
First (LTF) strategy for task mapping results in solutions
with approximation factors, compared to the optimal
solutions, in which the factors depend on the hardware
platforms. Specifically, by turning off a processor to re-
duce the energy consumption in homogeneous multipro-
cessor systems, Xu et al. [17] and Chen et al. [3] propose
polynomial-time algorithms to derive task mappings that
try to execute at a critical frequency. For homogeneous
multiprocessor systems with discrete voltage levels, de
Langen and Juurlink [5] provide heuristics for energy-
aware scheduling.

For global voltage scaling, the research in [18] pro-
vides answers on voltage scaling to minimize the energy

consumption. However, the approach in [18] is highly
restricted by its assumptions on negligible static/leakage
power consumption. Moreover, the mode transition in
[18] is also assumed negligible. The study in [6], [16] has
relaxed the assumptions in [18] by considering periodic
real-time tasks with non-negligible static and voltage-
independent power consumptions and non-negligible
overhead for turning to low-power idle modes.

The analysis in [15] derives the worst-case approxima-
tion factor, in terms of energy consumption, for the Single
Frequency Approximation Scheme (SFA) for sets of periodic
real-time tasks. SFA is a simple strategy that uses a single
voltage and frequency for all the cores in a voltage island,
to just meet the timing constraints (or the performance
requirements).

Our Contributions: For periodic tasks, by adopting
SFA in individual voltage islands, our contributions are:
• We present, in Section 4, some simple and intuitive

polynomial-time heuristics to map given task sets onto
cores in different voltage islands and analyse the ap-
proximation factor of any mapping heuristic against the
optimal solution.
• In Section 6, we provide a dynamic programming

algorithm for given task sets, which derives opti-
mal mapping solutions for minimizing the energy
consumption when using SFA in individual islands.
The time complexity of the dynamic programming
algorithm is polynomial when either the number of
voltage islands or the number of cores per island is a
constant. Moreover, we provide analysis for comparing
our algorithm against the optimal mapping solution
with the ideal DVFS scheme per voltage island.
• We experimentally evaluate on SCC the running time

and energy consumption performance of some map-
ping heuristics and our dynamic programming so-
lution. Even though the dynamic programming re-
quires more time complexity than the heuristics to
derive optimal solutions, the evaluations show that the
running time of the algorithm is a few milliseconds
for the practical settings when considering up to 6
voltage islands and 8 cores per island, e.g., SCC. This
is presented in Section 7.
• Finally, in Section 8, we conduct simulations for hy-

pothetical platforms with several combinations for the
number of voltage islands and the number of cores
per island, as well as richer DVFS and DPM features
than SCC. We also consider different policies for the
Largest-Task-First (LTF) strategy for task partitioning.

2 SYSTEM MODEL AND PROBLEM DEFINITION
This section reviews the task and power models adopted
in this paper and defines the studied problem. A table
summarizing all the symbols used in the paper is in-
cluded in Appendix A.

2.1 Task Model
We consider periodic real-time tasks with implicit dead-
lines, where each task τj releases an infinite number
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of task instances with period (and relative deadline) pj
and each instance has worst-case execution cycles cj . We
consider partitioned scheduling, in which each task is
assigned onto one core and executed on the assigned
core once the task arrives to the system. Specifically, we
use Earliest-Deadline-First (EDF) scheduling in which the
task instance with the earliest absolute deadline on a core
has the highest priority.

For the task partitioning stage, this paper considers
the Largest-Task-First (LTF) strategy from [18], described
in Section 3 for completeness. After the task partitioning
has been done by considering M ′ cores, the tasks are
grouped into M ′ sets of tasks, i.e., {T1,T2, . . . ,TM ′}. If
there are M homogeneous cores in the system, in order to
provide a feasible mapping, it should hold that M ′ ≤ M ;
otherwise, there would be more task sets to map than available
cores.

We define the cycle utilization wi (in cycles per second)
as wi =

∑
τj∈Ti

cj
pj

. It has been well studied, e.g., [12],
that executing task set Ti at frequencies higher than or
equal to wi with EDF will meet the timing constraints.
Moreover, we define the hyper-period D, which is the
least common multiple (LCM) of the given task periods
for all the tasks.

Without loss of generality, if for the task partitioning
M ′ < M , we create M −M ′ dummy (empty) task sets
with zero utilization for the simplicity of presentation,
resulting in task sets {T1,T2, . . . ,TM}. Additionally, we
consider all the task sets (the given M ′ non-empty task
sets along with the M − M ′ empty task sets) ordered
with respect to their cycle utilizations such that w1 ≤
w2 ≤ · · · ≤ wM . If a task leaves the system or a new
task arrives, then we should obtain a new task partition
with LTF and the algorithms presented in Section 4 and
Section 6 should be re-executed.

For Sections 4, 5 and 6, we will consider the map-
ping of M ′ already partitioned task sets together with
the corresponding M − M ′ dummy task sets, i.e.,
{T1,T2, . . . ,TM}. Moreover, to show the effects of task
partitioning combined with the voltage island assign-
ment algorithms (presented in Section 4 and Section 6),
in Section 8 we conduct simulations for different task
partitioning policies of LTF, i.e., different values for M ′.

2.2 Hardware Model
This paper focuses on a system with multiple homoge-
neous cores and multiple voltage islands, where all the
cores in each individual island have to run at the same
supply voltage at any given time point, e.g., SCC [9].
Each individual island can change its own voltage and
each core can change its own frequency. The combined
technique is denoted as Dynamic Voltage and Frequency
Scaling (DVFS). For a core to support a frequency, a
minimum voltage is required for stable execution.

The system has a number V of voltage islands defined
as {I1, I2, . . . , IV }, and each island supplies the voltage
for Q cores. There are M homogeneous cores in the
system, such that Q · V = M . We consider that any

island consumes negligible power when in the inactive
state and that it consumes η amount of power when in
the active state (since there is no voltage regulator with
100% efficiency). We consider an island to be inactive, if
after the assignment onto cores all the task sets in the
island have zero utilization; otherwise it is considered
to be active. Without loss of generality, the islands are
ordered with respect to their voltage in an increasing
manner, such that I1 (IV ) is the island with the lowest
(highest) voltage.

Some notations are necessary to identify the task
sets assigned to each island. We define set Lj =
{`j,1, `j,2, . . . , `j,Q} as the indexes of the task sets as-
signed to island Ij such that `j,1 < `j,2 < · · · < `j,Q
for all j = 1, 2, . . . , V , and the value of `j,i ∈ [1,M ]
and it is unique for all j, i. Given that the task sets are
ordered with respect to their cycle utilizations, it holds
that w`j,1 ≤ w`j,2 ≤ · · · ≤ w`j,Q . For example, if Q is 3 and
task sets T5, T8, and T9 are assigned to island I4, then
L4 is set to {5, 8, 9}, i.e., `4,1 = 5, `4,2 = 8, and `4,3 = 9.

Once the task sets have been assigned onto cores in
different islands, a DVFS policy has to be adopted to
decide the execution frequencies for the cores and the
voltages for the individual islands. For periodic tasks, a
simple and effective strategy is to use a single voltage
and frequency for execution, denoted as Single Frequency
Approximation Scheme (SFA) [15]. That is, with SFA, all
the tasks assigned to voltage island Ij will be executed
at single frequency sj (in cycles per second), which is no
less than w`j,Q , such that all the task sets assigned to this
island meet their timing constraints. The supply voltage
of island Ij will be set to the lowest available value,
at which all cores in the island can stably execute at
frequency sj . As stated in [15], under SFA, it is guaran-
teed that EDF can feasibly meet the timing constraints.
Without loss of generality, the maximum cycle utilization
among all task sets, i.e., wM , is no more than the maximal
core frequency, denoted as smax; otherwise, there is no
feasible solution for such task partition.

We consider a general power consumption model for
individual cores. We denote the power consumption of
a core executing a certain task at frequency s as P (s).
The available frequencies are in the range of [smin, smax].1
When a core does not execute anything, we consider that
it enters a low-power mode with power consumption
β′ ≥ 0. That is, when an island is active, the minimum
power that any core in the island can consume is β′.
This means that when an island is active, it not only
consumes η power for being active, but there is also an
offset of Qβ′ power consumed by the cores in the island.
As we can transfer the power consumption Qβ′ to the
power consumption η, without loss of generality, we can
set η as η+Qβ′ and P (s) as P (s)−β′, such that we can
disregard the effect of the power consumption of a core
in a low-power mode, because it is already considered
inside the new η. The overheads of entering/leaving a

1. All algorithms still work for systems with discrete frequencies, as
shown in the experiments of Section 7 and the simulations of Section 8.
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low-power mode are considered negligible.
For analysing the quality of the proposed algorithms

in terms of energy minimization, we assume that P (s)
is a convex and increasing function with respect to s,
and P (s)

s is non-decreasing with respect to s in the
range of [scrit, smax], where scrit is called the critical fre-
quency, representing the frequency that minimizes the
energy consumption when the overhead for sleeping is
considered negligible. This assumption complies with
most of the power models for CMOS processors adopted
in the literature, e.g., [1], [3], [5], [6], [17], [18], where
the most widely used power consumption function is
P (s) = αsγ + β (with α > 0, γ > 1, and β ≥ 0) and
scrit = max

{
smin, γ

√
β

(γ−1)α

}
.

The lemmas and theorems presented in this paper are only
based on the above assumptions for P (s) and P (s)

s , and
therefore apply for several power models making the obtained
results quite general. Specific power functions are only used
in this paper when numerical results are required.

2.3 Problem Definition
For the above models, using SFA in individual islands
after assigning the task sets onto cores, all cores in island
Ij will use the single frequency sj for execution, which
will be set to max

{
scrit, w`j,Q

}
. The voltage of island Ij

will be set to the lowest available value, such that all
cores in the island can stably execute at frequency sj .
The energy consumption (during a hyper-period) of the
core, in island Ij , where Ti is assigned, is P (sj)

wi
sj
D.

Therefore, for all Q cores in the island, the energy
consumption of island Ij during a hyper-period is

Ej =

 0 if
∑Q
i=1 w`j,i = 0

D ·
(
η +

P (sj)
sj

Q∑
i=1

w`j,i

)
otherwise.

(1)
Given partitioned task sets of periodic tasks and a

fixed hardware platform with V voltage islands and Q
cores per island (V and Q are constants), e.g., SCC [9],
the multiple voltage islands assignment problem is to map
each task set, i.e., {T1,T2, . . . ,TM}, onto an individual
core so that the energy consumption is minimized by
using SFA on individual islands.

3 LARGEST-TASK-FIRST (LTF) STRATEGY
For completeness, this section describes the Largest-
Task-First (LTF) strategy from [18]. LTF is a good and
widely used algorithm for task partitioning, with time
complexity O (N (logN + logM ′) +M ′). LTF partitions
N tasks {τ1, τ2, . . . , τN} into M ′ groups of task sets
{T1,T2, . . . ,TM ′}. As stated in Section 2.2, to feasibly
schedule this task partition, the maximum cycle utiliza-
tion among all task sets should be no more than the
maximal core frequency smax. The pseudo-code for LTF
is presented in Algorithm 1.

As mentioned in Section 2.1, it should hold that M ′ ≤
M ; otherwise, there would be more task sets to map than

Algorithm 1 Largest-Task-First (LTF) strategy

Input: Number of task sets M ′, and tasks {τ1, τ2, . . . , τN};
Output: Task sets {T1,T2, . . . ,TM′};

1: Sort all tasks in a non-increasing order of their cycle uti-
lizations;

2: for i = 1 to M ′ do
3: Ti ← ∅;
4: end for
5: for j = 1 to N do
6: Find the task set Ti with the smallest wi;
7: Ti ← Ti + {τj};
8: end for
9: Re-order Ti by a non-decreasing order of their cycle uti-

lization;
10: Return {T1,T2, . . . ,TM′};

available cores. However, depending on the influence of
static/leakage power in P (s) and the value of η, using
less than M cores for task partitioning, shutting down
cores and voltage islands, could result in energy savings.

4 SIMPLE HEURISTIC ALGORITHMS

This section presents two simple and very intuitive al-
gorithms to solve the problem stated in Section 2.3. It
also describes an algorithm extended from [13], based on
extremal optimization. These three algorithms have low
time complexity but derive non-optimal solutions. This
section also provides theoretical analysis for the approx-
imation factor of any task partition mapping heuristic
against the optimal assignment, under SFA.

4.1 Description of Simple Heuristic Algorithms
Consecutive Cores Heuristic (CCH): One sim-

ple and very intuitive heuristic algorithm is to assign
the task sets onto cores in each island in a consec-
utive manner with respect to their cycle utilization.
That is, for voltage island Ij with j = 1, 2, . . . , V ,
we assign the task sets with indexes inside set Lj =
{(j − 1)Q+ 1, (j − 1)Q+ 2, . . . , (j − 1)Q+Q} to island
Ij . This algorithm has linear time complexity O (QV ).
For example, if V = 4 and Q = 3, CCH will assign task
sets {T1,T2,T3} to island I1, task sets {T4,T5,T6} to
island I2, task sets {T7,T8,T9} to island I3, and task
sets {T10,T11,T12} to island I4, as shown in Figure 2.

Balanced Utilization Heuristic (BUH): Another
simple heuristic algorithm is to assign Q consecutive
task sets onto cores in island Ij , such that the difference
between the lowest and highest utilization task sets in
the island is minimized. That is, if there are still more
than Q task sets to be assigned, we find the index i∗

such that wi∗+Q−1−wi∗ is minimized. Then, these Q task
sets are mapped onto one voltage island. By removing
these task sets from the problem instance, relabelling the
remaining task sets, and repeating the process until there
is no unassigned task set left, we can find a feasible
mapping. As finding the index i∗ requires O(M + Q)
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I4 I3 I2 I1
T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

Fig. 2: Example of CCH for V = 4 and Q = 3.

T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

I4I3 I2 I1

Fig. 3: Example of BUH for V = 4 and Q = 3 (the high of
the bars represents the cycle utilization of the task sets).
Islands are numbered with respect to their voltage, as
stated in Section 2.2, and not by the order in which the
heuristic assigns the task sets to each island.

time complexity and the number of iterations is at most
V , the overall time complexity is O

(
QV 2

)
. An example

illustrating this algorithm is shown in Figure 3, where
{T9,T10,T11} are first assigned to I3, then {T1,T2,T3}
are assigned to I1, then {T4,T5,T6} are assigned to I2,
and finally {T7,T8,T12} are assigned to I4.

Extremal Optimization Heuristic (EOH): This al-
gorithm, extended from [13], performs a random search
to improve the energy consumption, starting from an
arbitrary initial solution, e.g., CCH. The algorithm is
based on swapping, by selecting two task sets to swap
per iteration: an unfavourable task set and a replacement
task set. EOH uses information about the system cost
when selecting the swapped task sets, by considering
two fitness functions and a power-law distribution. It is
expected that such an approach results into fast progress
towards the final solution. In addition, EOH accepts new
solutions unconditionally, thus making the algorithm
easier to tune and avoiding a local minimum. The ran-
domness process is repeated with a predefined number
of iterations until there is no improvement. From all the
evaluated mappings, EOH returns the one that results in
the lowest energy consumption. Note that EOH is not a
contribution of this paper. We present it here for completeness,
because we use it for comparisson in Sections 7 and 8.

The difference between EOH (in this paper) and the
algorithm presented in [13], is that we map one task set
to one core, instead of just one task per core; and that we
do not consider the energy consumed for communication
between tasks, thus our fitness functions are simplified.
Although EOH may help to improve the solutions, in the worst
cases, the quality of the solution remains as the initial solution.

4.2 Approximation Factor for Simple Heuristics
This subsection details the proof of the approximation
factor for any task partition mapping heuristic that uses⌈
M ′

Q

⌉
voltage islands with non-empty task sets under

SFA (to decide the execution voltage/frequencies of indi-
vidual islands), against the optimal assignment that also

uses SFA in individual islands. That is, although some
heuristics might perform well in general cases, for any
mapping heuristic there exist at least one (worst-case)
task partition which results in the approximation factor
presented in this subsection.

We denote Ej
RUN=SFA

ASG=ANY
as the energy consumption of

island Ij that uses any task partition mapping algo-
rithm (ASG=ANY) and SFA to decide the execution volt-
age/frequencies of individual islands (RUN=SFA). For ex-
ample, when using heuristic CCH, EjRUN=SFA

ASG=ANY
represents

the energy consumption on island Ij when mapping the
task sets with heuristic CCH and using SFA to decide
the execution voltage/frequency on the island. The same
holds when considering any heuristic. Thus, we do not
constraint the analysis using, e.g., EjRUN=SFA

ASG=CCH
as notation.

From the definition of set Lj = {`j,1, `j,2, . . . , `j,Q} in
Section 2.2, T`j,i is the task set assigned onto the i-
th core of island Ij . We denote Ej

RUN=SFA

ASG=SFA
as the energy

consumption of the task sets T`j,i for i = 1, 2, . . . , Q in
the optimal assignment solution under SFA in individual
islands (ASG=SFA). Moreover, let EjRUN=p.c.DVFS

ASG=ANY
be the energy

consumption of the task sets T`j,i for i = 1, 2, . . . , Q by
using per core DVFS. Clearly, EjRUN=p.c.DVFS

ASG=ANY
is the lower

bound for the energy consumption, since having per-core
DVFS is the optimal solution and the task set assignment
plays no role for such a case.

Therefore, the approximation factor AFRUN=SFA
ASG=ANY is

AFRUN=SFA
ASG=ANY =

∑V
j=1Ej

RUN=SFA

ASG=ANY∑V
j=1Ej

RUN=SFA

ASG=SFA

≤
∑V
j=1Ej

RUN=SFA

ASG=ANY∑V
j=1Ej

RUN=p.c.DVFS

ASG=ANY

≤ max
j=1,2,...,V

{
Ej

RUN=SFA

ASG=ANY

Ej
RUN=p.c.DVFS

ASG=ANY

}
.

Throughout the proof, we implicitly consider that η
is 0, as the optimal solution also requires to use at
least

⌈
M ′

Q

⌉
voltage islands. That is, the worst-case for

the approximation factor happens when η is 0. The
energy consumption function for EjRUN=SFA

ASG=ANY
is defined in

Equation (1), and the energy consumption function for
Ej

RUN=p.c.DVFS

ASG=ANY
(with η = 0) is

Ej
RUN=p.c.DVFS

ASG=ANY
= D

Q∑
i=1

P (sj,i)

sj,i
w`j,i , (2)

such that sj,i = max
{
scrit, w`j,i

}
.

Therefore, the approximation factor is expressed as

AFRUN=SFA
ASG=ANY ≤ max

j=1,2,...,V


P (sj,Q)
sj,Q

∑Q
i=1 w`j,i∑Q

i=1
P (sj,i)
sj,i

w`j,i


≤ max
j=1,2,...,V

 1 +
∑Q−1
i=1

w`j,i
w`j,Q

1 +
∑Q−1
i=1

sj,Q
P (sj,Q)

P (sj,i)
sj,i

w`j,i
w`j,Q

 .

The worst case for this relation, regardless of the
absolute value of the cycle utilizations and island j, only
depends on the ratios

w`j,i
w`j,Q

for each island. The maximal
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Fig. 4: Approximation Factor for any mapping that uses⌈
M ′

Q

⌉
islands under SFA, when P (s) = αs3 with α > 0.

value is found when
∑Q−1
i=1

w`j,i
w`j,Q

remains constant and∑Q−1
i=1

sj,Q
P (sj,Q)

P (sj,i)
sj,i

w`j,i
w`j,Q

is minimized. Since the latter is

a convex and increasing function regarding to
w`j,i
w`j,Q

, it

is minimized when w`j,i = 1
Q−1

∑Q−1
i=1 w`j,i for all i =

1, 2, . . . , Q− 1, i.e., when the Q− 1 least loaded task sets
in an island have the same cycle utilization. By defining
x = 1

Q−1

∑Q−1
i=1

w`j,i
w`j,Q

as the average cycle utilization of
the Q−1 least loaded task sets, the approximation factor
is

AFRUN=SFA
ASG=ANY ≤ max

0≤x≤1

1 + (Q− 1)x

1 + (Q− 1)
sj,Q

P (sj,Q)
P (sx)
sx

x
, (3)

where 0 ≤ x ≤ 1 and sx = max
{
scrit, x · w`j,Q

}
. The

specific value of x that maximizes Equation (3) depends
on the power consumption function of the cores.

4.3 Numerical Examples for the Approximation Fac-
tor of Simple Heuristics
Based on Equation (3), we know the approximation fac-
tor for using CCH and BUH. To demonstrate the worst-
case behaviour in Equation (3), we provide numerical
results based on the specific power consumption function
P (s) = αs3. For this case, Equation (3) is re-written as

AFRUN=SFA
ASG=ANY ≤ max

0≤x≤1

1 + (Q− 1)x

1 + (Q− 1)x3
if P (s) = αs3. (4)

To find the value of x that results in the worst-case,
denoted as xmax, we set to zero the first order derivative
of Equation (4) with respect to x. Hence, we get that
2 (Q− 1)x3

max + 3x2
max − 1 = 0, and we simply compute

the value of xmax for each given Q. Figure 4 presents
the resulting approximation factor in Equation (4), for
x = xmax. The approximation factor is not bounded with
respect to Q, and can be very big when Q is very large.

The tightness of this analysis can be proven by a
concrete example built according to the above conditions.
In other words, for a given Q, V , and wM , if P (s) = αs3,
the worst case happens when we have (Q− 1)V task sets
with cycle utilization zero and Q− 1 task sets with cycle
utilization xmax ·wM , i.e., wM , wM−1 = wM−2 = · · · =
wM−Q+1 = xmax ·wM , wM−Q = wM−Q−1 = · · · = w1 = 0.

For example, consider a system with V = 8, Q = 8,
η = 0, and P (s) = 2 Watts

GHz3 · s
3. After the task partitioning

stage, the task sets to be assigned to the islands have
cycle utilizations w64 = 109, w63 = w62 = · · · = w57 =
3.544 · 108, w56 = w55 = · · · = w1 = 0. Both CCH and
BUH will assign task sets T57,T58, . . . ,T64 to island I8,
which according to Equation (1) results in an energy con-
sumption under SFA of 6.96 Joule. The optimal solution
however, will assign task set T57 to island I1, T58 to
island I2, . . ., and T64 to island I8, which results in an
energy consumption of 2.62 Joule (equivalent energy for
having a per-core DVFS platform in this example). The
ratio between these two energy consumptions is 2.65,
which corresponds to Equation (4) when Q is 8, since
for such a case we have that xmax = 0.3544.

This example can be easily extended for any value of
Q, such that V ≥ Q, as shown in Appendix B. Thus, we
prove the tightness of our analysis for CCH and BUH.

5 ASSIGNMENT PROPERTIES
This section presents assignment properties later used
in Section 6. We have two cases: when the task sets with
the highest utilization in each island are given and when
they are not given, that is, all cases need to be considered.

5.1 Given Highest Utilization Task Sets per Island
We define set Y = {y1, y2, . . . , yV } as a set of the indexes
of task sets with the highest utilizations in each island. In
other words, the set of indexes for which holds that yj =
`j,Q for all j = 1, 2, . . . , V . Since the islands are ordered
with respect to their voltage/frequency, we have y1 <
y2 < · · · < yV . It is clear that task set TM will always be
the highest utilization task set in the highest voltage/frequency
island IV , or in other words, yV is always equal to M .
Furthermore, the highest utilization task set in island Ij
cannot be a task set with a utilization less than wj·Q, as
this would contradict the definition of set Y. Thus, by
definition, we know that yj ≥ j ·Q for all j = 1, 2, . . . , V ;
otherwise, there is no feasible assignment to satisfy the
definition of set Y.

The following lemma provides an important property
for assigning task sets for a given set Y.

Lemma 1: Suppose that P (s)
s is an increasing function

of s between scrit and smax. For a given Y, the highest
cycle utilizations of islands Ii and Ih are wyi and wyh ,
respectively, and it holds that wyi ≤ wyh when i < h. We
consider task sets Tj and Tk such that wj ≤ wk ≤ wyi ≤
wyh , where Tj is assigned to island Ii and Tk is assigned
to island Ih. Under SFA for the given Y, swapping the
assignment such that Tj is assigned to island Ih and Tk

is assigned to island Ii consumes no more energy than
the original assignment.

Proof: The energy, after swapping, is reduced by

D

[
P (syh)

wj
syh

+ P (syi)
wk
syi
− P (syh)

wk
syh
− P (syi)

wj
syi

]
= D

[
P (syh)

syh
− P (syi)

syi

]
(wj − wk) ≤ 0,
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Algorithm 2 Greedy Algorithm for a Given Y Set

Input: The fixed set Y = {y1, y2, . . . , yV };
Output: The task set assignment with the minimal energy

consumption based on the given set Y;
1: for j = 1 to V do
2: Lj ← Q − 1 task sets with utilizations less than or

equal to wyj , in a decreasing order with respect to their
utilizations;

3: Remove the cores in set Lj from the problem to create a
new sub-problem;

4: end for
5: return L1,L2, . . . ,LV ;

which concludes the lemma, since
P(syh)
syh

− P(syi)
syi

≥ 0

and wj − wk ≤ 0.

When the highest utilization task sets on each island
are already selected, i.e., set Y = {y1, y2, . . . , yV } is
given, we can derive the optimal assignment based on
Lemma 1, presented in Algorithm 2. Algorithm 2 starts
by assigning Q−1 task sets onto cores in island I1. Since
now island I1 has its Q cores with tasks assigned to them,
the island, cores and task sets are removed from the input
instance of the problem and a new sub-problem with one
less element in Y is created. The process is repeated for
islands I2, . . . , IV−1 until only Q − 1 task sets remain,
which are assigned onto cores in island IV . The overall
time complexity for a given Y is O (QV ). Moreover, from
Lemma 1, we have the following theorem and corollary.

Theorem 1: Suppose that P (s)
s is an increasing function

of s between scrit and smax. For a given Y, Algorithm 2
derives the optimal solution for the multiple voltage
islands assignment problem under SFA.

Proof: This comes directly from Lemma 1.

Corollary 1: Under SFA and for a given set Y, in order
to assign task sets to voltage island Ij , the optimal
assignment solution assigns Q−1 adjacent and consecutive
task sets with the highest utilizations whose values are
less than the corresponding utilization wyj , in each sub-
problem in Algorithm 2.

Example: We consider Y = {5, 7, 11, 12} with V = 4
and Q = 3. The optimal assignment of the task sets onto
cores belonging to different islands is shown in Figure 5.
According to Algorithm 2, we first focus on island I1,
that is j = 1, and assign Q− 1 task sets with utilizations
less than or equal to wy1 onto cores in island I1. In this
example T5 has the highest utilization in island I1 (y1 =
5), hence task sets T4 and T3 are also assigned onto cores
belonging to I1. Furthermore, T3, T4 and T5 are now
removed from the sub-problem (coloured in gray). To
solve the new sub-problem, we focus on island I2, that
is j = 2. Since T7 has the highest utilization on island I2,
task sets T6 and T2 are assigned onto cores belonging
to I2. These task sets are removed from the sub-problem
(coloured in gray) and the process is repeated.

j = 1: T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

j = 2: T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

j = 3: T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

j = 4: T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

Fig. 5: Example for V = 4, Q = 3 and Y = {5, 7, 11, 12}.

T`Q
Q · nj−1

task sets
T`Q−1

· · ·
T`2

Q · n1

task sets
T`1

Fig. 6: Adjacent remaining task sets groups, with ni ∈ N0.

5.2 All Possible Highest Utilization Task Sets
If the highest utilization task sets on each island are not
given, then one possibility to derive the optimal solution
is to try every possible combination for set Y and select
the one with the minimum energy consumption. The
number of combinations to be considered is at most(
QV−Q
V−1

)
≤ (eQ)

V−1, since it holds that
(
eN
K

)K
is an upper

bound for
(
N
K

)
, where e is the Euler’s number. Thus,

an algorithm that tries every possible combination for
set Y and applies Algorithm 2 for each possibility, will
have a time complexity O

(
eV−1QV V

)
. The complexity is

polynomial when V is a constant, but it is still too high
and does not solve the problem in an efficient manner.

6 DYNAMIC PROGRAMMING SOLUTION
This section details an efficient dynamic programming to
solve the multiple voltage islands assignment problem, called
Dynamic Voltage Island Assignment (DYVIA) algorithm.

6.1 Description of the DYVIA Algorithm
The algorithm is based on a property described in The-
orem 2, which comes as a direct result of Corollary 1.
Such property is illustrated in Figure 6.

We define set L = {`0, `1, `2, . . . , `Q} as the indexes of
the task sets assigned onto cores in one general island (as
opposed to set Lj , defined for the particular island Ij)
such that `1 < `2 < · · · < `Q, with `0 auxiliary and less
than `1. Naturally, it holds that w`1 ≤ w`2 ≤ · · · ≤ w`Q .

Theorem 2: When assigning task sets with indexes
{`1, `2, . . . , `Q} onto cores in island Ij , in the optimal
solution under SFA, all the task sets assigned onto cores
in islands I1, I2, . . . , Ij−1 will form up to j − 1 groups of
remaining adjacent task sets and every group will have a
number of task sets that is a multiple of Q.

Proof: From Theorem 1 and Corollary 1, it is quite
clear that Theorem 2 holds for any given Y set, including
the optimal one.

For given (i, j), let set Λ (i, j) be the set of all possible
L sets that satisfy Theorem 2. That is, Λ (i, j) stores the
potentially optimal combinations, such that `0 = i−1, `Q = j
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and `h = `h−1 + 1 + nQ for 0 < h < Q with `h < j and
n ∈ N0.

We define G (i, j) as our dynamic programming function,
where i is the index number of the first task set and j
the index number of the last task set to be considered
in this sub-problem. Function G (i, j) will return the
minimum energy consumption for the assignment of task
sets Ti,Ti+1, . . . ,Tj−1,Tj onto cores, using a number
v = j−i+1

Q of islands (from Corollary 1, j − i + 1 will
always be an integer multiple of Q). Particularly, function
G (i, j) only focuses on the highest voltage/frequency island
in the sub-problem and the task sets T`1 ,T`2 , . . . ,T`Q
that are to be assigned onto cores in this island. To
derive the optimal assignment of task sets onto cores that
resulted in this minimal energy consumption, a standard
backtracking technique may be used, e.g., building an
additional table BTG (i, j) with the task sets indexes
{`1, `2, . . . , `Q} that result in the minimum energy con-
sumption for sub-problem G (i, j).

From the definition, just as any other island, the highest
voltage/frequency island on each G (i, j) sub-problem will
hold Q cores. It is easy to see that task set Tj is always
assigned onto a core in this highest voltage/frequency island
and that, according to SFA, its cycle utilization defines
the frequency of the cores and the voltage of the island.
Therefore, function G (i, j) has to decide which of the
remaining Q − 1 task sets are assigned to the highest
voltage/frequency island on the sub-problem. In order to
do this, all the potentially optimal combinations that satisfy
Theorem 2, i.e., Λ (i, j), need to be considered.

The energy consumption of the highest voltage/frequency
island for each combination is computed through func-
tion H (L), which is similar to Equation (1), but for set
L instead of set Lj . Function H (L) is defined as

H (L) =

 0 if
∑Q
i=1 w`i = 0

D

(
η +

P(s`Q)
s`Q

Q∑
i=1

w`i

)
otherwise,

(5)
where s`Q = max

{
scrit, w`Q

}
.

The total energy consumption for each combination
comes from the summation of H (L) and the mini-
mum energy consumption of each sub-problem for ev-
ery group of remaining adjacent task sets, as stated in
Theorem 2. Once the total energy consumption for every
combination is obtained, the minimum one is chosen as
the result of the problem.

The initial conditions for building the dynamic pro-
gramming table are defined in Equation (6), as

G (i, j) =


0

if i = 0 or∑j
h=i wh = 0 or

0≤j<i+Q−1≤QV

D

(
η +

P (sj)
sj

j∑
h=i

wh

)
otherwise,

(6)
where sj = max {scrit, wj}. Equation (6) builds the table
for all sub-problems with Q consecutive task sets, i.e.,
j − i+ 1 = Q.

Algorithm 3 DYVIA

Input: Number of voltage islands V and cores per island Q;
Output: The minimal energy consumption under SFA;
{Initialize the table according to Equation (6)}

1: for h = 1 to Q (V − 1) do
2: sj ← max {scrit, wh+Q−1};
3: G (h, h+Q− 1)← ηD + P (sj) · Dsj

∑h+Q−1
n=h wn;

4: end for
{Fill the table (Bottom-Up) according to Equation (7)}

5: for k = 2 to V − 1 do
6: for h = 1 to Q (V − k) do
7: G (h, h+ kQ− 1)←∞;
8: Obtain Λ (h, h+ kQ− 1);
9: for all L ∈ Λ (h, h+ kQ− 1) do

10: E ← H (L);
11: for n = 1 to Q do
12: E ← E +G (`n−1 + 1, `n − 1);
13: end for
14: if E < G (h, h+ kQ− 1) then
15: G (h, h+ kQ− 1)← E;
16: end if
17: end for
18: end for
19: end for
20: G (1, QV )←∞;
21: Obtain Λ (1, QV );
22: for all L ∈ Λ (1, QV ) do
23: E ← H (L);
24: for n = 1 to Q do
25: E ← E +G (`n−1 + 1, `n − 1);
26: end for
27: if E < G (1, QV ) then
28: G (1, QV )← E;
29: end if
30: end for
31: return G (1, QV );

The recursive function is defined in Equation (7), as

G (i, j) = min
∀L∈Λ(i,j)

{
H (L) +

Q∑
n=1

G (`n−1 + 1, `n − 1)

}
.

(7)
The bottom-up implementation of the dynamic pro-

gramming solution is presented in Algorithm 3.

Example: We consider a system with V = 3 and
Q = 3 to conceptually illustrate how algorithm DYVIA
works. The solution to the problem, i.e., the optimal
energy consumption under SFA, is found in entry G (1, 9)
of our dynamic programming table. In order to build
entry G (1, 9) according to Equation (7), the algorithm
checks all L ∈ Λ (1, 9), i.e., all potentially optimal com-
binations (combinations satisfying Theorem 2). Figure 7
shows these combinations, where for each case, the
task sets assigned to I3 are boxed in white and the
resulting sub-problems are coloured in gray. As stated
in Theorem 2, every sub-problem contains 3 or 6 task
sets. For each combination, function H (L) computes
the energy consumption for island I3 and the algorithm
refers to the entries built previously to obtain the lowest
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Combination 1: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 2: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 3: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 4: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 5: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 6: T9 T8 T7 T6 T5 T4 T3 T2 T1

Fig. 7: Example of algorithm DYVIA for building G (1, 9),
with V = 3 and Q = 3.

energy consumption under SFA of the resulting sub-
problems. Sub-problems G (1, 3), G (2, 4), . . ., G (7, 9) are
built as initial conditions, according to Equation (6).
Sub-problems G (1, 6), G (2, 7) and G (3, 8) are solved
according to Equation (7), just as G(1, 9).

For the backtracking, we simply store in another table
the indexes of the combination that results in the min-
imum energy consumption for each sub-problem. For
example, in case that Combination 3 derives the best result
for G (1, 9) in Figure 7, then we would store {1, 8, 9} in
entry BTG (1, 9). Once the algorithm finishes, we look
into BTG (1, 9) for the task sets that should be assigned
to I3. Then, we look into BTG (2, 7) to know which task
sets should be assigned to I2, and so forth.

Due to Theorem 2, for this example, DYVIA only checks
among 6 potentially optimal combinations for G(1, 9),
instead of the 28 brute force combinations for all possibilities.

6.2 Complexity Analysis for DYVIA
We now analyse the time complexity to build table G in
Algorithm 3. To build G (1,M), all the possible combina-
tions that satisfy Theorem 2 will need to be considered
for this sub-problem. This can be considered equivalent
to choosing V − 1 groups of Q task sets from a set of
(V−1)Q

Q +Q−1 task sets, which results in
(
Q+V−2
V−1

)
combi-

nations. For the resulting iQ sub-problems with (V − i)Q
task sets for i = 1, 2, . . . , V − 1, similarly, the number
of combinations is

(
Q+V−2−i
V−1−i

)
for i = 1, 2, . . . , V − 1.

Therefore, the total amount of iterations needed to build
the table, denoted as Z, is

Z =

(
Q+ V − 2

V − 1

)
+Q

V−1∑
i=1

i

(
Q+ V − 2− i
V − 1− i

)
or

Z =

(
Q+ V − 2

Q− 1

)
+Q

V−1∑
i=1

(V − i)
(
Q− 2 + i

Q− 1

)
.

Which by applying the Hockeystick Identity and Pascal’s
rule, can be rephrased as

Z =

(
Q+ V − 2

Q− 1

)
+Q

(
Q+ V − 1

Q+ 1

)

or
Z =

(
Q+ V − 2

V − 1

)
+Q

(
Q+ V − 1

V − 2

)
.

Furthermore, since
(
eN
K

)K
is an upper bound for

(
N
K

)
,

we have

Z ≤
(
e (Q+ V − 2)

Q− 1

)Q−1

+Q

(
e (Q+ V − 1)

Q+ 1

)Q+1

or

Z ≤
(
e (Q+ V − 2)

V − 1

)V−1

+Q

(
e (Q+ V − 1)

V − 2

)V−2

.

Therefore, min

{
O
(

(eV )Q+1

QQ

)
, O

((
eQ
V

)V−1
)}

is the

time complexity of DYVIA, which is more efficient than
the greedy algorithm presented in Section 5.2 and poly-
nomial when either V or Q is a constant.

6.3 Optimal Mapping Under SFA vs. Optimal DVFS
Even though DYVIA is optimal with respect to energy
consumption when using SFA for individual islands,
there may exist better assignments when each individual
island is free to use any DVFS algorithm, e.g., [18]. We
now analyse the approximation factor of DYVIA, against
the optimal DVFS algorithms. Suppose that AFSFA is the
approximation factor (by definition, the worst case) of
SFA [15], against the ideally optimal DVFS scheduling
for the task sets assigned on a single voltage island.

We define different total energy consumptions as
ERUN=SFA

ASG=DYVIA, ERUN=DVFS
ASG=DYVIA, ERUN=SFA

ASG=DVFS, and ERUN=DVFS
ASG=DVFS , where RUN=

SFA means that SFA is used for executing on individual
islands, RUN=DVFS means that an optimal DVFS algo-
rithm is used for executing on individual islands, ASG=

DYVIA means that task sets are assigned to islands using
DYVIA, and ASG=DVFS means that task sets are assigned
to islands using an algorithm which is optimal when
using an optimal DVFS algorithm for executing on indi-
vidual islands. Clearly, the optimal energy consumption
is ERUN=DVFS

ASG=DVFS .
We know that ERUN=DVFS

ASG=DYVIA ≤ ERUN=SFA
ASG=DYVIA by the definition

that the optimal DVFS strategy is adopted. Additionally,
we know that ERUN=SFA

ASG=DYVIA ≤ ERUN=SFA
ASG=DVFS, since we know that

DYVIA is optimal if individual islands use SFA and any
other voltage island assignment will consume the same
or more energy. Moreover, according to the definition
of the approximation factor for the energy consumption
of SFA in a single voltage island, we have ERUN=SFA

ASG=DVFS ≤
AFSFA · ERUN=DVFS

ASG=DVFS .
Finally, the approximation factor of the total energy

consumption for DYVIA is presented in Equation (8).

ERUN=SFA
ASG=DYVIA ≤ AFSFA · ERUN=DVFS

ASG=DVFS (8)

Therefore, the approximation factor of DYVIA against
the optimal solutions with DVFS for energy minimiza-
tion is the same as the approximation factor of SFA on a
single voltage island. It has been shown in [15] that the
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Frequency Minimum Idle Power Execution
[MHz] Voltage [Volts] [Watts] Power [Watts]

100 0.8 19.237213 22.441350

106 0.8 19.402374 22.538383

114 0.8 19.402374 22.867801

123 0.8 19.468439 23.165997

133 0.8 19.468439 23.560321

145 0.8 19.763666 24.119624

160 0.8 19.794633 24.584324

178 0.8 19.864827 25.348004

200 0.8 20.129086 26.168786

228 0.8 20.391280 27.293623

266 0.8 20.756701 28.771025

320 0.8 21.280769 30.674611

400 0.8 21.811671 33.449853

533 0.8 23.132058 38.052265

800 1.1 44.549986 84.395704

TABLE 1: Experimental Power Profile for SCC.

approximation factor of SFA against the optimal DVFS
is dependent on the power consumption model and the
number of cores per voltage island. For practical cases,
if P (s) = αsγ + β, using SFA for task execution has
an approximation factor of at most 1.42 (1.53, 1.63, 1.74,
respectively), when the voltage island has up to 2 (4, 6,
8, respectively) cores.

7 EXPERIMENTAL EVALUATION ON SCC
This section presents experimental evaluations con-
ducted on SCC. We compare the energy consumption
and execution time of CCH, BUH, EOH (by taking CCH
as the initial solution and with 200 iterations for seeking
improvement of the current solution), and DYVIA.

7.1 Experimental Setup
The experiments are conducted on Intel’s Single-Chip
Cloud Computer (SCC), a research platform that inte-
grates 48 cores on a single chip, where the individual
IA P54C cores run at 100-800 MHz. Intel’s SCC runs a
single-core Linux (kernel version 3.1.4) on each core.

Algorithms EOH and DYVIA need a power consump-
tion profile of the system, since both algorithms compute
the expected energy consumption to compare different
assignments. Table 1 presents the results of experimental
measurements conducted on SCC to obtain such power
consumption profile. The table shows all the available
execution frequencies, their corresponding minimum is-
land voltages for stable execution2, together with the
measured idle3 and execution power consumptions for
all 48 cores. Some error is present in this power profile.

2. In The SCC Programmer’s Guide v1.0, the minimum voltage for
stable execution bellow 460 MHz is 0.7 Volts. However, in RCCE v2.0
this was changed to 0.8 Volts due to stability problems.

3. The changes in the idle power for different frequencies, observed
in Table 1, are due to background processes of the operating system.

Part of it is due to the resolution of the voltage and cur-
rent meter inside SCC (around 0.3 Watts resolution), but
mostly because our SCC platform has one faulted core,
and it is not possible to estimate the power consumption
of this core for each frequency. Furthermore, Table 1
shows that if a core configured to execute at a high
frequency is idle, it would consume more energy than
idling a core configured to execute at a low frequency.
However, the 18.298 Watts of idle power consumption for
always having all voltage islands active and all cores idle
at 100 MHz is an offset that no algorithm can improve,
because it is not possible to shut down cores or voltage
islands on SCC. Therefore, for this power profile, scrit and
η are both considered zero in Equations (1), (6) and (7).
Moreover, in the experiments, this 18.298 Watts offset is
subtracted from the measurements to correctly compare
the performance of the different algorithms.

For the tasks, we consider two different single core
benchmarks: (1) an FFT digital filter and (2) an edge
detection algorithm for images. Each instance of a bench-
mark represents one task, and each task is periodically
executed in the assigned core. For every task instance
of the FFT benchmark, the input for the FFT filter is a
discrete signal consisting of 100, 000 samples, at 100 kHz
sampling frequency, of two sine waves added together (5
kHz and 12 kHz) plus different random noise for each
run. For tasks using the edge detection algorithm, the
input is a 640x480 pixels bmp image, randomly chosen
for each period, among a database of 2, 500 pictures. That
is, for all tasks using one type of benchmark, the input
is randomly chosen for each period, but the size of the
input remains constant. This is done such that we can
obtain a lower-bound for the worst-case execution cycles
of both benchmarks through experimental measurements
on the SCC. Specifically, we execute both benchmarks
1, 000 times at every available frequency on SCC, and
we use the highest measured value for each benchmark
as lower-bound for the worst-case execution cycles for
each frequency (the detailed measurements are presented
in Appendix C). This way, we consider the effects of
cache and memory access, whose access time is not
scaled when the frequency of a core changes. Namely,
this means that the worst-case execution cycles for all
task instances of one benchmark type is the same for all
tasks executing at the same frequency. To obtain different
cycle utilization for each task, the period in which the
benchmarks are executed is set accordingly. For example,
according to our experiments the FFT benchmark has a
lower-bound for the worst-case execution cycles at 800
MHz of 1.92 · 109 cycles. Thus, if task τj has a desired
cycle utilization of 109 cycles per second, we set the
period of the task to pj =

cj
wj

= 1.92 seconds.
Since our SCC platform has one faulted core, there

are only 47 available cores in the platform for our ex-
periments. In order to evaluate the performance of the
algorithms for different task sets, 12 arbitrary cases are
considered. Every one of the 12 cases consists of 200 tasks
with different cycle utilization, 100 of each benchmark
type. The tasks are partitioned using LTF with M ′ = 47
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(all the cores available on our SCC). The benchmarks are
single core applications, thus, no communication between
cores is needed after the task sets are assigned onto cores.

We have integrated all the mapping algorithms as
a software written in C++ that runs on a single core.
Each algorithm decides the assignment, configures the
voltage of the islands and the frequencies of the cores
accordingly, and finally executes the benchmarks on the
corresponding cores. Since the purpose of this exper-
iment is to evaluate the performance of the resulting
assignment in terms of energy consumption, we measure
the total energy of the SCC chip for 100 seconds after
executing the benchmarks.

Furthermore, we conduct a separate experiment to
measure the average execution time of each algorithm
on SCC at 533 MHz. To see the effects of V and Q
in the execution time of each algorithm, the average
execution time experiments are conducted for twelve
hypothetical system configurations with different V and
Q values, i.e., V = {2, 4, 6} and Q = {2, 4, 6, 8}. All four
algorithms need to configure the voltages of the islands,
the frequencies of the cores, and assign the task sets onto
cores. Hence, we only measure the time of the map-
ping decision process. Each algorithm is executed 10, 000
times and the average execution time is presented.

7.2 Experimental Results
Table 2 presents the experimental measurements of en-
ergy consumption on SCC (the average value among 10
consecutive executions during 100 seconds each) for the
12 cases of different benchmark utilizations, compared
against the expected energy consumption. The expected en-
ergy consumption is computed by running the algorithms,
considering the cycle utilization of each task set and the
same power profile used by EOH and DYVIA to estimate
the energy consumption, i.e., Table 1. The experimental
energy consumption values from Table 2 are obtained
through integration of power measurements, i.e., every
1 millisecond the power consumption of all cores is
measured, this power is multiplied by the elapsed time
from the previous measurement, and added to the total
measured energy consumption.

The measured energy values in Table 2 have, in av-
erage, a 3.62% error from the expected energy consump-
tion. This is due to the resolution of the voltage and
current meter inside SCC, the presence of one faulted
core in our SCC platform, the actual execution cycles of
each task instance (which could be different from the
expected worst-case execution cycles), and the intrinsic
integration error from the 1 millisecond resolution in
which we measure the total power when computing the
consumed energy4. Naturally, since DYVIA is optimal
when using SFA in individual islands, the expected energy
consumption of DYVIA is always the lowest. However for
configurations where the heuristics provide good results,
the experimental measurements may show values where

4. Additional details are included in Appendix E.

12
Expected Energy Measured Energy

cases
Consumption [Joule] Consumption [Joule]

1

2

3

4

5

6

7

8

9

10

11

12

CCH BUH EOH DYVIA
1066.3 1066.3 1066.3 1004.5

1085.6 1085.6 1085.6 1024.8

2144.8 2572.3 2144.8 2045.1

1070.9 1070.9 1070.9 1013.6

773.4 773.1 773.4 766.4

2181.9 2620.0 2181.9 2093.0

952.5 931.2 931.6 895.6

950.8 940.1 920.8 894.3

2120.4 2120.4 2026.0 2013.8

2081.9 2557.3 2081.9 2006.1

854.0 854.0 797.6 777.5

890.4 890.4 798.0 797.9

CCH BUH EOH DYVIA
1072.4 1066.3 1067.4 996.1

1050.3 1073.1 1072.9 1009.3

2068.9 2425.9 2057.3 1913.4

993.9 1029.8 990.5 961.9

787.4 798.5 771.9 811.8

2090.6 2373.6 2085.8 1981.5

943.1 919.0 933.5 882.9

941.3 916.9 922.5 888.6

2091.8 2074.5 1896.5 1974.7

2001.8 2450.4 1999.4 1820.0

744.6 751.5 713.4 728.6

904.7 883.1 810.3 800.8

TABLE 2: Experimental Evaluation Results on SCC.

Algorithm

CCH
BUH
EOH

Expected Energy Ratio
Min. Avg. Max.

1.0092 1.0591 1.1159

1.0088 1.1107 1.2748

1.0002 1.0348 1.0615

Measured Energy Ratio
Min. Avg. Max.

0.9700 1.0579 1.1297

0.9837 1.1048 1.3464

0.9509 1.0324 1.0986

TABLE 3: Experimental Energy Ratios Results on SCC.

DYVIA has higher energy consumption, but this effect is
only due to the measurement errors mentioned before.

Furthermore, we compute the ratios between the en-
ergy consumption of the heuristics and the energy con-
sumption of DYVIA, for each one of the 12 cases from
Table 2 (expected and measured). Thus, Table 3 presents
the minimum, average and maximum ratios for each
heuristic, among these 12 cases. We can observe that the
measured energy ratios are quite similar to the expected
energy ratios. Specifically, the measured average and
maximum energy ratios are 1.0579 and 1.1297 for CCH,
respectively; 1.1048 and 1.3464 for BUH, respectively;
and 1.0324 and 1.0986 for EOH, respectively.

Finally, Figure 8 presents the experimental results of
the average execution time of each algorithm on SCC,
for the twelve hypothetical system configurations with
different V and Q values. As expected, heuristics CCH
and BUH complete their executions very quickly due
to their low complexity. As for EOH and DYVIA, the
average execution time increases when Q or V increases,
and is bounded by 226 ms, which is still suitable for
online usage. Moreover, DYVIA is much faster than EOH
in all the evaluated cases, except when V = 6 and Q = 8,
where EOH and DYVIA have similar execution times.

8 HYPOTHETICAL PLATFORMS SIMULATIONS

This section presents simulations for hypothetical plat-
forms with different V and Q values, to analyse the
performance of CCH, BUH, EOH and DYVIA for energy
minimization.
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Fig. 8: Experimental results on SCC (at 533 MHz) of average execution time for V = 2, V = 4 and V = 6.

Voltage Frequency
[Volts] [MHz]
0.73 301.48

0.75 368.82

0.85 569.45

0.94 742.96

1.04 908.92

1.14 1077.11

1.23 1223.37

1.32 1303.79

(a) Frequency vs. voltage

Voltage [Volts] Total Power [Watts]
0.70 25.38

0.80 37.26

0.91 50.76

1.00 70.73

1.05 91.25

1.10 110.15

1.14 125.27

1.21 161.99

1.28 201.40

(b) Power vs. voltage

TABLE 4: Experimental Measurement from [8] (48-cores).

Frequency Execution Energy for executing 108 computer
[MHz] Power [Watts] cycles simultaneously in all cores [Joule]
242.7 25.38 10.46

464.5 37.26 8.02

686.7 50.76 7.39

851.6 70.73 8.31

936.6 91.25 9.74

1016.9 110.15 10.83

1077.8 125.27 11.62

1177.0 161.99 13.76

1267.0 201.40 15.90

TABLE 5: Power Profile from Measurements in [8].

8.1 Simulation Setup

To see the effects of V and Q in the performance of the
algorithms (with respect to energy), the simulations are
conducted for the same twelve hypothetical system con-
figurations as in the average execution time experiments
from Section 7, i.e., V = {2, 4, 6} and Q = {2, 4, 6, 8}.

We would also like to test the algorithms in systems
with richer DVFS and DPM features than SCC. For
such a purpose, we consider the experimental results
from [8], in which a multi-core system that integrates
48 cores was developed. For completeness, Figure 12
and Figure 13 from [8] are summarized in Table 4.
Table 4a relates several frequencies for the cores and

their minimum voltages for stable execution. Table 4b
shows power consumption values for running all cores
at certain voltages (and at their corresponding maximum
frequencies for each voltage). We approximate the results
in Table 4a by using a quadratic function, and then
use such a function and the values from Table 4b to
relate frequency with power. This derives a new power
profile5 (for all 48 cores running together at the same
voltage/frequency), which is presented in Table 5. We
use the frequencies shown in Table 5 as the available
execution frequencies for the cores, and divide the total
execution power by 48 to obtain the power consumed by
each individual core. Moreover, Table 5 also shows the
energy consumption for executing 108 computer cycles
(simultaneously in all 48 cores) at each corresponding
frequency. Clearly, 686.7 MHz is the critical frequency for
such a power profile. Hence, for this power profile, we
never execute at a frequency bellow 686.7 MHz, because
even though it might still meet the timing constraints,
doing so would consume unnecessary energy. Finally,
since the work in [8] makes no reference to the power
consumed by an island for been active, we use η = 0.

Regarding DPM, we consider that the cores can be
put to a low-power mode when they have no workload
to execute. When a core is in such a low-power mode,
we consider that it consumes β′ power. Similar to the
experimental measurements from Section 7, β′M (the
power consumption for having all the cores in the low-
power mode) is an offset that no algorithm can improve.
Therefore, in the simulations we set β′ = 0, to correctly
compare the performance of the different algorithms.

For each hardware configuration (combination of V
and Q), we consider 100 different random cases of syn-
thetic tasks. For each case, the total amount of tasks,
denoted as N , is randomly chosen between M and 10M .
The cycle utilizations and periods of the tasks are also

5. The frequency and power consumption values in Table 5, for each
one of the 48 cores, can be modelled, e.g., with power consumption
function P (s) = αsγ + β, where α = 1.76 Watts

GHz3 , γ = 3, and β =

0.5 Watts. This values result in a goodness of fit of: Sum of Squares due
to Error (SSE) of 0.05041, a Square of the correlation between the response
values and the predicted response values (R-square) of 0.9958, an Adjusted
R-square of 0.9958 and a Root Mean Squared Error (RMSE) of 0.07938.
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Fig. 9: Simulation results of energy consumption for V = {2, 4, 6}, where the range of the energy consumption ratios
of a configuration is shown by the vertical line and the bar represents the average energy consumption ratio. All
four algorithms partition tasks with LTF by using all the available cores, i.e., M ′ = M for each configuration.

randomly chosen. The tasks are partitioned using the
Largest-Task-First (LTF) strategy described in Section 3.
We consider two different policies to choose the value
of M ′ for LTF. For the first policy, we partition the N
tasks into M ′ = M task sets with LTF, such that all
the available cores are utilised. For the second policy,
we partition the N tasks into M ′ = 1, 2, . . . ,M task sets
with LTF, then execute the corresponding voltage island
assignment algorithm for each different resulting partition
(considering M − M ′ dummy task sets), and finally
choose the partition that results in the lowest overall
energy consumption for the corresponding algorithm.
Clearly, the second policy incurs higher time complexity,
but can potentially save more energy.

8.2 Simulation Results

Figure 9 presents the simulation results for energy con-
sumption when all the four algorithms consider only
one task partition obtained with LTF by using all the
available cores, i.e., M ′ = M . The simulation results are
shown as ratios between the energy consumption of the
heuristics and the energy consumption of DYVIA, for
the different hypothetical system configurations. Since
for each configuration, 100 different cases are considered,
the maximum and minimum energy consumption ratios
(among the 100 cases) are shown by a vertical line and
the bar represents the average energy consumption ratio.

Since DYVIA is optimal when using SFA in individual
islands, the simulation results show that the minimum
energy consumption ratio is never lower than 1, since
the heuristics never consume less energy than DYVIA. In
the average cases, we observe that all heuristics behave
rather well, since the average energy consumption ratio
for all heuristics is at most 1.0295. As for the maximum
energy consumption ratio, the simulation results show
that it increases with the value of Q. This is an expected
effect, since lower Q values imply that the system is
closer to the ideal per-core DVFS, and simple heuristics
have higher chances of providing reasonable solutions.

Specifically, the maximum ratio can go up to 1.6507 for
CCH and BUH, and up to 1.1351 for EOH.

For all the evaluated cases, considering different
amounts of cores for the task partitioning stage and then
choosing the partition that derives the lowest energy
consumption, resulted in insignificant improvements,
even at the cost of higher time complexity. The figures
(for example where all algorithms iterate through M ′ =
1, 2, . . . ,M possible partitions) are therefore omitted, be-
cause they have no visible difference with Figure 9.

9 CONCLUDING REMARKS
In this paper we present the analysis and solutions
for the multiple voltage island assignment problem, by
using SFA for individual islands. We analyse the worst-
case performance for the energy consumption of several
simple heuristics. Based on dynamic programming, we
develop algorithm DYVIA, which derives optimal solu-
tions for any task partition under SFA. Moreover, we also
provide analysis to show that the approximation factor of
DYVIA with SFA is the same as the approximation factor
of SFA in a single island. We evaluate the performance
and average running time of the algorithms on Intel’s
SCC. In all the evaluated cases, DYVIA derives solutions
with the minimum energy consumption under SFA, by
taking on average no longer than 225 ms to execute.
However, due to the limited available supply voltages
for stable executions in SCC, as shown in Table 1, and the
incapability for DPM to put cores in low-power modes,
in the experiments the heuristics consume at most 29%
more energy than DYVIA.

Additionally, we conduct further simulations for hy-
pothetical platforms with different combinations for the
number of voltage islands and the number of cores
per island, as well as richer DVFS and DPM features
than SCC. We also consider different policies for the
task partitioning with LTF. The simulation results show
that for such platforms, the heuristics behave well in
the average cases. However for the worst cases, the
heuristics can consume up to 1.65 times the energy of
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DYVIA, and this value increases when there are more
number of cores per island.

We prove that the time complexity of DYVIA is ex-
ponential in V or Q, and polynomial if either value is a
constant. Since DYVIA is optimal under SFA, it is the best
choice to map the task sets, as long as its execution time
is within tolerable limits. For systems with many cores
per island, the simple heuristic CCH can be adopted,
given that it provides reasonable solutions in terms of
energy consumption for general cases, with extremely
low (linear-time) complexity.
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efficient policies for embedded clusters,” in Conf. on Languages,
Compilers, and Tools for Embedded Systems (LCTES), 2005, pp. 1–10.

[18] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An approximation algo-
rithm for energy-efficient scheduling on a chip multiprocessor,”
in DATE, 2005, pp. 468–473.

Santiago Pagani is a Ph.D. student and part
of the research staff at the Department of In-
formatics in Karlsruhe Institute of Technology
(KIT) in Germany. He received his Diploma in
Electronics Engineering from the Department
of Electronics, National Technological University
(UTN), Argentina in 2010. From 2003 until 2012,
he worked as a hardware and software devel-
oper in the industry sector for several compa-
nies in Argentina. He joined KIT and started his
doctoral research in March 2012. His research

interests include real-time systems, embedded systems, energy-efficient
scheduling, power-aware designs and temperature-aware scheduling.
He received a Best Paper Award from IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA) in 2013.

Jian-Jia Chen is a Professor in the Depart-
ment of Informatics in TU Dortmund University
in Germany. He was a Juniorprofessor in the
Department of Informatics in Karlsruhe Institute
of Technology (KIT) in Germany from May 2010
to March 2014. He received his Ph.D. degree
from Department of Computer Science and Infor-
mation Engineering, National Taiwan University,
Taiwan in 2006. He received his B.S. degree
from the Department of Chemistry at National
Taiwan University 2001. Between Jan. 2008 and

April 2010, he was a postdoc researcher at Computer Engineering and
Networks Laboratory (TIK) in ETH Zurich, Switzerland. His research
interests include real-time systems, embedded systems, energy-efficient
scheduling, power-aware designs, temperature-aware scheduling, and
distributed computing. He received Best Paper Awards from ACM Sym-
posium on Applied Computing (SAC) in 2009 and IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA) in 2005 and 2013.

Minming Li received the BE and PhD degrees
from the Department of Computer Science and
Technology, Tsinghua University, Beijing, China,
in 2002 and 2006, respectively. He is currently an
assistant professor in the Department of Com-
puter Science, City University of Hong Kong.
His research interests include wireless ad hoc
networks, algorithm design and analysis, and
combinatorial optimization.

http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html


ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 15

APPENDIX A
SUMMARY OF SYMBOLS

For simple reference, Table 6 summarizes all the symbols
used in the paper.

APPENDIX B
APPROXIMATION FACTOR OF BUH: EXAMPLE

This appendix shows how to extend the example from
Section 4.3 for any value of Q. Thus, we prove the
tightness of our analysis for CCH and BUH for all Q.
Consider a system with V = 16 voltage islands, Q = 16
cores per island, η = 0 island power consumption,
P (s) = 2 Watts

GHz3 · s
3 power consumption per core, and a

hyper-period among all tasks of 1 second.
By solving 2 (Q− 1)x3

max + 3x2
max − 1 = 0 when Q is

16, we know that for this value of Q, Equation (4) is
maximized when x = xmax = 0.2917. That is, if after the
task partitioning stage, the task set with highest cycle
utilization is w256 = 109, then, the worst-case happens
if we have Q − 1 task sets with cycle utilization 2.917 ·
108, and (Q− 1)V task sets with cycle utilization zero.
That is, w256 = 109, w255 = w254 = · · · = w241 = 2.917 ·
108, w240 = w239 = · · · = w1 = 0.

For this example, both CCH and BUH will assign task
sets T241,T242, . . . ,T256 to island I16, which according
to Equation (1) results in an energy consumption under
SFA of 10.75 Joule. The optimal solution however, will
assign one task set per island. That is, task set T241 to
island I1, T242 to island I2, . . ., and T256 to island I16,
which results in an energy consumption of 2.74 Joule.
Since we have only one task set assigned to each voltage island,
this is the same energy consumption that we would obtain by
having a per-core DVFS platform. The ratio between these
two energy consumptions is 3.92, which corresponds to
Equation (4) and Figure 4 when Q is 16, since for such a
case we have that xmax = 0.2917.

This example can be similarly extended for any other
value of Q, such that V ≥ Q. Thus, we prove the tightness
of our analysis of CCH and BUH, for all values of Q.

APPENDIX C
EXECUTION CYCLES OF BENCHMARKS

The worst-case execution cycles of both benchmarks
used in Section 7, are obtained through experimental
measurements on the SCC. Each benchmark is executed
1, 000 times at every available frequency on SCC, and the
highest measured value for each benchmark is used as
the worst-case execution time for each frequency.

This section presents Figure 10, which summarizes
such experimental measurements of the execution cycles
of each benchmark. The figure shows the minimum,
average, and maximum (worst-case) measured execution
cycles for each frequency.
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Fig. 10: Experimental execution cycles for benchmarks,
where error bars represent the minimum and maximum
(worst-case) measured execution cycles, and the bar rep-
resents the average execution cycles.

APPENDIX D
DETAILED SIMULATIONS RESULTS

The results of the simulations presented in Figure 9
only show the minimum, average, and maximum energy
consumption values among 100 different random cases
of synthetic tasks. In this section, Figure 11 presents the
same results, but using an empirical cumulative distribu-
tion representation. To properly present the results, one
sub-figure is needed for every V and Q configuration.

Figure 11 shows that all heuristics derive the optimal
solution for more than 80% of the cases of 100 randomly
generated workloads. This implies that for general cases,
the heuristics have a good performance in terms of
energy consumption. Particularly, the smaller the system,
the better the heuristics behave. This is an expected
result given that, for example in EOH, when the system
has just a few cores, the chances for randomly deriving
the optimal mapping increase, as seen in Figure 11a
where M = 4. Nevertheless, there are corner cases for
which DYVIA derives better mapping decisions, and the
percentage of such cases increases with the value of M .
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Symbol Description

N Total amount of tasks

{τ1, τ2, . . . , τN}
Set of N periodic real-time

tasks with implicit deadlines

pj Period (and relative deadline) of τj

cj Worst-case execution cycles of τj

D
Hyper-period: least common multiple

among the periods of all the tasks

V Number of voltage islands in the system

Q Number of cores per voltage islands

M Number of homogeneous cores in the system

M ′ Number of cores used for task partitioning

{T1, . . . ,TM′} Resulting task sets after partitioning

{T1, . . . ,TM}
Resulting task sets after partitioning

and adding M −M ′ dummy task sets

wi
Cycle utilization of task set Ti. Task sets are

ordered such that w1 ≤ w2 ≤ · · · ≤ wM

{I1, I2, . . . , IV }
Set of voltage islands, ordered with respect

to their voltage in an increasing manner

η Power consumed by each active voltage island

P (s)
General power consumption function

of a core executing a task at frequency s

β′
Power consumed by a core in a low-power

mode (not executing anything)

[smin, smax] Minimum and maximum frequencies of cores

scrit
Critical Frequency: Minimizes the energy

when the overhead for sleeping is negligible

sj
Frequency of execution (in cycles per second)

for all cores in voltage island Ij , under SFA

Ej
Energy consumption of island

Ij during a hyper-period

LTF Largest-Task-First strategy, for task partitioning

SFA Single Frequency Approximation scheme

CCH Consecutive Cores Heuristic

BUH Balanced Utilization Heuristic

EOH Extremal Optimization Heuristic [13]

DYVIA Dynamic Voltage Island Assignment algorithm

Symbol Description

e Euler’s number.

Y = {y1, y2, . . . , yV }
Set of the indexes of task sets with

the highest utilizations in each island

Lj =
{
`j,1, . . . , `j,Q

} Set with the indexes of the

task sets assigned to island Ij

L =
{
`0, `1, . . . , `Q

} Set of the indexes of the task sets assigned onto

cores in one general island (as opposed to set Lj )

H (L)
Function that computes the energy consumption

of an island assigned with task sets T`1 , . . . ,T`Q

Λ (i, j)
Set of all possible L sets that satisfy Theorem 2,

i.e., the potentially optimal combinations

G (i, j)
Function that returns the minimum energy

for the assignment of task sets Ti, . . . ,Tj

BTG (i, j)
Table with task sets indexes

{
`1, . . . , `Q

}
that de-

rive the minimum energy in sub-problem G (i, j)

Z Number of iterations for building table G (1,M)

Ej
RUN=SFA
ASG=ANY

Energy consumption of island Ij that uses any

mapping algorithm and SFA in individual islands

Ej
RUN=SFA
ASG=SFA

Energy consumption of task sets T`j,i for

i = 1, . . . , Q in the optimal assignment under SFA

Ej
RUN=p.c.DVFS
ASG=ANY

Energy consumption of the task sets T`j,i

for i = 1, 2, . . . , Q by using per core DVFS

AFRUN=SFA
ASG=ANY

Approximation factor for any mapping heuristic

that activates dM ′/Qe islands under SFA

AFSFA

Approximation factor of SFA for the task

sets assigned on a single voltage island

ERUN=SFA
ASG=DYVIA

Total energy when mapping with DYVIA

and using SFA on individual islands

ERUN=DVFS
ASG=DYVIA

Total energy when using DYVIA and an

optimal DVFS schedule on individual islands

ERUN=SFA
ASG=DVFS

Total energy when using SFA on individual

islands and mapping task sets using an algorithm

which is optimal when using an optimal DVFS

schedule for executing on individual islands

ERUN=DVFS
ASG=DVFS

Total energy for the optimal

mapping and DVFS schedule solution

TABLE 6: Table listing all the symbols in the paper.
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(a) V = 2 and Q = 2
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(b) V = 4 and Q = 2
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(c) V = 6 and Q = 2
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(d) V = 2 and Q = 4
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(e) V = 4 and Q = 4
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(f) V = 6 and Q = 4
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(g) V = 2 and Q = 6
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(h) V = 4 and Q = 6
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(i) V = 6 and Q = 6
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(j) V = 2 and Q = 8
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(k) V = 4 and Q = 8
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(l) V = 6 and Q = 8

Fig. 11: Empirical cumulative distribution representation of the simulation results from Section 8.2.
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APPENDIX E
MEASUREMENT ERRORS

For our experiments in Section 7, the energy consump-
tion values presented Table 2 are obtained through the in-
tegration of power measurements. Specifically, the power
consumption of all cores is measured (sampled) every 1
millisecond. This power measurement is then multiplied
by the elapsed time from the previous measurement,
and added to the total measured energy consumption.
We also compute the expected energy consumption, and
this computation is based on the power profile of our
benchmarks presented in Table 1, and considering the
experimental lower-bound for the worst-case execution
cycles of each task. The values presented in Table 2
show some difference with respect to the expected en-
ergy consumptions. These differences are due to several
factors, which are already mentioned in Section 7.2.
These are: the resolution of the voltage and current meter
inside SCC, the presence of one faulted core in our SCC
platform, the actual execution cycles of each task instance
(which could be different from the expected worst-case
execution cycles), and the intrinsic integration error from
the 1 millisecond resolution in which we measure the
total power when computing the consumed energy.

Particularly, the resolution of the voltage and current
meter inside SCC result in a 0.3 Watts resolution for
each power measurement. This resolution in the power
measurements results in some error when conducting the
power profile in Table 1, and it also adds error to the
energy measurements in Table 2. The faulted core results
in additional error for both these tables, given that it
adds noise to the power measurements, and such noise
cannot be easily filtered out. Furthermore, a difference
between the actual execution cycles of the tasks and our
experimental lower-bound for the worst-case execution
cycles (for which the expected energy consumptions are
computed) has a clear impact in the energy consumption.
This happens because energy is the integration of power
through time, and changes in the execution time result
in changes in the final energy consumption.

Finally, there is also the integration error. Integration
error is intrinsic to any digital energy consumption mea-
surement in which the energy is indirectly computed by
measuring power and time. That is, energy is the inte-
gration of power through time, where power and time
are continuous magnitudes. However, both power are
time are here discrete values, with a given resolution for
each case. Furthermore, although in a computing system
we would expect that the changes in power are synchro-
nized with the execution frequency, thus removing any
integration error, this is not the case for our experimental
setup. In order to have no integration error, the power
measurements should be taken at a frequency no smaller
than the highest frequency in which the power changes
actually occur. However, in our experimental setup we
are unable to measure time with a resolution higher
than 1 millisecond. Figure 12 presents an example for
measuring energy through digital integration. The power
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Fig. 12: Integration Error Example. The power consump-
tion is a sine wave of period 20 ms and amplitude of 10
Watts, with changes in power every 0.2 ms. The sample
period in which the power is measured is 1 millisecond.

consumption is a sine wave of period 20 millisecond and
amplitude of 10 Watts, for which the changes in power
happen every 0.2 milliseconds. The sample period in
which the power is measured is 1 millisecond.


