
978-1-4799-0850-9/13/$31.00 c©2013 IEEE. Published in the 19th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), Taipei, Taiwan, August 2013. Available in the IEEE Xplore Digital Library.

Energy Efficiency Analysis for the
Single Frequency Approximation (SFA) Scheme

Santiago Pagani and Jian-Jia Chen
Department of Informatics, Karlsruhe Institute of Technology (KIT), Germany

E-mail: santiago.pagani@kit.edu, jian-jia.chen@kit.edu

Abstract—Energy-efficient designs are important issues in
computing systems. This paper studies the energy efficiency
of a simple and linear-time strategy, called Single Frequency
Approximation (SFA) scheme, for periodic real-time tasks on
multi-core systems with a shared supply voltage in a voltage
island. The strategy executes all the cores at a single frequency
to just meet the timing constraints. SFA has been adopted in the
literature after task partitioning, but the worst-case performance
of SFA, in terms of energy consumption, is an open problem.
We provide comprehensive analysis for SFA to derive the cycle
utilization distribution for its worst-case behaviour for energy
minimization. Our analysis shows that the energy consumption
by using SFA for task execution is at most 1.53 (1.74, 2.10, 2.69,
respectively), compared to the energy consumption of the optimal
voltage/frequency scaling, when the dynamic power consumption
is a cubic function of the frequency and the voltage island
has up to 4 (8, 16, 32, respectively) cores. The analysis shows
that SFA is indeed an effective scheme under practical settings,
even though it is not optimal. Furthermore, since all the cores
run at a single frequency and no frequency alignment for
Dynamic Voltage and Frequency Scaling (DVFS) between cores
is needed, any uni-core dynamic power management technique
for reducing the energy consumption for idling can be easily
incorporated individually on each core in the voltage island.
This paper also provides the analysis of energy consumption
for SFA, combined with the procrastination for Dynamic Power
Management (DPM). Furthermore, we also extend our analysis
for deriving the approximation factor of SFA for a multi-core
system with multiple voltage islands.

I. INTRODUCTION

Energy-efficient and low-power designs have become im-
portant issues for computing systems, in order to prolong the
battery lifetime of embedded systems or to reduce the power
bills for servers. This has motivated computing systems to
move from single-core to multi-core platforms, to balance the
power consumption and computation performance.

As shown in the literature, e.g. [1], the dynamic power
consumption (mainly generated by switching activities) and
the static power consumption (mainly generated by the leakage
current) are the two major sources of power consumption in
CMOS processors. When static power is negligible, due to
the convexity of the power consumption function, it is usually
better to execute at lower frequency for energy minimization
by using the Dynamic Voltage and Frequency Scaling (DVFS)
technique. However, for systems with non-negligible static
power, the energy consumption function for execution is no
longer an increasing function. Hence, executing any task at
some frequency lower than a critical frequency might consume
more energy for execution, since the static power plays a role.

This motivates a combined slowdown and shutdown approach
for energy minimization, e.g., in [1], [2], [3].

In the past decade, task scheduling and partitioning have
been explored for energy reduction, while the performance
requirements can still be met. However, most researches either
assume that each core can change its own supply voltage
independently from the others, e.g., [4], [5], [6], [7], or
consider the other extreme direction where there exists only
one global supply voltage for all the cores, which is energy-
inefficient.

For the next-generation many-core systems, a trade-off
between global-voltage and local-voltage (per-core DVFS)
platforms is to adopt multi-core architecture with different
voltage islands, in which several cores on a voltage island
share the same supply voltage [8], [9]. For example, Intel
has released a research multi-core platform, called Single-chip
Cloud Computer (SCC) [10], [11], with such a feature. The
cores on a voltage island are naturally consolidated as a cluster.

Related Work: For per-core DVFS, power-aware and
energy-efficient scheduling for homogeneous multi-core sys-
tems has been widely explored, especially for real-time em-
bedded systems, e.g., [4], [5], [6], [7]. Providing an individual
supply voltage for each core locally can be energy-efficient
but is costly for implementation. Based on VLSI circuit
simulations, it has been suggested in [9] that per-core DVFS
suffers from complicated design problems.

For global voltage scaling, the result in [12] provides an-
swers on voltage scaling to minimize the energy consumption,
by using an accelerating schedule when the system has frame-
based real-time tasks, in which all the tasks have the same
arrival time and period. However, the approach in [12] is highly
restricted and cannot be easily extended to handle periodic
real-time tasks, in which tasks have different periodicity, or
systems with non-negligible static/leakage power consumption.
The study in [13], [14] relaxes the assumptions in [12] by con-
sidering periodic real-time tasks with non-negligible static and
voltage-independent power consumptions and non-negligible
overhead for turning to low-power idle modes. The approach
in [13] decides the number of active cores, and then decides the
frequency of the active cores. However, there is no theoretical
analysis in [13] to show the effectiveness of their approach for
energy minimization. The work in [14], dynamically balances
the task loads of multiple cores to optimize power consumption
during execution and adjusts the number of active cores to
reduce leakage power consumption under low load conditions.

Motivation: When considering energy-efficiency for
scheduling periodic real-time tasks on multi-core systems with

http://dx.doi.org/10.1109/RTCSA.2013.6732206

a shared supply voltage in a voltage island, it is necessary
to choose a policy that decides the voltage/frequency for
execution. The simplest and most intuitive strategy is to use a
single voltage/frequency for executing, particularly, the lowest
voltage/frequency that satisfies the timing constraints. We
denote such a scheme as Single Frequency Approximation
(SFA) scheme. After the task partitioning is done (which is not
the focus of this paper), SFA has linear time complexity, only
from evaluating the task set with the highest cycle utilization.

Even though SFA is not an optimal strategy for energy
efficiency, it reduces the management overhead significantly.
SFA does not require frequent voltage/frequency changes at
run time, as it only requires one frequency. Furthermore, since
no frequency alignment for DVFS between cores is needed
under SFA, any uni-core Dynamic Power Management (DPM)
technique can be adopted individually in each core, together
with SFA, with no additional effort.

SFA has been adopted by several researchers in the past,
e.g., [13] (when tasks do not complete earlier than the esti-
mated worst-case execution times) and [15]. SFA is indeed a
good strategy when the workload is perfectly balanced, i.e., all
the cores are assigned with the same cycle utilization. On the
contrary, if the utilizations of the cores are skewed, i.e., one
core with high cycle utilization and all the others with very low
cycle utilization, then SFA would consume much more energy
than the optimal solution, especially when the number of cores
in the voltage island grows. This comes from the cases that
cores with light cycle utilizations are forced to run at higher
frequencies than they need to meet their timing constraints.

Therefore, we know that SFA is a practical approach
for executing periodic tasks after task partitioning in multi-
core systems in a voltage island. Moreover, under such set-
tings, we are also not aware of any other good heuristic
voltage/frequency scheduling algorithms that have such low
overhead, low energy consumption, and that allow for easy
integration with existing DPM techniques. However, the worst-
case performance of SFA, in terms of energy consumption, is
an open problem.

Objective: Motivated by the above discussions, the
goal of this paper is to provide comprehensive analysis, from
a theoretical point of view, to show the effectiveness of SFA
for energy minimization, particularly for the state-of-the-art
designs, that have a limited number of cores per voltage island.

Our Contributions: Under fixed task sets of periodic
real-time tasks in a voltage island, our contributions are:

• We reveal the effectiveness of SFA for energy efficiency
and show that it has an approximation factor (worst-case
ratio of the energy consumption for SFA against the optimal
energy consumption) that can be bounded, in which the
factor depends on the parameters of the power consumption
function and the number of cores per voltage island. The
analysis is presented from Section III to Section VII.

• Furthermore, in Section VIII, we also show the effectiveness
of SFA by analysing the approximation factor when apply-
ing SFA together with the uni-core DPM procrastination
scheme from [2]. We show that the overall approximation
factor by considering such DPM scheme and SFA is in-
creased by 1 from the analysis in Section VI.

• Specifically, in Section IX, we evaluate several cases with
practical settings when the number of cores in the voltage
island is limited. When the voltage island has up to 4 (8,
16, 32, respectively) cores, the approximation factor of SFA
for minimizing the energy consumption for execution is at
most 1.53 (1.74, 2.10, 2.69, respectively). The factor can be
further improved if the task sets are balanced.
• Finally, in Section X and Section XI, we sketch simple

extensions to consider cores with a limited set of available
frequencies and systems with multiple voltage islands.

II. SYSTEM MODEL AND PROBLEM DEFINITION

This section reviews the power and energy model adopted
for the rest of the paper and defines the problem to solve.

A. Hardware Model

This paper focuses on a single voltage island, where all
the cores in the island have the same supply voltage and
run at the same frequency, at any given time point, e.g., one
voltage island of SCC [10], [11].1 The system can change
the voltage and frequency of the island by adopting DVFS.
This model has also been adopted in [12], [13]. For a core
to support a frequency, the supply voltage in the island has
to be adjusted accordingly, in particular to the least available
supply voltage such stable execution on the core is achievable
for the frequency. The available frequencies are in the range
of [smin, smax].2

We denote the power consumption of a core executing
a certain task at frequency s as P (s), and the energy con-
sumption during time interval ∆t at frequency s is E (s) =
P (s) ·∆t. We assume that P (s) is a convex and increasing
function with respect to s, which complies with most of the
power models for CMOS processors adopted in the literature,
e.g., [5], [6], [7], [12], [13], where the most widely used power
consumption function, which we adopt for this paper, is

P (s) = β + αsγ , (1)

where α > 0 is a constant dependent on the effective switching
capacitance, γ > 1 is related to the hardware, and β ≥ 0
represents the static power consumption.

During interval ∆t, a core running at frequency s executes
a certain amount ∆c of core cycles, such that ∆t = ∆c

s and

E (s) = (β + αsγ)
∆c

s
. (2)

This energy consumption is a convex function. Hence, by
setting to zero the first order derivative of Equation (2) with
respect to s, the minimum value for E (s) is found when
s is γ

√
β

(γ−1)α . In order to consider the case when such
value is smaller than smin, we define the critical frequency
as scrit = max

{
smin, γ

√
β

(γ−1)α

}
. The critical frequency rep-

resents the frequency that minimizes the energy consumption
for execution when the overhead for sleeping is considered
negligible, as also shown in [1], [4].

1The analysis will be extended for multiple voltage islands in Section XI.
2For systems with discrete frequencies, all the analysis still holds based on

a simple extension presented in Section X.

2

Voltage Frequency

0.73 V 301.48 MHz
0.75 V 368.82 MHz
0.85 V 569.45 MHz
0.94 V 742.96 MHz
1.04 V 908.92 MHz
1.14 V 1077.11 MHz
1.23 V 1223.37 MHz
1.32 V 1303.79 MHz

(a) Frequency vs. voltage

Voltage Total Power
0.70 V 25.38 W
0.80 V 37.26 W
0.91 V 50.76 W
1.00 V 70.73 W
1.05 V 91.25 W
1.10 V 110.15 W
1.14 V 125.27 W
1.21 V 161.99 W
1.28 V 201.40 W

(b) Power vs. voltage

TABLE I: Experimental results from [11] (48-core system).

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

Frequency [GHz]

P
o

w
e

r
[W

a
tt

s
]

Experimental Values
Modeled Power Function

Fig. 1: Power Model from Experimental Results in [11].

Furthermore, we can use the power consumption function
from Equation (1) to model the experimental results from
[11], in which a multi-core system that integrates 48 cores
was developed. Figure 12 (Frequency vs. voltage) and Figure
13 (Measured power vs. voltage) from [11] are of particular
interest, and its values are summarized in Table I.

We approximate Table Ia using a quadratic function. Thus,
by having a function that relates frequency with voltage, we
are able to rewrite Table Ib relating frequency with power. The
power values of this new table are divided by 48, since this
experiments were conducted on the entire chip, but we are in-
terested in the power function of each individual core. Finally,
we approximate this new table with the power consumption
function from Equation (1), where α = 1.76 Watts

GHz3 , γ = 3,
and β = 0.5 Watts, resulting in scrit = 0.52 GHz. This values
result in a goodness of fit of: Sum of Squares due to Error
(SSE) of 0.05041, a Square of the correlation between the
response values and the predicted response values (R-square)
of 0.9958, an Adjusted R-square of 0.9958 and a Root Mean
Squared Error (RMSE) of 0.07938. Figure 1 shows this power
model and the original experimental measurements from [11].

When a core does not execute anything, we consider that
it enters a low-power mode with power consumption β′ ≥ 0.
As we can transfer the power consumption β′ to the power
consumption of the voltage island for being active, without
loss of generality, we can set P (s) as P (s) − β′, such that
we can disregard the effect of the power consumption of
a core in a low-power mode. When a core enters/leaves
a low-power mode, we assume negligible overhead in our
analysis for Sections IV to VI. For systems with non-negligible
overhead, the strategy by considering the break-even time
and procrastination schemes, e.g., in [2], [16], can be further
adopted and this is extended in Section VIII.

B. Task Model

We consider periodic real-time tasks with implicit dead-
lines, where each task τj releases an infinite number of task
instances with period (and deadline) pj and each instance
has worst-case execution cycles ej . We consider partitioned
scheduling, in which each task is assigned onto a core. When
the task instances arrive to the system, it will be executed on
the assigned core. Specifically, we use earliest-deadline-first
(EDF) scheduling in which the task instance with the earliest
absolute deadline on a core has the highest priority.

After the task partitioning is done by using M cores, the
tasks are grouped into M task sets {T1,T2, . . . ,TM}. Note
that the task partitioning is not the focus of this paper and is
assumed to be given. Without loss of generality, we assume
that task set Ti is assigned on core i, and we define its cycle
utilization as wi =

∑
τj∈Ti

ej

pj
. By defining w0 for simplicity and

without loss of generality, we order the cores such that 0 =
w0 ≤ w1 ≤ w2 ≤ · · · ≤ wM . It has been well studied, e.g.,
[17], that executing core i at frequency higher than or equal
to wi with EDF will meet the timing constraint.

The least common multiple (LCM) of the periods of all
task is called the hyper-period and is denoted as L.

C. Problem Definition

We consider the Single Frequency Approximation (SFA)
scheme, in which all cores in the island always execute at
single frequency su and each core enters a low-power mode
after executing its workload. The time complexity of SFA is
O (M) to ensure the feasibility, where M is the number of
cores in the voltage island and this complexity comes only
from evaluating the highest cycle utilization. Clearly, su must
be at least wM to ensure feasible schedules.

The objective of this paper is to analyse the approximation
factor of SFA, defined AFSFA and expressed as

AFSFA = max
ESFA

EOPT
≤ max

ESFA

E∗
, (3)

where EOPT is the optimal energy consumption during a hyper-
period, ESFA is the energy consumption for SFA during a
hyper-period, and E∗ is a lower bound for the optimal energy
consumption for any feasible schedule during a hyper-period.
Since, EOPT is not easily obtained, in the analyses we use its
lower bound E∗, that should not be very far away from EOPT.

Note that SFA does not require any capability of volt-
age/frequency scaling at run time, as it only uses one fre-
quency. However, to explore the approximation factor we need
E∗, in which changing the supply voltage and frequency of the
island is with negligible overhead and the available frequen-
cies are continuous between (0, smax]. This approach results in
a safe lower bound for the optimal energy consumption. We
only focus on the analysis of the approximation factor. The
applicability of SFA with slack reclamation to deal with early
completion of tasks can be found in [13].

III. LOWER BOUND ENERGY CONSUMPTION

This section provides a lower bound for the energy con-
sumption for periodic real-time tasks, needed to obtain the
approximation factor in Equation (3).

3

Core 1: · · · · · ·s1

Core 2: · · · · · ·s1 s2

...

Core M − 1: · · · · · ·s1 s2
sM−1

Core M : · · · · · ·s1 s2
sM−1

sM

t1 t2 tM−1 tM

Fig. 2: A schedule satisfying the deep sleeping property.

A. Preliminary Results with β = 0

A special case of the problem is frame-based real-time
tasks, in which all the tasks arrive at time 0 and have the
same period and deadline. For such case, the period of any task
is also the hyper-period L. Yang et al. [12] have proposed a
scheme based on the deep sleeping property (every core is put
to sleep after executing its workload), as shown in Figure 2.
For completeness, we summarize the schedule proposed in [12]
when the task sets are already assigned onto cores. In [12], the
schedule is divided into M fragments. In the i-th fragment, all
cores run at speed si during time ti. Moreover, in i-th fragment
there are M − i + 1 cores that execute ci = L (wi − wi−1)
core cycles during ti, such that ti = ci

si
(the rest of the cores

are in the sleep state). Therefore, considering Equation (2) with
β = 0 and ∆c = ci for each fragment, the energy consumed by
the active cores during ti in the i-th fragment, with smin = 0,
is expressed as

E(ti) =

M∑
i=1

(M − i+ 1)α
cγi
tγi
ti. (4)

By computing the values of ti based on the Lagrange
Multiplier Method with constraint

∑M
i=1 ti = L, Yang et al.

[12] provide an optimal frequency assignment for the above
case, that results in an energy consumption of

E∗β=0 = αL

[
M∑
i=1

(wi − wi−1) γ
√
M − i+ 1

]γ
. (5)

However, when we move further to consider periodic
real-time tasks, it becomes very complicated to calculate the
optimal frequency scaling to minimize the energy consumption
for executing tasks. Fortunately, to analyse the approximation
factor, we only need a lower bound of the energy consumption.

For systems with periodic real-time tasks, the workload to
be completed on core i during the hyper-period is L · wi. To
derive E∗, we can simply consider that all the L ·wi workload
arrives at time 0 and has to be done by time L. Even though an
optimal frequency scaling for such a relaxation is not always
a feasible solution for periodic tasks, such a simplification
provides a good lower-bound estimation of the optimal energy
consumption. Finally, when β = 0, we simply apply the result
from Yang et al. [12], in Equation (5).

Note that this simplification is only applied for obtaining
the lower bound. This may result in pessimistic analysis, but it
does not limit the applicability of SFA for the considered task
models. Furthermore, Section IX presents numerical examples
that show that the analysis is in fact not pessimistic.

B. Lower Bound with β 6= 0

This subsection analyses the lower bound of the energy
consumption when β is not negligible. Similar to Section III-A,
we can again consider the same relaxation when all the tasks
arrive at time 0 and negligible overhead for entering/leaving
low-power modes and changing the supply voltage of the
island, which is a safe approach. For the same schedule as
in [12], with smin = 0 and β 6= 0, Equation (4) changes to

E(ti) =

M∑
i=1

(M − i+ 1)

(
β + α

cγi
tγi

)
ti. (6)

To obtain the lower bound for energy consumption, we
apply the Kuhn-Tucker conditions [18] on Equation (6) under
the constraint

∑M
i=1 ti ≤ L and ti ≥ 0 for i = 1, 2, . . . ,M .

Due to space constraints, the details are omitted. Once the
Lagrangian is solved, the set of ti that minimizes the energy
consumption for frame-based tasks is

ti = γ

√
α (γ − 1) (M − i+ 1)

(M − i+ 1)β + λ
ci. (7)

When
∑M
i=1 ti < L, then λ is 0, and from Equation (7), the

resulting ti is equal to ci
scrit

, for all i = 1, 2, . . . ,M . Namely,
all the cores run at frequency scrit for execution. Clearly, when
wM ≤ scrit, the above solution is a feasible one.

For the case that
∑M
i=1 ti = L, then λ > 0, which

conceptually means that it is no longer feasible to meet the
timing constraints by running all cores at scrit for execution.
Hence, from Equation (7), it holds that

M∑
i=1

ti =

M∑
i=1

γ

√
α (γ − 1) (M − i+ 1)

(M − i+ 1)β + λ
ci = L. (8)

The only unknown variable in Equation (8) is λ. Since
Equation (8) is strictly decreasing with respect to λ, one
possibility to derive it is to apply Newton’s method. How-
ever, Newton’s method only gives the numerical results for a
specific case study, but we do not have an explicit form to
solve Equation (8). Therefore, for analysing the worst-case
performance for a given task partitioning, we have to find
a safe approximation for estimating lower bound E∗ for the
optimal energy consumption. Lemma 1 shows how we estimate
E∗, based on an auxiliary frequency defined as sdyn.

Lemma 1: For a given frequency sdyn with scrit < sdyn <
smax, a safe lower bound for the optimal energy consumption
for any feasible schedule can be expressed as

E∗ (wM) =


αγL

(
scrit

γ−1
) M∑
i=1

wi if wM≤sdyn

αL

[
M∑
i=1

(wi − wi−1)
γ
√
M − i+ 1

]γ
otherwise.

(9)

4

0 0.5 1 1.5 2 2.5
0

20

40

60

80

s
min

s
crit

s
dyn

s
max

wM [GHz]

E
∗
(w

M
)
[J
o
u
le
]

Fig. 3: E∗(wM) when α = 1.76 Watts
GHz3 , β = 0.5 Watts and M = 20

with L = 1 sec and ci = 5 · 107cycles for all i = 1 . . .M .

Proof: According to the above analysis and lower bound
for the optimal energy consumption in Equation (5) by ig-
noring the static and independent power consumption, we
know that both cases are safe lower bounds for the energy
consumption. Therefore, either one can be adopted.

The goal for using sdyn is to provide a tighter lower
bound of energy consumption by choosing these two lower
bounds in proper cases. It is clear that when wM is high,
the energy consumption resulting from the dynamic power
plays a more important role. Therefore, for a given sdyn, when
wM > sdyn, we only consider the dynamic energy consumption
in Equation (9). The other case considers the lower bound of
energy consumption by running at the critical frequency.

An example of the lower bound for the energy consumption
from Equation (9) can be found in Figure 3.

IV. ENERGY CONSUMPTION OF SFA

This section analyses the energy consumption of SFA,
needed to obtain the approximation factor in Equation (3).

For periodic real-time tasks, the workload to be completed
on core i during the hyper-period is L ·wi. From Equation (2),
with ∆c = L · wi, the energy consumption for core i under
SFA is (β+αsγu)wisuL. Therefore, the energy consumption for
all M cores in the voltage island is

ESFA (su) = L

(
β

su
+ αsγ−1

u

) M∑
i=1

wi. (10)

Function ESFA (su) is convex with respect to su and its
first order derivative with respect to su is the same as the first
order derivative of Equation (2) with respect to s. Hence, the
optimal su for SFA is also found at scrit. Similarly to E∗, when
wM ≤ scrit, the above solution is a feasible one. Therefore,
when wM ≤ scrit, SFA is optimal and has the same energy
consumption as the lower bound for the energy consumption
E∗. For this reason, the relation between smin and γ

√
β

(γ−1)α

is of no consequence. Thus, for simplicity in presentation, we
consider that smin = 0 and therefore set scrit to γ

√
β

(γ−1)α .
This was implicit in Section III and will be considered until
Section IX, inclusive. The approximation factors obtained for
this condition are safe upper bounds for the general case.

Finally, the frequencies chosen by SFA are (1) scrit if
wM is less or equal than scrit and (2) wM , otherwise. By

replacing this su values in Equation (10), we obtain the optimal
energy consumption for SFA as a function of wM , defined as
ESFA (wM) and presented in Equation (11).

ESFA (wM) =


αγL

(
scrit

γ−1
) M∑
i=1

wi if wM ≤ scrit

L
wM

(β + αwγM)
M∑
i=1

wi otherwise
(11)

In the case that β = 0, then scrit is also zero and only the
dynamic energy consumption is present for SFA, which is

Eβ=0
SFA (wM) = αL

(
wM

γ−1
) M∑
i=1

wi. (12)

V. APPROXIMATION FACTOR FOR SFA WITH β = 0

This section presents the approximation factor of SFA
when β = 0 defined as AFβ=0

SFA , using Equation (5) and the
dynamic energy consumption of SFA in Equation (12).

Since 0 = w0 ≤ w1 ≤ · · · ≤ wM from the problem
definition, by introducing the scaling factor ri, we can rephrase
the utilization wi for i = 0, 1, . . . ,M as wi = ri ·wM , where

0 = r0 < r1 ≤ r2 ≤ . . . ≤ rM−1 ≤ rM = 1. (13)

The approximation factor of SFA when β = 0 can be expressed
as

AFβ=0
SFA = maxH (r0, . . . , rM) , (14)

where for notational brevity

H (r0, . . . , rM) =

M∑
i=1

ri[
M∑
i=1

(ri − ri−1) γ
√
M − i+ 1

]γ . (15)

Intuitively, from Equation (11) and (12), when wM and∑M
i=1 wi are constant, SFA has a fixed energy consumption

no matter how the cycle utilizations, i.e., w1, w2, . . . , wM−1,
are distributed. However, for the lower bound of energy
consumption, the utilization distribution matters. Specifically,
we find a critical utilization distribution when w1 = w2 =

· · · = wM−1 =
∑M−1
i=1 wi
M−1 , which results in a lower bound

for Equation (5) and Equation (9), and in an upper bound for
H (r0, . . . , rM). This is formally presented Lemma 2.

Lemma 2: For all r0, r1 . . . , rM , defined in Equation (13),
and by defining δ as

∑M−1
i=1 ri
M−1 , with γ > 1, we have

H (r0, . . . , rM) ≤ h (δ) =
1− δ + δM(

1− δ + δ γ
√
M
)γ . (16)

Proof: Suppose that we change the configuration from
r1, . . . , rM−1 to r′1, . . . , r

′
M−1 such that rM = r′M = 1 and∑M−1

i=1 ri =
∑M−1
i=1 r′i. Since

∑M
i=1 ri =

∑M
i=1 r

′
i, by Equa-

tion (15), we know that H(r′0, . . . , r
′
M) under fixed

∑M−1
i=1 r′i

is maximized if and only if
M−1∑
i=1

(
r′i − r′i−1

)
γ
√
M − i+ 1

under fixed
∑M−1
i=1 r′i is minimized. By using the extreme

5

· · ·r1
r2

rM -1
rM=1

· · ·
r′1 r′2 r′M -1

r′M=1

Fig. 4: Resulting Cycle Utilization Relation Change.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

δ
*

M=2

M=4

M=8

M=16

M=32

δ

h
(δ
)

Fig. 5: h (δ) when γ = 3, highlighting δ∗.

point theorem, it is not difficult to know that
∑M−1
i=1 (r′i −

r′i−1) γ
√
M − i+ 1 under a fixed

∑M−1
i=1 r′i has a global mini-

mum when δ =
∑M−1
i=1 r′i
M−1 = r′i−1 = r′i for all r′1, . . . , r

′
M−1 (as

shown in Figure 4). By setting ri to δ for i = 1, 2, . . . ,M −1,
in Equation (15), the lemma is proven.

By taking the first order derivative of h (δ) with respect
to δ, defined in Lemma 2, it can be easily seen that h (δ) is
a convex function of δ when γ > 1 and its maximum value
happens when δ is δ∗, defined as follows

δ∗ =
γ − 1 +M − γ γ

√
M

(γ − 1)
(
M γ
√
M −M − γ

√
M + 1

) . (17)

A representation of h (δ) when γ is 3 can be seen in Figure 5.

Finally, when wM and
∑M
i=1 wi are fixed, the approxima-

tion factor of SFA is maximized when w1 = w2 = · · · =
wM−1 = δ∗ · wM . This is formally expressed in Theorem 1.

Theorem 1: When β = 0, the approximation factor AFβ=0
SFA

of SFA for periodic real-time tasks is

AFβ=0
SFA ≤ h (δ∗) , (18)

where δ∗ is defined as a function of γ and M in Equation (17)
and h() is defined in Equation (16). Since h (δ∗) only depends
on γ and M , AFβ=0

SFA is independent from the value of α.

Proof: Based on the definition of function h() in
Lemma 2, the definition of H (r0, . . . , rM) in Equation (15),
and the relation between AFβ=0

SFA and H (r0, . . . , rM) in Equa-
tion (14), we can express AFβ=0

SFA as a function of δ∗ to obtain
the inequality in Equation (18).

A representation of AFβ=0
SFA , for different values of M when

γ = 2 and γ = 3 can be seen in Figure 6.

VI. APPROXIMATION FACTOR FOR SFA WITH β 6= 0

After deriving the lower bound of energy consumption that
considers leakage in Equation (9) and the energy consumption
of SFA in Equation (11), this section presents the analysis for
the approximation factor, defined in Equation (3), for SFA with

0 8 16 24 32
1

1.5

2

2.5

M

A
F

β
=
0

S
F
A

 AF
SFA

β=0
 (γ=3)

AF
SFA

β=0
 (γ=2)

Fig. 6: Approximation factor for SFA with β = 0.

β 6= 0. We will first present the analysis based on a given sdyn,
as defined in Lemma 1. Then, we will analyse the approxima-
tion factor based on the critical utilization distribution among
the task sets to provide a safe factor.

A. Approximation Factor as a function of sdyn

Replacing the different possible values of ESFA and E∗

from Equation (11) and Equation (9) in Lemma 1 respectively,
we get the relation ESFA

E∗ as a function of wM :

ESFA

E∗
(wM) =



β+αw
γ
M

wMαγ(scrit
γ−1)

if scrit<wM≤sdyn

β+αw
γ
M

αwM

∑M
i=1 wi[

M∑
i=1

(wi−wi−1) γ
√
M−i+1

]γ if sdyn<wM<smax

1 otherwise.
(19)

By using the scaling factor ri from Equation (13) and the
definition of H (r0, . . . , rM) from Equation (15), we have the
following lemma for the approximation factor.

Lemma 3: By defining sdyn as

sdyn = scrit[γH (r0, . . . , rM)]
1

γ−1 , (20)

we have
ESFA

E∗
(wM) ≤ 1

αγ (scrit
γ−1)

(
β

sdyn
+ αsdyn

γ−1

)
. (21)

Proof: Since α, β, γ and scrit are all constants, we know
that ESFA

E∗ (wM) is a convex and increasing function with respect
to wM when scrit < wM ≤ sdyn. Therefore, for this case,
ESFA
E∗ (wM) is less than or equal to ESFA

E∗ (sdyn).

With ri from Equation (13) and the definition of
H (r0, . . . , rM) from Equation (15), we can rephrase Equa-
tion (19), when sdyn < wM < smax, to

β
wγM

+ α

α
H (r0, . . . , rM) . (22)

Clearly, for a given task partitioning, the cycle uti-
lization relations between task sets are fixed. Therefore,
H (r0, . . . , rM) is also constant for a given task partitioning.
Together with the fact that α, β, M and γ are constants, we
know that (22) is a decreasing function with respect to wM .

An example for the approximation factor function
ESFA
E∗ (wM) can be seen in Figure 7. With the above analysis,

6

0 0.5 1 1.5 2 2.5
0.8

1

1.2

1.4

1.6

s
min

s
crit

s
dyn

s
max

wM [GHz]

E
S
F
A

E
∗
(w

M
)

Fig. 7: ESFA
E∗ (wM) when α = 1.76 Watts

GHz3 , β = 0.5 Watts and M = 20

with L = 1 sec and ci = 5 · 107cycles for all i = 1 . . .M .

function ESFA
E∗ (wM) reaches the (lowest) upper bound when

the above two cases intersect with each other. That is, when

αγ
(
scrit

γ−1)wM M∑
i=1

ri = αwγM

[
M∑
i=1

(ri − ri−1)
γ
√
M − i+ 1

]γ
,

which results in the definition of sdyn in Equation (20). Thus,
Equation (21) holds and this lemma is proven.

B. Approximation factor for the critical utilization distribution

Lemma 3 presents the analysis of relation ESFA
E∗ (wM) for a

given cycle utilization distribution, namely, w1, w2, . . . , wM .
To obtain the approximation factor from Equation (3), we
rephrase this relation for the critical utilization distribution
(also used when β = 0), presented in Lemma 2.

From Lemma 2, we rewrite Equation (20) as a function of
h (δ∗) and define s∗dyn as the upper bound for the value of sdyn:

s∗dyn = scrit[γh (δ∗)]
1

γ−1 . (23)

The following theorem concludes the analysis of AFSFA.

Theorem 2: When β 6= 0, the approximation factor AFSFA
for periodic real-time tasks is

AFSFA ≤
γ − 1

[γγh (δ∗)]
1

γ−1

+ h (δ∗) , (24)

where δ∗ is defined as a function of γ and M in Equation (17)
and h() is defined in Equation (16). Since h (δ∗) is only a
function of γ and M , AFSFA is independent of α and β.

Proof: From the definition of AFSFA in Equation (3),
based on Equation (21) in Lemma 3, Equation (16) in
Lemma 2, and Equation (23) as well as the definitions scrit

γ =
β

(γ−1)α and function h(), we can replace s∗dyn as a function of
δ∗ to obtain the inequality in Equation (24).

VII. APPROXIMATION FACTOR FOR BALANCED TASK SETS

This section analyses the approximation factor of SFA
when the system uses a load balancer for task partitioning.

Lemma 4: Given 0 < r1 ≤ r2 ≤ · · · ≤ rM = 1, M ≥ 2

and γ > 1, if
∑M−1
i=1 ri
M−1 ≥ 0.5, then h (δ) ≤ h (0.5).

Proof: From Equation (16) (illustrated in Figure 5), it
is clear that h (δ) is a decreasing function with respect of δ
when δ∗ ≤ δ ≤ 1, M ≥ 2 and γ > 1. By taking the first order
derivative of δ∗ with respect to M from Equation (17), it can

be easily proven that δ∗ is a decreasing function with respect
to M , since ∂δ∗

∂M ≤ 0 for all M ≥ 2 and γ > 1. Hence, the
highest value of δ∗ for a given γ occurs when M = 2, which
we define as δ∗M=2 = γ−γ γ

√
2+1

(γ−1)(γ
√

2−1)
.

Furthermore, by taking the first order derivative of δ∗ with
respect to γ from Equation (17), it can also be proven that δ∗

is an increasing function with respect to γ, since ∂δ∗

∂γ ≥ 0 for
all M ≥ 2 and γ > 1. Therefore, the highest value of δ∗ is
obtained when M = 2, i.e., for δ∗M=2, and γ → ∞, which
converges to 1

ln 2 − 1 = 0.443. Finally, since δ∗ < 0.5 for any
M ≥ 2 and γ > 1, then h (δ) is a decreasing function after
0.5 for any M ≥ 2 and γ > 1, and the lemma is proven.

Theorem 3: Given M ≥ 2, if δ, defined in Lemma 2 as∑M−1
i=1 ri

(M−1) , is no less than 0.5, then the approximation factor of
SFA for periodic real-time tasks is

AFβ=0
SFA (δ ≥ 0.5) ≤ h (0.5) , (25)

or

AFSFA (δ ≥ 0.5) ≤ γ − 1

[γγh (0.5)]
1

γ−1

+ h (0.5) , (26)

when β = 0 and β 6= 0, respectively.

Proof: This is based on Lemma 4 and Theorem 2.

Corollary 1: Clearly, δ plays a major role in the approx-
imation factor of SFA. Even though we do not analyse task
partitioning for SFA, from Theorem 3, we can conclude that if
the system uses a load balancer for task partitioning, this would
lead to a better approximation factor for SFA. Technically, if
the amount of execution cycles of any task is no more than
the average execution cycles on all cores, a load balancer, like
the largest-task-first strategy in [12], results in w1

wM
≥ 0.5 (as

proved in Lemma 5 in [12]).

VIII. NON-NEGLIGIBLE SWITCHING OVERHEAD

When the energy overhead for entering/leaving a low-
power mode is non-negligible, we cannot always switch a core
to a low-power mode immediately when there is no workload
on it to execute. We have to consider the break-even time,
which is defined as the time such that the energy consumption
for idling (in execution mode) is the same as the overhead for
entering and leaving a low-power mode.

The SFA strategy can be combined with any uni-core
procrastination algorithm in the literature to decide when
to switch a core to a low-power mode, e.g., [2], [16], and
the analysis for combining SFA with each algorithm should
be studied accordingly. Particularly, this section analyses the
approximation factor of using SFA combined with algorithm
Left-to-Right (LTR) from [2], against the optimal DPM solu-
tion. That is, we use SFA to decide the voltage/frequency of the
island, and use LTR to decide whether/when each individual
core should sleep/activate.

For notational brevity, we isolate certain portions of energy
consumption for a schedule S, as done in [2]:

• energy (S): The total energy consumed by schedule S
during a hyper-period.

7

0 8 16 24 32
1

2

3

4

M

A
F
S
F
A

 AF
SFA−LTR

 (γ=3)

AF
SFA−LTR

 (γ=2)

AF
SFA

 (γ=3)

AF
SFA

 (γ=2)

Fig. 8: Approximation factors for SFA.

• active (S): The energy expended while the system is
active, i.e., the energy consumption for executing tasks.

• idle (S): The cost to keep the system active or enter and
leave a low-power mode during idle periods (depending
on which action is the most energy efficient).

• on (S): The cost to keep the system in the on state while
the system is on.

• sleep (S): The cost to leave the low-power mode at the
end of each sleep interval.

For the rest of this section, we define SOPT as an optimal
schedule, whereas SOPT,m is the corresponding schedule by
considering only the m-th core. Similarly, we define SSFA

LTR as
the schedule by using SFA for executing and LTR for sleeping,
whereas SSFA

LTR,m is the corresponding schedule by considering
only the m-th core.

According to Theorem 2, we know that

active
(
SSFA

LTR

)
≤ AFSFA · active (SOPT) . (27)

Additionally, independently from the task execution on
a single core m, adopting LTR on the core ensures that
idle

(
SSFA

LTR,m

)
≤ on (SOPT,m) + 2 · sleep (SOPT,m) (i.e., from

Lemma 10 from [2]). By using the summation of all the cores
in the island, we have

idle
(
SSFA

LTR

)
≤ on (SOPT) + 2 · sleep (SOPT) . (28)

Theorem 4: When P (s) is a convex and increasing func-
tion, combining SFA and LTR results in an approximation
factor AFSFA-LTR equal to AFSFA + 1.

Proof: From Equation (27) and Equation (28), and con-
sidering that by definition AFSFA ≥ 1, we have

energy
(
SSFA

LTR

)
= active

(
SSFA

LTR

)
+ idle

(
SSFA

LTR

)
≤ AFSFA · active (SOPT)

+ on (SOPT) + 2 · sleep (SOPT)

≤ (AFSFA + 1) · active (SOPT) + 2 · idle (SOPT)

= max {AFSFA + 1, 2} · energy (SOPT)

= (AFSFA + 1) · energy (SOPT) .

Hence, the theorem is proven.

0 8 16 24 32
1

2

3

4

M

A
F
S
F
A
(δ

≥
0
.5
)

 AF
SFA−LTR

 (γ=3 and δ ≥ 0.5)

AF
SFA−LTR

 (γ=2 and δ ≥ 0.5)

AF
SFA

 (γ=3 and δ ≥ 0.5)

AF
SFA

 (γ=2 and δ ≥ 0.5)

Fig. 9: Approximation factors for SFA with δ ≥ 0.5.

IX. NUMERICAL RESULTS FOR WORST CASES

This section presents numerical results for the approxima-
tion factor of SFA for the critical utilization distribution.

As stated in Theorem 1 and Theorem 2, the approximation
factor of SFA depends on γ and M . Hence, we consider some
practical settings for γ, i.e., γ = 2 and γ = 3, and we explore
the impact of M on the approximation factor. Theoretically,
the approximation factor can go up to ∞ when M → ∞.
However, practically, the number of cores in a voltage island
is not a very large number. Thus, we would like to explore the
applicability of SFA for a limited number of cores per island.

Figure 8 presents the approximation factor, based on The-
orem 2, for M up to 32 when γ = 2 and γ = 3. Whenever
the voltage island has at most 4 (8, 16, 32, respectively) cores
and negligible overhead for sleeping is considered, SFA has
an approximation factor that can be bounded to at most 1.53
(1.74, 2.10, 2.69, respectively) when γ = 3 and to at most 1.35
(1.49, 1.73, 2.09, respectively) when γ = 2. When we consider
non-negligible overhead for sleeping, from Theorem 4, this
values are incremented by 1.

Motivated by the conclusions from Corollary 1, Figure 9
shows the approximation factor for SFA under the condition
w1

wM
≥ 0.5 based on Theorem 3, i.e., δ = 0.5. Practically,

this leads to a better approximation factor for SFA. When
w1

wM
≥ 0.5 and the voltage island has at most 4 (8, 16,

32, respectively) cores and negligible overhead for sleeping
is considered, SFA has an approximation factor that can be
bounded to at most 1.52 (1.67, 1.87, 2.10, respectively) when
γ = 3 and to at most 1.34 (1.44, 1.55, 1.66, respectively)
when γ = 2. When we consider non-negligible overhead for
sleeping, from Theorem 4, this values are incremented by 1.

X. SYSTEMS WITH DISCRETE FREQUENCIES

This section presents a simple extension for systems with
power consumption function P (s) = β + αsγ and with
discrete frequencies {f1, f2, . . . , fF }, such that f1 = smin
and fF = smax. Due to space limitations, we briefly sketch
the basic concept of such an extension. Given the convexity

8

0 8 16 24 32
1

2

3

4

M

E
S
F
A

E
∗

p
ea

k

 (E
SFA

/E*)
peak

 Random (3 GHz)

(E
SFA

/E*)
peak

 Random (1.3 GHz)

(E
SFA

/E*)
peak

 δ=0.5 (3 GHz)

(E
SFA

/E*)
peak

 δ=0.5 (1.3 GHz)

(E
SFA

/E*)
peak

 δ=δ
*
 (3 GHz)

(E
SFA

/E*)
peak

 δ=δ
*
 (1.3 GHz)

θ
max

 ⋅ AF
SFA

 δ=0.5

θ
max

 ⋅ AF
SFA

 δ=δ
*

Fig. 10: Simulation results with α = 1.76 Watts
GHz3 , β = 0.5 Watts,

γ = 3 and negligible overhead for sleeping.

of P (s)
s , the lower bound of the energy consumption by

considering continuous frequencies, i.e., E∗, is also a lower
bound for the optimal energy consumption under discrete
frequencies. When fi−1 < wM ≤ fi, the energy consump-
tion of SFA for execution by running at frequency fi is
equal to that (of SFA) at frequency wM multiplied with
θ (wM) = P (fi)·wM

P (wM)·fi . Therefore, clearly, the approximation
factor of SFA for discrete frequencies is equal to AFSFA · θmax,
with θmax = max

1<i≤F
P (fi)·fi−1

P (fi−1)·fi , depending on the hardware

parameters and the available frequencies. For example, for
a system with α = 1.76 Watts

GHz3 , β = 0.5 Watts, γ = 3, and
available frequencies {0.1 GHz, 0.2 GHz, . . . , 3.0 GHz}, the
value of θmax is equal to 1.14.

XI. SYSTEMS WITH MULTIPLE VOLTAGE ISLANDS

The analysis of SFA in a single voltage island, in terms of
energy consumption, can be easily extended to consider multi-
core systems with multiple voltage islands as follows:

Theorem 5: For a system with V voltage islands under
a given mapping of task partitions, the approximation factor
(with respect to the energy consumption) AFV-islands

SFA by running
each voltage island with SFA is equal to the approximation
factor AFSFA of SFA in an individual voltage island.

Proof: The proof comes directly from the definition of
AFSFA in Equation (3).

AFV-islands
SFA =

∑V
j=1ESFAj∑V
j=1EOPTj

≤
∑V
j=1 AFSFA · E∗j∑V

j=1E
∗
j

= AFSFA,

where ESFAj , EOPTj , and E∗j are the energy consumptions for
SFA, for an optimal schedule, and for the lower bound, all
three during a hyper-period on voltage island j.

XII. SIMULATIONS

This section simulates the performance of SFA for different
scenarios, in a single voltage island. Instead of analysing the

0 8 16 24 32
1

2

3

4

5

6

M

E
S
F
A
−
L
T
R

E
∗

p
ea

k

 (E
SFA−LTR

/E*)
peak

 Random (3 GHz)

(E
SFA−LTR

/E*)
peak

 Random (1.3 GHz)

(E
SFA−LTR

/E*)
peak

 δ=0.5 (3 GHz)

(E
SFA−LTR

/E*)
peak

 δ=0.5 (1.3 GHz)

(E
SFA−LTR

/E*)
peak

 δ=δ
*
 (3 GHz)

(E
SFA−LTR

/E*)
peak

 δ=δ
*
 (1.3 GHz)

θ
max

 ⋅ AF
SFA−LTR

 δ=0.5

θ
max

 ⋅ AF
SFA−LTR

 δ=δ
*

Fig. 11: Simulation results with α = 1.76 Watts
GHz3 , β = 0.5 Watts

and γ = 3 and non-negligible overhead for sleeping.

approximation factor by using Theorem 2, we use Newton’s
method for solving Equation (8) for a given input instance.
Thus, providing a concrete factor based on the energy con-
sumption of SFA.

A. Simulation Setup

The parameters of P (s) are chosen as α = 1.76 Watts
GHz3 , β =

0.5 Watts and γ = 3, resulting in scrit = 0.52 GHz, modelled
from the experimental measurements from [11], as explained in
Section II-A. We consider three cases for the cycle utilization
distributions of the task sets: (1) the theoretical critical utiliza-
tion distribution from Lemma 2 with δ = δ∗, (2) the critical
utilization distribution based on Lemma 2 with δ = 0.5 (for
balanced task partitions), and also (3) 100 different random uti-
lization distributions for every M . For all three utilization dis-
tributions, we consider wM stepped by 20 MHz, in the range
of (a) [0.2 GHz; 1.3 GHz] and (b) [0.2 GHz; 3.0 GHz], with
different hyper-periods L = 1, 2, . . . , 5 seconds for every wM .
Case (a) corresponds to the practical setting of (not continu-
ous) available frequencies {0.1 GHz, 0.2 GHz, . . . , 1.3 GHz}
in the 48-core system from [11], and higher utilization values
would lead to infeasible solutions for partitioned scheduling
using such platform. However, we would like to test SFA for
higher utilizations (particularly not so close to scrit), reason
why we also consider case (b), which is a hypothetical platform
with the same power parameters but with available frequencies
{0.1 GHz, 0.2 GHz, . . . , 3.0 GHz}.

For distributions (1) and (2), the maximum concrete factor
among these (a) 280 and (b) 705 settings for wM and L is
reported as the peak factor for approximation, denoted by
ESFA
E∗ peak. For random distributions (3), the peak factor is taken

from the (a) 2.8 · 104 and (b) 7.05 · 104 values for every M .

B. Simulation Results

Figure 10 presents the results of ESFA
E∗ peak for the six con-

figurations, i.e., (1a), (1b), (2a), (2b), (3a) and (3b), together
with the analytical upper bounds θmax · AFSFA derived from
Theorem 2 and Theorem 3 for γ = 3, with θmax = 1.14. Cases

9

(1b) and (2b), provide a lower bound for AFSFA when δ = δ∗

and δ = 0.5, respectively. The difference between this values
and the theoretical values of θmax · AFSFA is at most 0.62 for
each case. This means that, all the pessimism introduced in our
analysis to obtain a safe upper bound for the approximation
factor of SFA, does not provide results so far away from
simulated concrete cases. In fact, the theoretical θmax · AFSFA
is not as pessimistic as the assumptions lead to believe, even
for discrete frequencies. For cases (1a) and (2a), the difference
against the theoretical factor is much larger, and this happens
not only because of the precise computation of E∗ by using
Newton’s method to solve Equation (8), but because smax is
close to scrit (2.5 times its value). This result, even though it
makes our analysis pessimistic for such practical consideration,
it further supports the effectiveness of SFA for such platforms,
e.g., SCC [10]. Moreover, for cases (3a) and (3b), ESFA

E∗ peak is
no more than 1.5, suggesting that for general cases SFA is
a simple and effective scheme for energy minimization, and
complicated DVFS solutions are not necessary unless better
results for the worst-case are required.

Figure 11 presents similar results as Figure 10, but for
frame-based tasks using SFA in combination with LTR. The
non-negligible energy overhead for entering/leaving a low-
power mode is set to 0.2 Joule. However, for computing E∗

we only consider the energy consumption for executing, by
ignoring the overhead for entering/leaving a low-power mode,
which is a lower bound for the optimal energy consumption.
The reason why we choose this lower bound is due to the
difficulty to derive tighter lower bounds when β 6= 0 and
non-negligible energy overhead for entering/leaving a low-
power mode is consider. Especially, such ignorance in our
setting also leads to the significantly higher factor ESFA-LTR

E∗ peak
for cases (3a) and (3b) when M ≤ 6 in Figure 11. This
happens because for such chases, the energy consumption for
executing results in low values both for SFA and the lower
bound, which are shadowed by only considered the overhead
for entering/leaving a low-power mode for SFA. Moreover, the
effect of the overhead is more important than the relation of
scrit and smax, since similar results are obtained for wM settings
(a) and (b), for all three distributions (1), (2) and (3).

XIII. CONCLUSIONS

To the best of our knowledge, SFA is the state-of-the-
art solution for energy efficiency when considering periodic
real-time tasks. In fact, SFA has been adopted by several
researchers in the past, e.g., [13] and [15], mainly because
executing always at a single feasible frequency inside a voltage
island is a simple and intuitive scheme. Furthermore, since
all the cores run at a single frequency and no frequency
alignment for DVFS between cores is needed, any uni-core
dynamic power management technique for reducing the energy
consumption for idling can be easily incorporated. We only
focus on the analysis of the approximation factor for the worst
cases. The applicability of SFA with slack reclamation to deal
with early completion of tasks can be found in [13].

In this paper we have analysed the approximation fac-
tor of SFA for energy efficiency. We have shown that the
approximation factor can be bounded to a value depending
on γ and the number of cores in the voltage island. We
also evaluated the lower bound of the approximation factor

for SFA by providing case studies with different utilization
distributions. The simulations show that the analytical upper
bound is not far away from the peak factor of approximation
based on simulations, and also that in general SFA is a
good scheme, whereas the worst case only happens under
particular utilization distributions. Based on the simulation
results for a concrete case study of SCC [10], SFA is shown
as a good approximation even for such worst cases. In other
words, our analysis is for the worst-case and further practical
considerations, e.g., scrit close to smax for some platforms with
22 nm technology, would make our analysis more pessimistic,
further supporting the effectiveness of SFA.

We believe that the analysis for SFA for fixed task sets
(already mapped to cores) can be used as a cornerstone for task
partitioning, as explained in Corollary 1. For future researches,
we will consider task partitioning and SFA to minimize the
overall energy consumption in multiple voltage islands.

Acknowledgements: This work is supported in part by Baden
Württemberg MWK Juniorprofessoren-Programms.

REFERENCES

[1] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” in Proceedings of the 41st
Design Automation Conference (DAC), 2004, pp. 275–280.

[2] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,” in
Symposium on Discrete Algorithms (SODA), 2003, pp. 37–46.

[3] S. Albers and A. Antoniadis, “Race to idle: new algorithms for speed
scaling with a sleep state,” in SODA, 2012, pp. 1266–1285.

[4] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo, “Leakage-aware energy-efficient
scheduling of real-time tasks in multiprocessor systems,” in RTAS, 2006,
pp. 408–417.

[5] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in IPDPS, 2003, pp. 113 – 121.

[6] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé, “Energy-efficient
policies for embedded clusters,” in LCTES, 2005, pp. 1–10.

[7] P. J. de Langen and B. H. H. Juurlink, “Leakage-aware multiprocessor
scheduling for low power,” in IPDPS, 2006.

[8] S. Borkar, “Thousand core chips: a technology perspective,” in Proceed-
ings of the Design Automation Conference (DAC), 2007, pp. 746–749.

[9] S. Herbert and D. Marculescu, “Analysis of dynamic voltage / frequency
scaling in chip-multiprocessors,” in ISLPED, 2007, pp. 38–43.

[10] Intel Corporation, “Single-chip cloud computer (SCC).”
[11] J. Howard and others, “A 48-core ia-32 processor in 45 nm cmos using

on-die message-passing and dvfs for performance and power scaling,”
J. Solid-State Circuits, vol. 46, no. 1, pp. 173–183, 2011.

[12] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An approximation algorithm
for energy-efficient scheduling on a chip multiprocessor,” in Conference
of Design, Automation, and Test in Europe (DATE), 2005, pp. 468–473.

[13] V. Devadas and H. Aydin, “Coordinated power management of peri-
odic real-time tasks on chip multiprocessors,” in Proceedings of the
International Conference on Green Computing, 2010, pp. 61 –72.

[14] E. Seo, J. Jeong, S.-Y. Park, and J. Lee, “Energy efficient scheduling of
real-time tasks on multicore processors,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 11, pp. 1540–1552, 2008.

[15] N. Nikitin and J. Cortadella, “Static task mapping for tiled chip multi-
processors with multiple voltage islands,” in Conference on Architecture
of Computing Systems (ARCS), ser. ARCS, 2012, pp. 50–62.

[16] J.-J. Chen and T.-W. Kuo, “Procrastination determination for periodic
real-time tasks in leakage-aware dynamic voltage scaling systems,” in
ICCAD, 2007, pp. 289–294.

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[18] R. L. Rardin, Optimization in Operations Research. Prentice Hall,
1998.

10

