

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme

Santiago Pagani and Jian-Jia Chen - August 2013

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

Introduction

- Motivation and Problem Definition
- Approximation Factor Analysis (energy consumption) of SFA
 - Negligible Leakage Power Consumption
 - Non-negligible Leakage Power Consumption
 - Balanced Task Sets and Non-negligible Overhead for Sleeping
- Simulations
- Conclusions

Outline

Introduction

- Motivation and Problem Definition
- Approximation Factor Analysis (energy consumption) of SFA
 - Negligible Leakage Power Consumption
 - Non-negligible Leakage Power Consumption
 - Balanced Task Sets and Non-negligible Overhead for Sleeping
- Simulations
- Conclusions

Importance of Energy Efficiency:

- Slow increases of battery capacity.
 - Less Energy Consumption ⇒ Prolong Battery Lifetime of Embedded Systems.
- Increasing costs of energy.
 - Less Energy Consumption \Rightarrow Lower Power Bills for Servers.

Outcome for Computing Systems:

- Motivated to move from single-core to multi-core.
- Techniques for power management.

Importance of Energy Efficiency:

- Slow increases of battery capacity.
 - Less Energy Consumption \Rightarrow Prolong Battery Lifetime of Embedded Systems.
- Increasing costs of energy.
 - Less Energy Consumption \Rightarrow Lower Power Bills for Servers.

Outcome for Computing Systems:

- Motivated to move from single-core to multi-core.
- Techniques for power management.

Dynamic Power Management (DPM):

• Technique for putting cores in a low-power mode: idle, sleep, off, etc.

- Technique for scaling the voltage and frequency of cores.
- Per-core DVFS:
 - Individual voltage and frequency for cores.
 - Optimal, but too expensive to manufacture.
- Global DVFS:
 - All cores share the same voltage.
 - Energy inefficient.

Dynamic Power Management (DPM):

• Technique for putting cores in a low-power mode: idle, sleep, off, etc.

- Technique for scaling the voltage and frequency of cores.
- Per-core DVFS:
 - Individual voltage and frequency for cores.
 - Optimal, but too expensive to manufacture.
- Global DVFS:
 - All cores share the same voltage.
 - Energy inefficient.

Dynamic Power Management (DPM):

• Technique for putting cores in a low-power mode: idle, sleep, off, etc.

- Technique for scaling the voltage and frequency of cores.
- Per-core DVFS:
 - Individual voltage and frequency for cores.
 - Optimal, but too expensive to manufacture.
- Global DVFS:
 - All cores share the same voltage.
 - Energy inefficient.

Dynamic Power Management (DPM):

• Technique for putting cores in a low-power mode: idle, sleep, off, etc.

- Technique for scaling the voltage and frequency of cores.
- Per-core DVFS:
 - Individual voltage and frequency for cores.
 - Optimal, but too expensive to manufacture.
- Global DVFS:
 - All cores share the same voltage.
 - Energy inefficient.

- Multiple Voltage Islands:
 - Compromise between Per-core DVFS and Global DVFS.
 - Cores are grouped into *Voltage Islands*.
 - Islands can have different voltages.



Figure: Intel's SCC snapshot

Intel Corporation. Single-chip Cloud Computer (SCC). URL: http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html

CMOS-core Power Model

 $\textit{P}\left(\textit{s}\right) = \textit{P}_{\text{dynamic}}\left(\textit{s}\right) + \textit{P}_{\text{static}}$

Considering that:

$$egin{aligned} P_{ ext{dynamic}}\left(s
ight) &= C_{ ext{eff}}V_{dd}^{2}s \ s & \propto rac{\left(V_{dd}-V_{t}
ight)^{2}}{V_{dd}} \end{aligned}$$

We can approximate to:

$$P(s) = \alpha s^{\gamma} + \beta$$

CMOS-core Power Model

 $\textit{P}\left(\textit{s}\right) = \textit{P}_{\text{dynamic}}\left(\textit{s}\right) + \textit{P}_{\text{static}}$

Considering that:

$$egin{aligned} \mathcal{P}_{ ext{dynamic}}\left(s
ight) &= \mathcal{C}_{ ext{eff}} V_{dd}^2 s \ s & \ s & \ rac{\left(V_{dd} - V_t
ight)^2}{V_{dd}} \end{aligned}$$

We can approximate to:

$$\boldsymbol{P}(\boldsymbol{s}) = \alpha \boldsymbol{s}^{\gamma} + \beta$$

CMOS-core Power Model

 $P\left(s
ight) =P_{\mathrm{dynamic}}\left(s
ight) +P_{\mathrm{static}}$

Considering that:

$$P_{
m dynamic}\left(s
ight)=C_{
m eff}V_{dd}^{2}s$$
 $s \propto rac{\left(V_{dd}-V_{t}
ight)^{2}}{V_{dd}}$

We can approximate to:

$$\boldsymbol{P}\left(\boldsymbol{s}\right) = \alpha \boldsymbol{s}^{\gamma} + \beta$$

CMOS-core Power Model

 $P\left(\mathbf{s}
ight) = P_{\mathrm{dynamic}}\left(\mathbf{s}
ight) + P_{\mathrm{static}}$

Considering that:

$$\mathcal{P}_{\mathsf{dynamic}}\left(s
ight)=C_{\mathsf{eff}}V_{dd}^{2}s$$
s $s \propto rac{\left(V_{dd}-V_{t}
ight)^{2}}{V_{dd}}$

We can approximate to:

$$\boldsymbol{P}(\boldsymbol{s}) = \alpha \boldsymbol{s}^{\gamma} + \beta$$

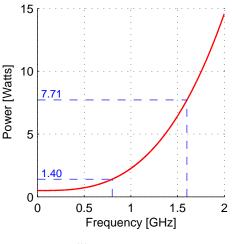
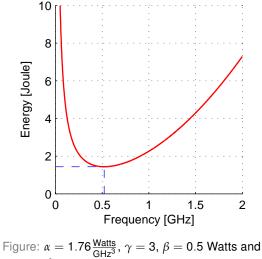


Figure: $\alpha = 1.76 \frac{\text{Watts}}{\text{GHz}^3}$, $\gamma = 3$ and $\beta = 0.5$ Watts



Energy Consumption

$$E(s) = (\alpha s^{\gamma} + \beta) \frac{\Delta c}{s}$$

Critical Frequency:

$$s_{
m crit} = \sqrt[\gamma]{rac{eta}{(\gamma-1)\,lpha}}$$

 $\Delta c = 10^9$ cycles

Santiago Pagani and Jian-Jia Chen August 2012 Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme

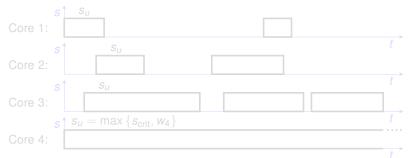
7

Outline

Introduction

Motivation and Problem Definition

- Approximation Factor Analysis (energy consumption) of SFA
 - Negligible Leakage Power Consumption
 - Non-negligible Leakage Power Consumption
 - Balanced Task Sets and Non-negligible Overhead for Sleeping
- Simulations
- Conclusions

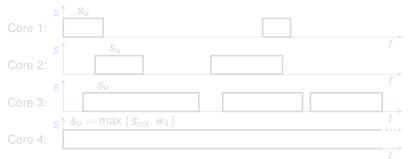


In each voltage island (or Global DVFS), for energy minimization:

What voltage/frequency policy should be used?

Single Frequency Approximation (SFA) Scheme:

- Use the lowest voltage/frequency, satisfying the timing constraints.
- Is the simplest and most intuitive strategy.

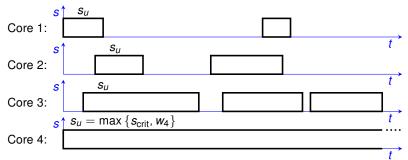


In each voltage island (or Global DVFS), for energy minimization:

What voltage/frequency policy should be used?

Single Frequency Approximation (SFA) Scheme:

- Use the lowest voltage/frequency, satisfying the timing constraints.
- Is the simplest and most intuitive strategy.



In each voltage island (or Global DVFS), for energy minimization:

What voltage/frequency policy should be used?

Single Frequency Approximation (SFA) Scheme:

- Use the lowest voltage/frequency, satisfying the timing constraints.
- Is the simplest and most intuitive strategy.

PROs of SFA:

- Linear time complexity.
- Significantly reduces the management overhead.
- No frequency alignment between cores ⇒ Any uni-core DPM technique can be adopted individually in each core.

CONs of SFA:

SFA might consume more energy than another DVFS schedule. How much more?

PROs of SFA:

- Linear time complexity.
- Significantly reduces the management overhead.
- No frequency alignment between cores ⇒ Any uni-core DPM technique can be adopted individually in each core.

CONs of SFA:

SFA might consume more energy than another DVFS schedule. How much more?

Problem Definition

- For real-time tasks, already partitioned into task sets T_1, T_2, \ldots, T_M .
- Task sets ordered by their cycle utilizations: $w_1 \le w_2 \le \cdots \le w_M$.
- Considering partitioned scheduling.
- Using *Earliest-Deadline-First* (EDF) algorithm.

Objective: Provide *theoretical analysis* to show the effectiveness of SFA for energy minimization.

$$\mathsf{AF}_{\mathsf{SFA}} = \max rac{E_{\mathsf{SFA}}}{E_{\mathsf{OPT}}} \leq \max rac{E_{\mathsf{SFA}}}{E^*}$$

Outline

Introduction

- Motivation and Problem Definition
- Approximation Factor Analysis (energy consumption) of SFA
 - Negligible Leakage Power Consumption
 - Non-negligible Leakage Power Consumption
 - Balanced Task Sets and Non-negligible Overhead for Sleeping
- Simulations
- Conclusions

Energy Consumption for SFA (when $\beta = 0$):

- We execute at (single frequency) $s_u = w_M$.
- The cycle utilization distribution does not matter.

$$E_{\mathsf{SFA}}^{\beta=0}\left(w_{M}\right) = \alpha L\left(w_{M}^{\gamma-1}\right)\sum_{i=1}^{M}w_{i}$$

Lower Bound Energy Consumption (when $\beta = 0$):

Unroll periodic tasks in a hyper-period ⇒ frame-based tasks.
 Use the results from Yang et al. ¹:

$$E^*_{eta=0} = lpha L \left[\sum_{i=1}^{M} \left(w_i - w_{i-1} \right) \sqrt[\gamma]{M-i+1} \right]^{\gamma}$$

¹ Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. "An Approximation Algorithm for Energy-Efficient Scheduling on A Chip Multiprocessor". In: *Conference of Design, Automation, and Test in Europe (DATE)*. 2005, pp. 468–473

Energy Consumption for SFA (when $\beta = 0$):

- We execute at (single frequency) $s_u = w_M$.
- The cycle utilization distribution does not matter.

$$E_{\mathsf{SFA}}^{\beta=0}\left(\mathbf{w}_{M}\right)=lpha L\left(\mathbf{w}_{M}^{\gamma-1}
ight)\sum_{i=1}^{M}\mathbf{w}_{i}$$

Lower Bound Energy Consumption (when $\beta = 0$):

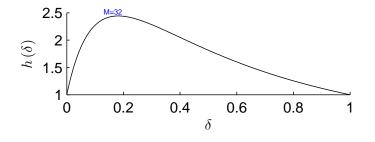
Unroll periodic tasks in a hyper-period ⇒ frame-based tasks.
 Use the results from Yang et al. ¹:

$$E_{\beta=0}^{*} = \alpha L \left[\sum_{i=1}^{M} \left(w_{i} - w_{i-1} \right) \sqrt[\gamma]{M-i+1} \right]^{\gamma}$$

¹ Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. "An Approximation Algorithm for Energy-Efficient Scheduling on A Chip Multiprocessor". In: Conference of Design, Automation, and Test in Europe (DATE). 2005, pp. 468–473

Critical Cycle Utilization Distribution: Minimizes the lower bound of energy consumption, for a fixed w_M and $\sum_{i=1}^{M} w_i$.

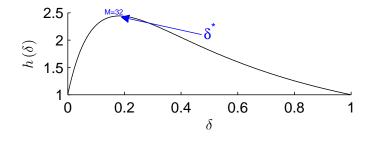
• $w_1 = w_2 = \cdots = w_{M-1} = \text{Average}(w_1, w_2, \dots, w_{M-1})$


• Utilization Ratio: $0 \le \delta = \frac{\text{Average}(w_1, w_2, ..., w_{M-1})}{w_M} \le 1$

Approximation factor of SFA when $\beta = 0$:

$$\mathsf{AF}_{\mathsf{SFA}}^{\beta=0} \leq h(\delta) = \frac{1 - \delta + \delta M}{\left(1 - \delta + \delta \sqrt[\gamma]{M}\right)^{\gamma}} \leq h(\delta^*)$$

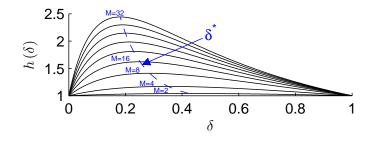
 $h(\delta)$ for $\gamma = 3$:



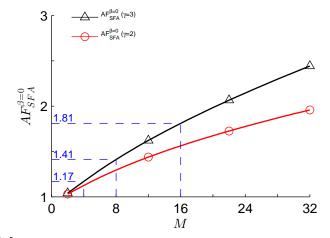
Approximation factor of SFA when $\beta = 0$:

$$\mathsf{AF}_{\mathsf{SFA}}^{\beta=0} \leq h\left(\delta\right) = \frac{1 - \delta + \delta M}{\left(1 - \delta + \delta \sqrt[\gamma]{M}\right)^{\gamma}} \leq h\left(\delta^*\right)$$

 $h(\delta)$ for $\gamma = 3$:



Approximation factor of SFA when $\beta = 0$:


$$\mathsf{AF}_{\mathsf{SFA}}^{\beta=0} \leq h(\delta) = \frac{1 - \delta + \delta M}{\left(1 - \delta + \delta \sqrt[\gamma]{M}\right)^{\gamma}} \leq h(\delta^*)$$

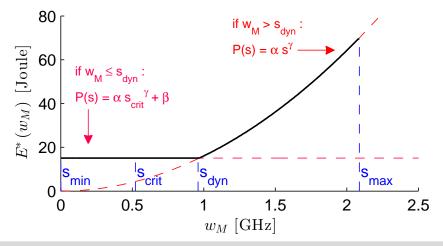
 $h(\delta)$ for $\gamma = 3$:

Approximation factor of SFA when $\beta = 0$ (function of *M*):

Note: $AF_{SFA}^{\beta=0}$ only depends on the values of γ and M.

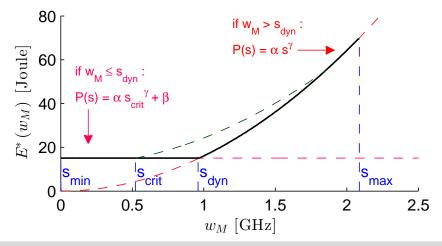
Outline

Introduction

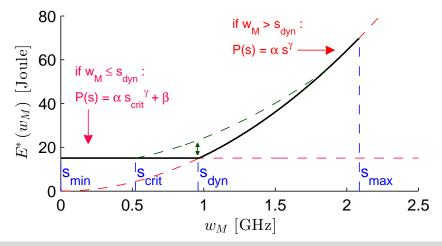

Motivation and Problem Definition

Approximation Factor Analysis (energy consumption) of SFA

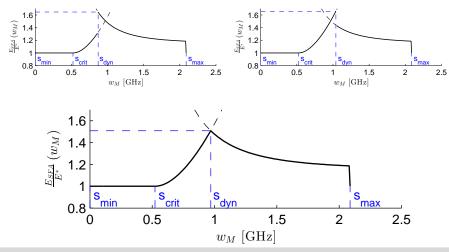
- Negligible Leakage Power Consumption
- Non-negligible Leakage Power Consumption
- Balanced Task Sets and Non-negligible Overhead for Sleeping
- Simulations
- Conclusions



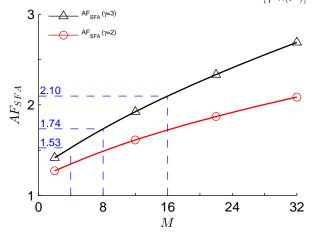
We approximate the Lower Bound Energy Consumption:



We approximate the Lower Bound Energy Consumption:



We approximate the Lower Bound Energy Consumption:



The approximation factor depends on how we choose s_{dyn} :

Approximation factor of SFA when $\beta \neq 0 \Rightarrow AF_{SFA} \leq \frac{\gamma - 1}{[\gamma^{\gamma} h(\delta^*)]^{\frac{1}{\gamma - 1}}} + h(\delta^*)$

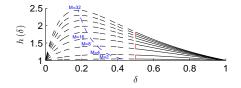
Note: AF_{SFA} only depends on the values of γ and M.

Outline

Introduction

Motivation and Problem Definition

Approximation Factor Analysis (energy consumption) of SFA


- Negligible Leakage Power Consumption
- Non-negligible Leakage Power Consumption
- Balanced Task Sets and Non-negligible Overhead for Sleeping
- Simulations
- Conclusions

Balanced Task Sets and Non-negligible Overhead for Sleeping

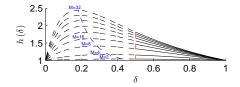
Balanced Task Sets:

If $\delta \ge 0.5$ (e.g., using Largest-Task-First) $\Rightarrow \mathsf{AF}_{\mathsf{SFA}}$ $(\delta \ge 0.5) < \mathsf{AF}_{\mathsf{SFA}}$

Non-negligible Overhead for Sleeping:

- SFA can be combined with any uni-core DPM solution.
- For example, with Left-To-Right (LTR)² algorithm :

 $AF_{SFA-LTR} = AF_{SFA} + 1$


²Sandy Irani, Sandeep Shukla, and Rajesh Gupta. "Algorithms for power savings". In: the 14th Symposium on Discrete Algorithms (SODA). 2003, pp. 37–46

Balanced Task Sets and Non-negligible Overhead for Sleeping

Balanced Task Sets:

If $\delta \ge 0.5$ (e.g., using Largest-Task-First) \Rightarrow AF_{SFA} ($\delta \ge 0.5$) < AF_{SFA}

Non-negligible Overhead for Sleeping:

- SFA can be combined with any uni-core DPM solution.
- For example, with Left-To-Right (LTR)² algorithm :

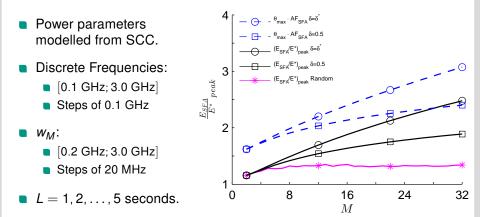
 $\mathsf{AF}_{\mathsf{SFA}\text{-}\mathsf{LTR}} = \mathsf{AF}_{\mathsf{SFA}} + 1$

²Sandy Irani, Sandeep Shukla, and Rajesh Gupta. "Algorithms for power savings". In: the 14th Symposium on Discrete Algorithms (SODA). 2003, pp. 37–46

Outline

Introduction

- Motivation and Problem Definition
- Approximation Factor Analysis (energy consumption) of SFA
 - Negligible Leakage Power Consumption
 - Non-negligible Leakage Power Consumption
 - Balanced Task Sets and Non-negligible Overhead for Sleeping


Simulations

Conclusions

Simulation Results

For negligible overhead for sleeping:

Outline

Introduction

- Motivation and Problem Definition
- Approximation Factor Analysis (energy consumption) of SFA
 - Negligible Leakage Power Consumption
 - Non-negligible Leakage Power Consumption
 - Balanced Task Sets and Non-negligible Overhead for Sleeping
- Simulations

Conclusions

Conclusions

- SFA: state-of-the-art energy efficient scheduling for periodic tasks.
- Approximation factor of SFA for energy efficiency:
 - Considered cases: negligible leakage, non-negligible leakage, balanced task sets, and combinations with DPM.
 - Bounded by γ and M (for all cases).
 - Simulations show a *small* gap compared with our analysis (for the worst-case).
- SFA is an acceptable scheme based on the worst-case analysis.
- The analysis for SFA for fixed task sets is a cornerstone for task partitioning. Further work considering SFA and task partitioning will be published in RTSS 2013³.

³Santiago Pagani and Jian-Jia Chen. "Energy Efficient Task Partitioning based on the Single Frequency Approximation Scheme". In: Proceedings of the 34th IEEE Real-Time Systems Symposium (RTSS). Vancouver, Canada, 2013

Thank you!

Questions?

27 August 2012 Santiago Pagani and Jian-Jia Chen Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme

Thank you!

Questions?

27 August 2012 Santiago Pagani and Jian-Jia Chen Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme

Thank you!

Questions?

27 August 2012 Santiago Pagani and Jian-Jia Chen Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme

Extensions for Practical Systems

Systems with Discrete Frequencies:

• Available frequencies $\{f_1, f_2, \ldots, f_F\}$.

Approximation factor of SFA for discrete frequencies $\Rightarrow AF_{SFA} \cdot \theta_{max}$

$$\theta_{\max} = \max_{1 < i \leq F} \frac{P(f_i) \cdot f_{i-1}}{P(f_{i-1}) \cdot f_i}$$

For example:

If
$$\alpha = 1.76 \frac{\text{Watts}}{\text{GHz}^3}$$
, $\beta = 0.5$ Watts, $\gamma = 3$

Available frequencies {0.1 GHz, 0.2 GHz, ..., 3.0 GHz}

$$\Rightarrow \theta_{\rm max} = 1.14$$

Extensions for Practical Systems

Systems with Discrete Frequencies:

• Available frequencies $\{f_1, f_2, \ldots, f_F\}$.

Approximation factor of SFA for discrete frequencies $\Rightarrow AF_{SFA} \cdot \theta_{max}$

$$\theta_{\max} = \max_{1 < i \leq F} \frac{P(f_i) \cdot f_{i-1}}{P(f_{i-1}) \cdot f_i}$$

For example:

• If
$$\alpha = 1.76 \frac{\text{Watts}}{\text{GHz}^3}$$
, $\beta = 0.5$ Watts, $\gamma = 3$

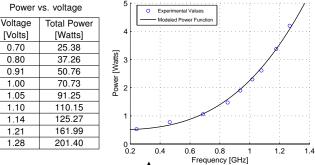
Available frequencies {0.1 GHz, 0.2 GHz, ..., 3.0 GHz}

$$\Rightarrow \theta_{max} = 1.14$$

Extensions for Practical Systems

Systems with Multiple Voltage Islands:

- Given mapping of task partitions in every island.
- Using SFA in each individual island.


$$\Rightarrow \quad \mathsf{AF}_{\mathsf{SFA}}^{\mathsf{V}\text{-}\mathsf{islands}} = \frac{\sum_{j=1}^{V} E_{\mathsf{SFA}j}}{\sum_{j=1}^{V} E_{\mathsf{OPT}j}} \le \frac{\sum_{j=1}^{V} \mathsf{AF}_{\mathsf{SFA}} \cdot E_j^*}{\sum_{j=1}^{V} E_j^*} = \mathsf{AF}_{\mathsf{SFA}}$$

Simulation Setup

Experimental results on SCC⁴:

Frequency vs. voltage	
Voltage	Frequency
[Volts]	[MHz]
0.73	301.48
0.75	368.82
0.85	569.45
0.94	742.96
1.04	908.92
1.14	1077.11
1.23	1223.37
1.32	1303.79

Hardware parameters modelled from SCC: -

- $\alpha = 1.76 \frac{Watts}{GHz^3}$, $\beta = 0.5$ Watts, $\gamma = 3$ and $s_{crit} = 0.52$ GHz.
- Available frequencies: {0.1 GHz, 0.2 GHz, ..., 3.0 GHz}.

⁴ Jason Howard and others. "A 48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-Passing and DVFS for Performance and Power Scaling". In: J. Solid-State Circuits 46.1 (2011), pp. 173–183

Simulation Setup

Maximum Cycle Utilization w_M (stepped by 20 MHz):

- (a) From 0.2 GHz to 1.3 GHz.
- (b) From 0.2 GHz to 3.0 GHz.

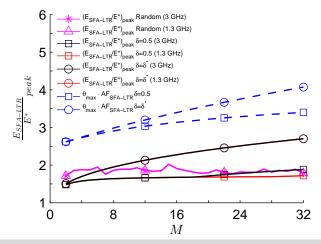
Hyper-periods (for every w_M):

■ *L* = 1, 2, ..., 5 seconds.

Cycle Utilization Distribution:

- (1) Critical Utilization Distribution with $\delta = \delta^*$ (worst-case).
- (2) Critical Utilization Distribution with $\delta = 0.5$ (balanced task sets).
- (3) 100 different random utilization distributions.

Detailed Simulation Results


For negligible overhead for sleeping:

 $(E_{SFA}/E^*)_{peak}$ Random (3 GHz) (E_{SFA}/E*)_{peak} Random (1.3 GHz) _ (E_{SFA}/E*)_{peak} δ=0.5 (3 GHz) (E_{SFA}/E*)_{peak} δ=0.5 (1.3 GHz) ${\rm (E_{SFA}\!/E^*)}_{peak}\,\delta\!\!=\!\!\delta^*\,(3~{\rm GHz})$ \bigcirc 3 SFA/E*)_{peak} δ=δ^{*} (1.3 GHz) peakmax · AF_{SEA} δ=0.5 $\theta_{max} \cdot AF_{SF^A}$ $\frac{E_{SFA}}{E^*}$ $\delta = \delta$ 2 A 1 8 16 24 32 0 M

Detailed Simulation Results

For non-negligible overhead for sleeping:

33 August 2012 Santiago Pagani and Jian-Jia Chen Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme