
$26.00 c©2015 IEEE. Accepted for publication in the International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Amsterdam, The Netherlands, October 4-9, 2015.

seBoost: Selective Boosting for Heterogeneous
Manycores

Santiago Pagani*, Muhammad Shafique*, Heba Khdr*, Jian-Jia Chen†, and Jörg Henkel*
*Chair for Embedded Systems (CES) †Department of Informatics

Karlsruhe Institute of Technology (KIT), Germany TU Dortmund University, Germany

Corresponding Author: santiago.pagani@kit.edu

ABSTRACT
Boosting techniques have been widely adopted in commer-
cial multicore and manycore systems, mainly because they
provide means to satisfy performance requirements surges,
for one or more cores, at run-time. Current boosting tech-
niques select the boosting levels (for boosted cores) and the
throttle-down levels (for non-boosted cores) either arbitrar-
ily or through step-wise control approaches. These meth-
ods might result in unnecessary performance losses for the
non-boosted cores, in short boosting intervals, in failing to
satisfy the required performance surges, or in unnecessary
high power and energy consumption. This paper presents an
efficient and lightweight run-time boosting technique based
on transient temperature estimation, called seBoost. Our
technique guarantees meeting the performance requirements
surges at run-time, thus maximizing the boosting time with
a minimum loss of performance for the non-boosted cores.

1. INTRODUCTION
When executing a set of applications on a multicore or

manycore system, it is common that at some moment one or
more application threads need to increase their performance
during some time, mostly due to performance requirements
surges (peaks) at run-time. For example, this could hap-
pen in a video face recognition application when suddenly
a crowd of people enter the frame [21]. Furthermore, many
applications could need run-time performance surges con-
currently, but such run-time requirements, although over-
lapping, might arrive at different times or have different du-
rations. Boosting techniques provide the system with the
means to satisfy these run-time performance requirements
surges, and have therefore been widely adopted in commer-
cial multicore and manycore systems. Namely, through Dy-
namic Voltage and Frequency Scaling (DVFS), boosting tech-
niques, e.g., Intel’s Turbo Boost [3, 10, 11, 17] and AMD’s
Turbo CORE [14], allow the system to run some cores in the
chip at high voltage and frequency (VF) levels during short
time intervals, even at the cost of exceeding standard operat-
ing power budgets, e.g., the Thermal Design Power (TDP).
Given that executing some cores at high VF levels increases
their power consumption, boosting normally results in an in-
crement of the temperature of these cores through time. Due
to this temperature increase, once the highest temperature
among all cores reaches a predefined threshold, the system
must either return to nominal operation (needing some cool-
down time before another boosting interval), or use some
closed-loop control to oscillate around the threshold (pro-
longing the boosting time).

Careful decisions must be taken when selecting the boost-
ing levels. Otherwise, the temperature on the chip may raise

10

30

50

70

0 0.1 0.2 0.3 0.4 0.5

74

76

78

80

P
er
fo
rm

a
n
ce

[G
IP

S
]

Boost A

T
em

p
er
a
tu

re
[◦
C
]

Max.Temp. [◦C] H.264 [GIPS] Body Track [GIPS]

10

30

50

70

0 0.1 0.2 0.3 0.4 0.5

74

76

78

80

P
er
fo
rm

a
n
ce

[G
IP

S
]

Boost B

T
em

p
er
a
tu

re
[◦
C
]

10

30

50

70

0 0.1 0.2 0.3 0.4 0.5

74

76

78

80

P
er
fo
rm

a
n
ce

[G
IP

S
]

Maximum boosting time

Boost C

Time [seconds]

T
em

p
er
a
tu

re
[◦
C
]

Figure 1: Motivational example for three different boosting
techniques. The red line shows the maximum temperature
among all cores (left axis). The performance of the applica-
tions is measured in Giga-Instruction Per Second (GIPS).

very quickly and the performance requirements surges might
not be satisfied. For example, when some applications re-
ceive a run-time boosting requirement, normally the appli-
cations that do not require boosting at this time are mo-
mentarily considered to have less priority. This implies that
these applications’ cores could be momentarily throttled-
down, that is, reduce their voltage and frequency levels. Fail-
ing to throttle-down the cores of such non-boosting applica-
tions may result in not satisfying the performance require-
ments surges due to a rapid raise in the temperature, while
excessive throttling-down will result in unnecessary overall
performance penalties to the system. The following motiva-
tional example (results in Figure 1) provides further insight
into the impact of boosting on temperature and performance.

Motivational Example: For simplicity of presentation,
consider a system with 16 cores1 with size 3.2mm× 3.0mm,

1Alpha 21264 cores in 22 nm, simulated with McPAT [12].

1

arranged in 4 rows and 4 columns. Assume a critical tem-
perature of 80◦C, and a cooling solution from HotSpot’s [9]
default configuration. Consider that the system is executing
two applications from the Parsec benchmark suite [1], specif-
ically, an H.264 video encoder and a body track application,
each running 8 parallel dependent threads (one thread per
core). At nominal operation we assume that all cores are run-
ning at 3GHz, and we conduct simulations with gem5 [2],
McPAT [12], and HotSpot [9] to obtain performance, power,
and temperature traces, respectively.

At 0.1 s after starting execution, the body track applica-
tion needs to boost its performance. Particularly, all 8 cores
running this application need to be boosted to 3.7GHz. The
required boosting time is not precisely given, but it is ex-
pected to last no more than 0.25 s. Figure 1 presents sim-
ulation results corresponding to the maximum temperature
among all cores as a function of time, for three different
boosting methods. Boosting method A simply decides to
fully throttle-down the H.264 application to the slower avail-
able frequency, that is, 0.1GHz. Thus, the body track ap-
plication is able to be boosted during 0.25 s at the required
frequency, but the H.264 application is only able to achieve
3% of its nominal performance. Boosting method B decides
to keep running the H.264 application at its nominal val-
ues. Hence, although now the H.264 application suffers no
performance losses, in this case the body track application
can only be boosted to 3.7GHz during 0.1 s, reducing the
boosting time compared to method A. Contrarily, boosting
method C intelligently selects to throttle-down the H.264
application to 2.5GHz. In this way, the body track appli-
cation is able to be boosted to the required 3.7GHz during
the full 0.25 s, precisely reaching the critical temperature at
the end of the maximum required boosting time. Moreover,
the H.264 application is able to achieve 84% of its nominal
performance under boosting method C.

This motivational example shows the necessity of an ef-
ficient boosting method. Nevertheless, until now existing
boosting techniques have neglected to make such careful de-
cisions when choosing the boosting levels and the duration
of the boosting interval, and this remains an open problem.

Objective: The objective of this paper is to present an
efficient and lightweight run-time boosting technique, that
guarantees meeting the run-time requirements surges, with
minimum performance losses for the applications/threads
running on the non-boosted cores. Furthermore, our tech-
nique, called seBoost (from Selective Boosting), is also capa-
ble of refining the boosting decisions when, in the middle of
a boosting interval, other applications/threads receive addi-
tional (concurrent) boosting requirements. Moreover, given
that the continuous increasing performance demands and the
power budget constraints have lead to the emergence of het-
erogeneous architectures [20], seBoost is natively developed
to handle heterogeneity.

For the run-time performance requirements surges, there
are two parameters to consider: (1) the required VF levels
and (2) the duration of the surges. For the VF levels of the
cores requiring boosting, we consider two cases: (1a) that
they are given, and (1b) that they are unknown. For the
former (1a), we focus on minimizing the performance losses
of the non-boosted cores while satisfying the required VF
levels of the boosted cores. For the latter (1b), maximiz-
ing the VF levels of the boosted cores has higher priority.

10

30

50

70

0 0.1 0.2 0.3 0.4 0.5

74

76

78

80

P
er
fo
rm

a
n
ce

[G
IP

S
]

Time [seconds]

T
em

p
er
a
tu

re
[◦
C
]

Max.Temp. [◦C] H.264 [GIPS] Body Track [GIPS]

Figure 2: Motivational example for TurboBoost [3]. The red
line shows the maximum temperature among all cores (left
axis). The performance of the applications is measured in
Giga-Instruction Per Second (GIPS).

Thus, we focus on minimizing the performance losses of the
non-boosted cores only if the boosted cores can all run at
maximum frequency. Otherwise, the non-boosted cores are
throttled-down completely, and we run the boosted cores at
the highest possible frequencies. With respect to the du-
ration of the surges, we also consider two cases: (2a) that
the maximum expected duration of the surges is known, and
(2b) that they are unknown. For the former (2a), the goal
is to boost for as long as possible under this maximum ex-
pected duration. For the latter (2b), we assume that the
surges can last for a very long time, thus the goal is to boost
indefinitely.

Our Contributions: Based on the above discussions,

• For given required VF levels and a maximum boosting
time requirement, we derive an efficient and lightweight
run-time algorithm that selects the throttle-down levels
for the non-boosted cores, such that the boosted cores ex-
ecute at the required VF levels during the entire maximum
expected boosting time, and the non-boosted cores do not
suffer unnecessary performance losses.

• We extend the previous algorithm to consider cases in
which the maximum boosting time is given, but the re-
quired VF levels are unknown. This algorithm tries to
maximize the VF levels of the cores requiring boosting
during the entire maximum expected boosting time, again
minimizing the performance losses for the non-boosted
cores. For this case maximizing the VF levels of the boosted
cores is with higher priority.

• Finally, we extend our two previous algorithms to consider
cases in which the maximum expected boosting time is
unknown. In these scenarios, the goal is to find VF levels
that can be sustained indefinitely.

2. RELATED WORK
Intel’s Turbo Boost [3, 4, 10, 11, 17] allows cores to run

at high VF levels when there is available headroom within
power, current, and temperature constraints. Namely, when
the system requires a performance surge, if the measured
temperature, power, and current are below the constraints,
the cores boost their VF levels in single steps (within a con-
trol period) until it reaches an upper limit dictated by the
number of active cores. Similarly, if the temperature, power,
or current violates the constraints, the cores reduce their VF
levels in single steps until the constraints are satisfied or the

2

nominal VF values are reached. Furthermore, when Intel’s
Turbo Boost is triggered, normally all active cores in the
chip operate at the same VF levels, and throttling-down a
few cores with low priority applications/threads is not al-
ways allowed. Figure 2 shows Turbo Boost’s behavior for
the motivational example in Section 1. Here, although the
H.264 application suffers no losses and the body track appli-
cation runs faster than its nominal frequency, the latter fails
to meet its run-time requirements, only running at 3.7GHz
for merely 0.01 s out of the required 0.25 s.

Computation sprinting [16] proposes dealing with run-time
surges via parallelism, by activating cores that are normally
power-gated during short time bursts (typically shorter than
1 s). Boosting through DVFS is intentionally discouraged,
motivated by the ideal linear relation between power and
performance expected when activating several cores at equal
VF levels, compared to the power consumption for achiev-
ing the same performance in less cores at higher VF values.
Although this is a valid point, waking up cores from power-
gated or deep-sleep modes, plus the correspondent thread
migrations may result in significant overheads, particularly
considering the short duration of the sprinting periods. Fur-
thermore, [16] fails to provide methods to select the num-
ber of sprinting cores to find a compromise between the
sprinting performance and the sprinting time, and ignores
the possibility of power-gating cores with lower priority ap-
plications/threads to prolong the sprinting time.

The work in [5] proposes a proactive temperature man-
agement method based on temperature prediction using Au-
toregressive Moving Average (ARMA) modeling, which es-
timates temperature based on past temperature measure-
ments. Nevertheless, although the model is updated at run-
time when workload changes are detected, since ARMA re-
lies on past temperature measurements, it is not well suited
for fast temperature prediction caused by drastic power changes.

The work in [7] presents a run-time thermal management
technique based on RC thermal networks that aims to mini-
mize the latest completion time among the applications. Us-
ing convex optimization, the authors first derive an optimal
solution with a too high time complexity for run-time us-
age. By exploiting the structure of certain matrices in their
convex optimization formulation, the authors present an ap-
proximated solution which is 20 times faster than their con-
vex optimization approach. Unfortunately, this technique
still needs more than 15ms to compute the VF levels of each
core, which is not fast enough for dealing with short run-time
performance surges in manycore systems.

From the discussed related work, we observe that there ex-
ists no lightweight technique that efficiently selects the cores’
VF levels based on future temperature estimation that guar-
antees meeting run-time performance requirements surges.

3. SYSTEM MODEL
This section reviews the hardware, thermal, and applica-

tion model adopted for the rest of the paper.

3.1 Hardware Model
We focus on a system of M heterogeneous cores. Every

core has Dynamic Voltage and Frequency Scaling (DVFS)
capabilities at a core level, that is, the voltage and frequency
of every core is independent to the settings of other cores,
and they can be changed at any given point. For a core to
support stable execution at a specific frequency, the core’s

voltage has to be set above a minimum value. This min-
imum voltage is different for every frequency, and higher
frequencies have higher minimum voltage levels. For a given
frequency, using a voltage level higher than the minimum
consumes unnecessary power. Thus, instead of consider-
ing all possible voltage and frequency combinations, we con-
sider voltage and frequency pairs in which the voltage is set
to the minimum accepted value for the specified frequency.
Naturally, due to the core heterogeneity, there is a differ-
ent set of VF pairs for each core, and we define them as{
F ci
0 ,F ci

1 ,F ci
2 , . . . ,F ci

Hi

}
for all i = 1, 2, . . . ,M cores, such

that Hi is the number of VF pairs for core ci. The specific
VF pair used at a given moment by core ci is denoted as
F ci
Si
, where 1≤ Si≤ Hi if core ci is active, and Si= 0 if core

ci is inactive (in some low-power mode, e.g., power-gated).
Moreover, there is a maximum chip power constraint, Pmax,

and a maximum chip current constraint, Imax. These are
electrical constraints that cannot be exceeded, for example,
from the capacity of the power supply or the wire thickness.

3.2 Thermal Model
For our thermal model, based on the well-known duality

between thermal and electrical circuits, we assume a given
RC thermal network modeled from the chip and cooling so-
lution. Any thermal modeling tool can be used to derive the
RC thermal network, e.g., HotSpot [9]. An RC thermal net-
work consists on N thermal nodes. Matrix B = [bi,j]N×N

represents the thermal conductances between neighboring
nodes. In order to account for the effects of the transient
temperatures, each thermal node is associated to a thermal
capacitance, and all the capacitances are represented in ma-
trix A = [ai,j]N×N . The ambient temperature, defined as
Tamb, is considered to be constant and hence there is no ca-
pacitance associated to it. Column vector G= [gi]N×1 rep-
resents the thermal conductance between each thermal node
and the ambient temperature. The power consumptions of
the nodes are considered to be heat sources, represented by
column vector P=[pi]N×1. By defining matrix C=−A−1B,
the temperature on every node can be computed through a
system of N first-order differential equations [15], specifi-
cally,

T′ = CT+A−1P+ TambA
−1G, (1)

where column vector T=[Ti (t)]N×1 represents the temper-
ature on every thermal node at time t, and column vector
T′=[T ′

i (t)]N×1 contains the first-order derivative of the tem-
perature on every thermal node with respect to time. With-
out loss of generality, we assume that the N thermal nodes
in the RC thermal network are ordered in such a way that
the first M nodes correspond to the M heterogeneous cores.

From the work in [15], the steady-state temperature on
node k, defined as Tsteadyk, can be computed as

Tsteadyk =

N∑
j=1

b-1k,j · pj + Tamb ·
N∑

j=1

b-1k,j · gj , (2)

where B−1=
[
b-1k,j

]
N×N

is the inverse of matrix B.

Based on [13], the work in [15] also presents an analytical
method to compute the transient temperature on node k as

3

a function of time, defined as Tk (t), and computed as

Tk (t) = Tsteadyk +

N∑
i=1

eλi·t · vk,i ·
N∑

j=1

zi,j
(
Tinitj − Tsteadyj

)
,

(3)
where column vector Tinit=[Tinitk]N×1 holds the initial tem-
peratures on all thermal nodes at t0 = 0, {λ1,λ2, . . . ,λN}
are the eigenvalues of matrix C, vk,i corresponds to an ele-
ment in matrix V= [vk,i]N×N which contains the eigenvec-
tors for matrix C, and zi,j corresponds an element in matrix
V−1=[zi,j]N×N , which is the inverse of matrix V.

3.3 Application Model
We consider L multi-threaded applications, where every

application can be mapped to a single core (single thread)
or to several cores (parallel dependent threads). Every core
can be mapped with one or more application threads (multi-
tasking). Through experimental evaluation, we assume to
have given input tables with power profiles for every thread
of every application, for all levels of thread parallelism and
for all available voltage and frequency pairs of each different
core (due to core heterogeneity). Hence, for a given mapping
of applications to physical cores, we define function Pci (Si)
which returns the power consumption for core ci running at
F ci
Si
. When Si is 0, function Pci (Si) returns the power con-

sumption for the corresponding low-power mode. If more
than one application/thread is mapped to core ci, function
Pci (Si) returns the highest power among the power values
of all the applications/threads mapped to ci. Similarly, for
the same mapping, function Ici (Si) returns the current con-
sumed by core ci running at F ci

Si
.

Furthermore, with respect to the effects of temperature
on leakage currents and leakage power consumption, we con-
sider that the current and power profile tables are obtained
(or modeled) at the critical temperature Tcrit. In this way,
our algorithms are able to make decisions considering safe
margins with respect to leakage power and leakage currents.

When an application requires a run-time surge in perfor-
mance, we assume that there are certain scenarios in which
the maximum expected duration of the surges is known or
it can be estimated. This information can be very useful
when deciding the VF boosting levels, thus we assume it to
be a system-level abstraction, and we consider it as input
to our algorithms in Section 5.1 and Section 5.2. To specify
the maximum expected boosting time requirement, historic
profiling under different workloads could be used. That is,
it might not be possible to predict when a certain kind of
workload will arrive, however, the system can potentially
estimate the duration of a performance surge based on the
workload type once the workload has arrived. For example,
for a signal processing application, the application might not
be able to predict when a new signal will arrive, however, the
application could estimate how much time it will require to
process a new signal based on the size of the data. Another
potential way is through application phase-classification [19],
that is, critical workload phases might need maximum boost-
ing levels during the phase and the duration of each phase
can be profiled offline. Nevertheless, although the duration
of a phase can be estimated, it might not be possible to pre-
dict when each phase will need to be executed. Moreover, in
Section 5.3, we provide extensions to consider cases in which
the maximum expected boosting times cannot be specified.

INPUTS:

- Applications with
nominal performance
requirements

MAPPING DECISIONS:

- Number of Threads
 for each application
- Thread-to-core mapping
 considering heterogeneity

SELECTION OF NOMINAL

FREQUENCIES:

- To meet the nominal
 performance requirements

OUTPUTS:

- Nominal performance
- Nominal power
- Nominal temperatures

BOOSTING:

- To meet run-time surges
- Different boosting methods:
 - Turbo Boost
 - seBoost

Arrival of performance

surges at run-time

End of performance

surges at run-time

Back to nominal operation

Figure 3: System and problem overview.

4. PROBLEM DEFINITION
We assume a given mapping of applications to physical

cores, and given nominal voltage/frequency levels for every
core {F c1

nom1
,F c2

nom2
, . . . ,F cM

nomM }, where 1 ≤ nomi ≤ Hi for
all i= 1, 2, . . . ,M . We assume that running the system at
the nominal voltage/frequency levels for the given mapping
meets the nominal performance requirements of all appli-
cations, and the critical temperature Tcrit is not exceeded.
That is,

Tsteadyk ≤ Tcrit for all k = 1, 2, . . . ,M .

The given mapping and nominal voltage/frequency levels can
be derived with any of the existing solutions in the literature,
e.g., [7].

At a given time t0, for which we know the temperatures on
all cores, that is, column vector Tinit = [Tinitk]N×1 is known,
one or more application threads require a run-time increase
in their performance, achieved by increasing the voltage/fre-
quency levels of their corresponding cores, that is, boosting.
The indexes of the cores requiring boosting are defined in
set W , that is, core ci requires boosting if i ∈W . Similarly,
the indexes of the active cores that do not require boosting
are defined in set W , and the indexes of the inactive (power-
gated or sleeping cores) are defined in set��W . The required
boosting time is expected to last until no more than t1. Dur-
ing this time, the cores not requiring boosting, that is, all ci
for which i ∈W , are considered to have less priority, and can
therefore be momentarily throttled-down by reducing their
voltage/frequency levels. All cores return to nominal opera-
tion after the run-time requirements expire. An overview of
this description is presented in Figure 3.

First, we assume that the run-time VF level requirements
are given. That is, for all ci cores for which i ∈ W , there is
a given VF level that must be satisfied, defined as F ci

Ri
such

that 1 ≤ Ri ≤ Hi. The problem then focuses on selecting
the throttle-down levels for the non-boosted cores, such that
the maximum temperature among all cores reaches Tcrit pre-
cisely at t1, without exceeding Pmax and Imax. In this way,
the non-boosted application threads do not suffer from un-
necessary performance losses, like for example adopting a
trivial solution that throttles-down the non-boosted cores to
their minimum voltage and frequency settings. We deal with
this problem in Section 5.1.

4

Secondly, we assume that the run-time VF level require-
ments are unknown. Thus, the new problem focuses on se-
lecting the VF levels of the boosted cores in order to maxi-
mize the performance of their application threads, and also
selecting the throttle-down levels for the non-boosted cores,
such that the maximum temperature among all cores reaches
Tcrit precisely at t1, without exceeding Pmax and Imax. Here,
maximizing the performance of the boosted cores is with
higher priority. This is presented in Section 5.2.

Finally, we consider cases in which the maximum expected
boosting time is unknown. Hence, this last problem focuses
on finding VF levels for the previous two cases, but that can
be sustained indefinitely (not only until t1) without exceed-
ing Tcrit, Pmax, and Imax. This is presented in Section 5.3.

5. SEBOOST: SELECTIVE BOOSTING

5.1 Given Required Boosting Levels
For this case, the required VF levels of the cores that need

boosting are given, together with the duration of the maxi-
mum expected boosting time. From the power profiles, ac-
cording to the threads and applications mapped to each core,
we know the power consumptions of every core for all possi-
ble VF settings. Thus, using Equation (2) and Equation (3),
we can estimate the temperature behavior on all cores af-
ter selecting their VF levels. Specifically, we can compute
the temperature on every core at time t1 after selecting the
throttle-down levels of all non-boosted cores.

Our proposed seBoost solution, presented in Algorithm 1,
is based on a binary search like approach. Namely, seBoost
sets the VF levels of the boosted cores for the given F ci

Ri
re-

quirements for all i ∈ W . Then, applying binary search
proportional to the nominal VF values on each core, se-
Boost tests a limited number of combinations of VF levels
for the non-boosted cores. Estimating the temperatures at t1
through Equation (2) and Equation (3), seBoost selects the
combination that resulted in the highest VF pairs such that
maxk=1,2,...,M {Tk (t1)} ≤ Tcrit, and both Pmax and Imax are
not exceeded.

Algorithm 1 is described in detail as follows. Lines 1 to
12 set the initial conditions. That is, the search area for
each core is initialized proportional to its nominal frequency,
index h keeps track of the core with the largest search area,
and the selected frequencies indexes Si are set to: Ri for
the boosted cores, to the minimum frequencies (that is, 1)
for the non-boosted cores (in case all combinations violate
Pmax, Imax, or Tcrit before t1), and to 0 for the inactive cores.
Lines 13 to 30 correspond to proportional binary search loop,
whose exit condition depends on the core with the largest
search area. Lines 14 to 16 set the midpoints umid

i according
to the current search area for every core ci with i ∈ W .
Here, a maximum is taken between the midpoint and the
minimum frequency index 1, because as different cores have
search areas with different sizes depending on their nominal
frequencies, some cores might finish their search before core
ch. Lines 17 to 19 compute the total current, the total power,
and the maximum estimated temperature among all cores at
t1 using Equations (2) and (3), for the current midpoints of
the search. That is, the power values used in Equation (2)
come from function Pci

(
umid
i

)
. Then, the next search area is

chosen depending on whether all cores remain below or above
Tcrit at t1, and whether the current and power constraints are
satisfied. Line 22 keeps track of the selected indexes Si that

Algorithm 1 seBoost : Given Boosting Requirements

Input: {F c1
nom1

, . . . ,F cM
nomM}, Tinit, t1, W , F ci

Ri
for all i∈W ;

Output: Voltage/frequency pairs F ci
Si

for all i=1, 2, . . . ,M ;

1: h← First element in W ;
2: for all i ∈W do
3: Si ← umid

i ← Ri;
4: end for
5: for all i ∈��W do
6: Si ← umid

i ← 0;
7: end for
8: for all i ∈W do
9: Si ← umin

i ← 1;
10: umax

i ← nomi;
11: if nomh < nomi then h← i; end if
12: end for
13: while umin

h ≤ umax
h do

14: for all i ∈W do

15: umid
i ← max

{⌊
umax
i +umin

i
2

⌋
, 1
}
;

16: end for
17:

∑
I←

∑M
i=1 Ici

(
umid
i

)
;

18:
∑

P←
∑M

i=1 Pci

(
umid
i

)
;

19: maxT← max
k=1,...,M

{Tk (t1)}; {Eq (2)& (3), for Pci

(
umid
i

)
}

20: if maxT≤Tcrit and
∑

P≤Pmax and
∑

I≤Imax then

21: for all i ∈W do
22: Si ← umid

i ;
23: if umin

i ≤ umax
i then umin

i ← umid
i + 1; end if

24: end for
25: else
26: for all i ∈W do
27: if umin

i ≤ umax
i then umax

i ← umid
i − 1; end if

28: end for
29: end if
30: end while
31: return F c1

S1
,F c2

S2
, . . . ,F cM

SM
;

resulted in the highest VF levels such that Tcrit, Pmax, and
Imax were not exceeded. The conditions in lines 23 and 27
guarantee correct search indexes, accounting for the different
search area sizes on the cores.

The number of combinations tested by seBoost is merely
log

(
max∀i∈W {nomi}

)
. Contrarily, a brute force algorithm

would have tested
∏

∀i∈W nomi combinations. If running all
non-boosted cores at their minimum frequencies still exceeds
Pmax, Imax, or Tcrit at time t1, then clearly the boosting time
interval will be shorter than the maximum expected under
the given VF level requirements and initial temperatures.

5.2 Unknown Required Boosting Levels
In this subsection, we consider that the required boosting

levels of the cores that need boosting are unknown, but the
duration of the maximum expected boosting time is known.
For this case, the pseudo-code of seBoost is presented in Al-
gorithm 2. The core computation of Algorithm 2 is based on
Algorithm 1 (called as a function), but it requires some ad-
ditional logic. Namely, by assuming that the boosted cores
are set to the maximum VF levels and the non-boosted cores
are set to the minimum VF levels, seBoost first verifies if the
temperature at t1 remains below Tcrit, and whether the cur-
rent and power constraints are satisfied. If this condition
holds, this means there exists at least one solution in which
all boosted cores can be executed at maximum performance.
Thus, since maximizing the performance of the boosted cores
is the priority, Ri is set to Hi for all i ∈ W and we execute

5

Algorithm 2 seBoost : Unknown Boosting Requirements

Input: {F c1
nom1

, . . . ,F cM
nomM}, Tinit, t1, and W ;

Output: Voltage/frequency pairs F ci
Si

for all i=1, 2, . . . ,M ;
1: for all i ∈W do
2: Si ← Hi;
3: end for
4: for all i ∈��W do
5: Si ← 0;
6: end for
7: for all i ∈W do
8: Si ← 1;
9: end for
10:

∑
I←

∑M
i=1 Ici

(
umid
i

)
;

11:
∑

P←
∑M

i=1 Pci

(
umid
i

)
;

12: maxT← max
k=1,...,M

{Tk (t1)}; {Eq (2) & (3), for Pci (Si)}

13: if maxT≤Tcrit and
∑

P≤Pmax and
∑

I≤Imax then
14: Call Algorithm 1 with W , and F ci

Ri
=F ci

Hi
for all i∈W ;

15: else
16: Call Algorithm 1 with W , F ci

Ri
= F ci

1 for all i ∈ W ,

and F ci
nomi

= F ci
Hi

for all i = 1, 2, . . . ,M ;
17: end if
18: return F c1

S1
,F c2

S2
, . . . ,F cM

SM
;

Algorithm 1 with set W to find the VF levels for the non-
boosted cores.

Contrarily, if all boosted cores cannot be executed at their
maximum VF levels, then we need to find different boosting
levels. For this purpose, Ri is set to 1 for all i ∈ W and
we execute Algorithm 1 with set W , instead of set W . In
this way, the non-boosted cores are forced to run as slow as
possible, and Algorithm 1 now selects the VF levels of the
cores that do require boosting.

5.3 Unknown Maximum Expected Boosting Time
In this subsection, we extend our two previous algorithms

to consider cases in which the maximum expected boosting
time is unknown. Here, we assume that the surges can last
for a very long time, and thus the goal is to find VF levels
that can be sustained indefinitely.

Basically, instead of obtaining VF levels that result in
transient temperatures for which the maximum tempera-
ture among all cores reaches Tcrit precisely at t1, now we
focus on staying just below Tcrit when t → ∞, that is, in
the steady state, without exceeding Pmax and Imax. There-
fore, we only need to make two changes in order to ex-
tend our algorithms. First, in Line 19 and Line 12 of Al-
gorithm 1 and Algorithm 2, respectively, we now compute
Tsteadyk through Equation (2) instead of computing Tk (t1)
through Equation (3), such that “maxT← max

k=1,...,M
{Tk (t1)}”

becomes “maxT← max
k=1,...,M

{Tsteadyk}”. Secondly, in Line 20

and Line 13 of Algorithm 1 and Algorithm 2, respectively,
since now we want to stay just below Tcrit, we change“maxT≤
Tcrit” to “maxT<Tcrit”.

6. CONCURRENCY AND CONTROL LOOP
Algorithms 1 and 2 implicitly assume that all boosted

cores have the same maximum expected boosting time. When
this is not the case, time t1 is set to the maximum value
among all boosting times. Furthermore, Algorithm 1 (or 2)
should be re-executed every time the boosting requirements
change. That is, once one or more cores finish their boosted

10

30

50

70

0 0.1 0.2 0.3 0.4 0.5

74

76

78

80

P
er
fo
rm

a
n
ce

[G
IP

S
]

Time [seconds]

T
em

p
er
a
tu

re
[◦
C
]

Max.Temp. [◦C] H.264 [GIPS] Body Track [GIPS]

Figure 4: Concurrent boosting example. Body track is
boosted to 3.3GHz from 0.10 s to 0.16 s, and H.264 is boosted
to 3.4GHz from 0.14 s to 0.35 s. The red line shows the max-
imum temperature among all cores (left axis). The perfor-
mance of the applications is measured in Giga-Instruction
Per Second (GIPS).

execution, Algorithm 1 (or 2) should be re-executed (now
with less cores requiring boosting), in order to improve the
overall performance of the system. Similarly, if during a
boosting period one or more additional cores require boost-
ing, time t1 is set to the maximum expected absolute boost-
ing time among all boosted cores, and Algorithm 1 (or 2) is
re-executed to adjust the VF levels in order to feasibly boost
all required cores: the cores that were already boosted plus
the new cores that also require boosting. Figure 4 shows an
example with such concurrent boosting requirements.

Furthermore, although the simple closed-loop control sys-
tem used by Turbo Boost does not guarantee meeting the
run-time performance surges, it does provide a simple method
to prolong the boosting intervals after the temperature, power,
or current constraints were exceeded. For example, even run-
ning the non-boosted cores at their minimum frequencies, it
is not always possible to satisfy the run-time surges dur-
ing the entire time requirement, particularly for high initial
temperatures. For such cases, it would be very pessimistic to
directly return to nominal operation after the temperature,
power, or current constraints are exceeded. Thus, seBoost
can incorporate a simple closed-loop control system like the
one used by Turbo Boost which is triggered after any of these
constraints is exceeded. This simple control system can then
reduce the VF levels of the boosted cores, not longer meeting
the requirements surges, but achieving higher performance
than at nominal operation.

7. EVALUATIONS
This section presents experimental evaluations conducted

with gem5 [2], McPAT [12], and HotSpot [9], plus traces
from measurements on an Odroid-XU3 [8] mobile platform
with an Exynos 5 Octa (5422) [18] chip. We compare se-
Boost against Turbo Boost [3], and against a simple boost-
ing method that throttles down the non-boosted cores to the
slowest frequencies.

7.1 Setup
We consider a heterogeneous 72 core system, shown in Fig-

ure 5. The system consists of 24 out-of-order (OOO) Alpha
21264 cores and 16 simple Alpha 21264 cores, based on sim-
ulations conducted on gem5 [2] and McPAT [12] for 22 nm,
and 16 in-order Cortex-A7 cores and 16 OOO Cortex-A15

6

23.93 mm

1
9
.8
8
m
m

Alpha OOO
cluster

Alpha simple
cluster

Cores

A7
cluster

Routers &
other hardware

A15
cluster

Shared L2
caches

Figure 5: Floorplan for the heterogeneous 72 core system
considered in our experimental evaluations. For a given clus-
ter type, each cluster is identified as a, b, c, and d, from top
to bottom.

cores, based on real measurements on an Odroid-XU3 [8] mo-
bile platform with an Exynos 5 Octa (5422) [18] chip with
ARM’s “big.LITTLE” architecture. According to our simu-
lations, each OOO Alpha core has an area of 9.6mm2, and
there is a shared 2MB L2 cache every eight cores. Moreover,
each simple Alpha core has an area of 1.6mm2, and there is a
shared 2MB L2 cache every four cores. The areas of the A7
and A15 cores are estimated from die figures of the Exynos 5
Octa (5422) [18] chip as 0.8mm2 and 5.2mm2, respectively.
There is a shared 512KB L2 cache every four A7 cores, and a
shared 2MB L2 cache every four A15 cores. For such an ar-
chitecture and its corresponding floorplan (Figure 5), we use
HotSpot [9] (with its default configuration) to model the RC
thermal network, which is required by seBoost to estimate
the temperatures through Equations (2) and (3). For the
OOO and simple Alpha cores, we assume available frequen-
cies {0.2, 0.4, . . . , 4.0} GHz, and the voltage settings for each
frequency are taken from the work in [6]. For the A7 and A15
cores, the available frequencies in the Odroid-XU3 platform
are {0.2, 0.3, . . . , 1.4} GHz and {1.2, 1.3, . . . , 2.0} GHz, re-
spectively, and the voltage values are automatically selected
by the platform.

For benchmarks, we consider the Parsec benchmark suite [1],
where each application can run 1, 2, . . . , 8 parallel dependent
threads on the OOO Alpha cores, and 1, 2, . . . , 4 parallel de-
pendent threads on the other three types of cores. The am-
bient temperature is set to 45◦C, and we consider a critical
temperature of 80◦C.

7.2 Results
We run the applications from the Parsec benchmark suite

under different scenarios. First, we focus on different ap-
plications individually, considering multiple instances of the
same application, with different number of threads per in-
stance and also different thread-to-core mappings. For each
scenario we also consider different arrival periods for the run-
time performance surges and different maximum expected
boosting times. Details can be found in Table 1. Secondly,
we focus on mixed application scenarios, considering sev-
eral cases with different applications, number of threads and
mappings. We consider 10 different scenarios, detailed in
Table 2. For each scenario in Table 1 and Table 2, we
conduct closed-loop evaluations involving simulations with
gem5 [2] and McPAT [12] for the Alpha cores, power and per-
formance traces from real measurements in the Odroid-XU3
platform for the A7 and A15 cores, and thermal simulations

Scenario Alpha OOO Alpha simple A15 A7

I1
Boost: 10s
Period: 30s

a: 4[3.6] threads
4[3.6] threads

b: 4[3.6] threads
4[3.6] threads

c: 4 threads
4 threads

a: 4[4.0] threads
b: 4[4.0] threads
c: 4[4.0] threads
d: 4[4.0] threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

I2
Boost: 20s
Period: 25s

a: 8 threads
b: 8 threads
c: 2[4.0] threads

6[4.0] threads

a: -
b: -
c: 3 threads
d: 2 threads

a: 4[2.0] threads
b: 2[2.0] threads
c: 2[2.0] threads
d: -

a: -
b: 2[1.4] threads
c: 2[1.4] threads
d: 4[1.4] threads

I3
Boost:∞
Period: -

a: 5[4.0] threads
3[4.0] threads

b: -
c: 7 threads

1 threads

a: 4[4.0] threads
b: 1 threads
c: 2 threads
d: -

a: 2[2.0] threads
b: -
c: 1 threads
d: 4 threads

a: 4[1.4] threads
b: -
c: -
d: 2 threads

I4
Boost: 7s

Period: 10s

a: 6[4.0] threads
2[4.0] threads

b: 8 threads
c: 4 threads

4 threads

a: 3 threads
b: 4 threads
c: -
d: -

a: -
b: -
c: 4 threads
d: 2 threads

a: -
b: 1 threads
c: 4[1.4] threads
d: -

Table 1: Details of the application mapping scenarios for the
experiment with individual applications. Indexes a, b, c, and
d represent the cluster ID as explained in Figure 5. Every
line corresponds to an application instance executed in the
corresponding cluster with the indicated number of threads,
where “-” means that a cluster is not executing any applica-
tion. A super-index enclosed in brackets next to the num-
ber of threads implies that the specific application instance
will have run-time performance surges, where the target fre-
quency is the number between the brackets (in GHz) and
the duration of the surges is detailed in the scenario num-
ber column. Here, Boost details the duration of the run-time
performance surges, and Period details how often such surges
arrive.

with HotSpot [9]. We consider that the nominal frequency
for the OOO and simple Alpha cores is 2.0GHz, and the
nominal frequencies for the A7 and A15 cores are 0.8GHz
and 1.5GHz, respectively. Moreover, for every application
scenario, we consider that the system was running for long
enough to achieve the steady-state temperatures at nominal
frequencies, and we assume these temperatures to be the ini-
tial temperature in each case. Given that the Odroid-XU3
platform has no performance counters to measure the to-
tal number executed instructions, we use throughput as our
performance metric, where throughput is defined as the total
number of application instances finished every second. We
consider that every time an application instance finishes, an-
other instance is immediately executed under the same map-
ping and frequency settings. Figure 6 shows an overview of
our simulation framework.

Figure 7 shows the timing behavior of each policy for the
mixed application scenario M6, as detailed in Table 2. The
overheads incurred by seBoost to decide the boosting levels
at run-time are considered in the experiments, resulting in
7.5ms for this specific case as seen in the figure. With respect
to performance, we can see that both the simple throttling-
down method and seBoost satisfy the run-time requirements
surges, but seBoost manages this with higher performance
for the non-boosted applications. As for Turbo Boost, we see
that the performance of the non-boosted applications is in
fact much higher than that of seBoost. The average perfor-
mance of the boosted applications is also slightly higher than
that of seBoost. However, although the average boosted per-
formance is slightly higher (only 3%), Turbo Boost fails to
constantly meet the minimum run-time performance require-
ments for the boosted applications by a very small amount
(around 2 frequency steps), specifically, only satisfying the

7

Scenario Alpha OOO Alpha simple A15 A7

M1
Boost:∞
Period: -

a: 2 blacks.
6 x264

b: 4[3.6] ferret
4[3.6] bodytr.

c: 8 dedup

a: -
b: 2[3.8] dedup
c: 1 ferret
d: 3[3.8] bodytr.

a: -
b: 1 facesim
c: 4[1.9] fluidan.
d: 2 blacks.

a: 2 ferret
b: -
c: 2[1.0] vips
d: 4 stream.

M2
Boost: 3s

Period: 45s

a: 8[4.0] bodytr.

b: 1[4.0] x264
c: 8[4.0] dedup

a: 1 dedup
b: 4 canneal
c: 3 x264
d: 2 blacks.

a: 4 bodytr.

b: 2[1.8] facesim
c: 1[1.8] swaptn.
d: 1 x264

a: 4 swaptn.
b: 2 vips
c: 2 freqm.
d: 2 x264

M3
Boost: 27s
Period: 35s

a: 5[4.0] dedup

3[4.0] blacks.
b: -
c: 7[3.4] ferret

1[3.4] dedup

a: -
b: -
c: -
d: 4[4.0] dedup

a: -
b: -
c: -
d: 1 streamcl.

a: 2 blacks.
b: 1 bodytr.
c: 4 x264
d: 4 fluidan.

M4
Boost: 30s
Period: 50s

a: 8 bodytr.
b: 7 x264

1 ferret
c: 8 blacks.

a: -
b: -
c: 4[4.0] x264
d: 4[4.0] canneal

a: 2[1.9] stream.
b: 2[1.8] swaptn.

c: 1[2.0] bodytr.

d: 1[2.0] ferret

a: 4[1.2] x264
b: 2[1.2] freqm.
c: -
d: -

M5
Boost: 23s
Period: 40s

a: 1 bodytr.
7 x264

b: 2[4.0] blacks.
6[4.0] dedup

c: -

a: 2 ferret
b: -
c: -
d: -

a: 1 bodytr.
b: 2 blacks.
c: 1 facesim
d: 2 swaptn.

a: 4 ferret
b: 2 facesim
c: 4[1.4] fluidan.
d: 1 stream.

M6
Boost: 16s
Period: 45s

a: 3[4.0] canneal
2[4.0] x264

b: 8 ferret
c: 8 bodytr.

a: 1[3.4] blacks.
b: 2[3.2] bodytr.
c: 3 dedup

d: 4[4.0] x264

a: 4 freqm.
b: 1 ferret
c: 1 stream.
d: 4 vips

a: 1 swaptn.
b: 2 x264
c: 4 blacks.
d: 2 bodytr.

M7
Boost: 10s
Period: 30s

a: 4[3.6] x264
4[3.6] canneal

b: 4[3.6] blacks.
4[3.6] swaptn.

c: 4 dedup
4 x264

a: 4 swaptn.
b: 4 ferret
c: 4[4.0] ferret
d: 4[4.0] blacks.

a: 4[2.0] fluidan.
b: 4 freqm.
c: 4 facesim
d: 4[1.9] stream.

a: 4 vips

b: 4[1.4] freqm.

c: 4[1.2] x264
d: 4 bodytr.

M8
Boost: 32s
Period: 40s

a: -
b: 8 dedup

c: 4[4.0] ferret
4[4.0] x264

a: -
b: -
c: 3 x264
d: 3 dedup

a: 1 x264
b: 4 bodytr.
c: 4 stream.
d: 1 ferret

a: 1[1.4] blacks.
b: 2[1.3] vips

c: 2[1.0] swaptn.

d: 4[1.4] facesim

M9
Boost:∞
Period: -

a: 1[3.8] ferret
7[3.8] blacks.

b: 4[4.0] canneal
c: 8 dedup

a: 1 dedup
b: 3 bodytr.
c: 2 ferret
d: 4 swaptn.

a: 1 swaptn.

b: 4[2.0] blacks.
c: -
d: -

a: 1[1.3] vips
b: 2 ferret
c: 4 stream.
d: 2[1.3] facesim

M10
Boost:∞
Period: -

a: 5[4.0] ferret
3[4.0] bodytr.

b: -
c: 7 canneal

1 swaptn.

a: 4[3.4] x264
b: 1 dedup
c: 2 blacks.
d: -

a: 2[1.9] freqm.
b: -
c: 1 x264
d: 4 vips

a: 4[1.4] facesim
b: -
c: -
d: 2 stream.

Table 2: Details of the application mapping scenarios for
the experiment with mixed applications. This table is very
similar to Table 1. The main difference is that here we detail
which application type is executed in each cluster, and the
word threads is omitted.

Thermal-Aware Simulation Loop

PARSEC gem5

McPAT
Exynos 5

Octa (5422)

Performance, Timing
and Power Traces

Power
Profiles

INPUTS:

- Nominal frequencies
- Mapping (Tables 1 & 2)
- Initial Temperatures
- Run-time surges
 (Tables 1 & 2)

HotSpot

Compute
Temperatures

Simple

Turbo Boost

seBoost

OUTPUTS:

- Satisfaction (%) of surges
- Boosted Throughput
- Non-Boosted Throughput
- Total Peak Power
- Total Energy

or

or

Figure 6: Overview of our simulation framework.

surges during 49% of the total boosting time.
Figure 8 shows results for 100 s of execution for all tested

application scenarios detailed in Table 1 (individual applica-
tion experiment). Similarly, Figure 9 shows results for 100 s

0

7

14

21

0 5 10 15 20

60

70

80

T
h
ro
u
g
h
p
u
t
[a

p
p
s

s
]

Simple

T
em

p
er
a
tu

re
[◦
C
]

Max.Temp. [◦C] Non-Boosted [GIPS] Boosted [GIPS]

0

7

14

21

0 5 10 15 20

60

70

80

T
h
ro
u
g
h
p
u
t
[a

p
p
s

s
]

Turbo BoostT
em

p
er
a
tu

re
[◦
C
]

0

7

14

21

0 5 10 15 20

60

70

80

T
h
ro
u
g
h
p
u
t
[a

p
p
s

s
]

seBoost

seBoost overheads: 7.5ms

Time [seconds]
T
em

p
er
a
tu

re
[◦
C
]

Figure 7: Timing simulation results for mixed application
scenario M6. The red line shows the maximum temperature
among all cores (left axis). The added performance of the
boosted and non-boosted applications is measured in appli-
cation instances per second, that is, throughput.

of execution for all scenarios detailed in Table 2 (mixed ap-
plications experiment). Specifically, in each figure we can
see the percentage of time that the run-time performance
requirements were satisfied for each boosting policy, the to-
tal average performance for the boosted applications/cores,
the total average performance for the non-boosted applica-
tions/cores, the total peak power consumption, and the total
energy consumption. There are a few cases in which, for the
given initial temperatures, it is not possible to satisfy the
run-time requirements, and thus neither seBoost or the sim-
ple throttling-down method manages to satisfy the require-
ments 100% of the time. For the rest of the tested cases, se-
Boost and the simple throttling-down method satisfy the re-
quirements during the entire boosting interval (except for se-
Boost ’s small computation overheads of a few milliseconds),
as seen in Figures 8 and 9. Nevertheless, the simple boosting
does so while incurring unnecessary losses of performance for
the non-boosted applications.

With respect to Turbo Boost, for all tested cases, although
it achieves higher average performance than seBoost for the
non-boosted cores, Turbo Boost rarely manages to satisfy
the run-time requirements during the entire boosting inter-
val, and the specific percentages vary drastically depend-
ing on the application scenarios. Furthermore, since Turbo
Boost is not aware of the performance the applications re-
quire, sometimes it fails to satisfy the run-time requirements
during the entire boosting interval because it boosts to VF
levels higher than necessary. As seen in Figures 8 and 9,
compared to seBoost, the over-boosting incurred by Turbo

8

Simple Turbo Boost seBoost

0 1 2 3 4

0

25

50

75

100

Satisfaction of
Run-Time Surges

P
e
rc
e
n
ta

g
e
[%

]

0 1 2 3 4

0

50

100

150
Avg. Performance
Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4

0

25

50

75

100
Avg. Performance
Non-Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4

0

100

200

300

400

500
Total Peak Power

P
o
w
e
r
[W

]

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

fe
rr
et

sw
ap
ti
on
s

x2
64

0

5

10

15

20
Total Energy

E
n
e
rg

y
[k
J
]

(a) Scenario I1

0 1 2 3 4

0

25

50

75

100

Satisfaction of
Run-Time Surges

P
e
rc
e
n
ta

g
e
[%

]

0 1 2 3 4

0

50

100

150
Avg. Performance
Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4

0

25

50

75

100
Avg. Performance
Non-Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4

0

100

200

300

400

500
Total Peak Power

P
o
w
e
r
[W

]

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

fe
rr
et

sw
ap
ti
on
s

x2
64

0

5

10

15

20
Total Energy

E
n
e
rg

y
[k
J
]

(b) Scenario I2

0 1 2 3 4

0

25

50

75

100

Satisfaction of
Run-Time Surges

P
e
rc
e
n
ta

g
e
[%

]

0 1 2 3 4

0

50

100

150
Avg. Performance
Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4

0

25

50

75

100
Avg. Performance
Non-Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4

0

100

200

300

400

500
Total Peak Power

P
o
w
e
r
[W

]

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

fe
rr
et

sw
ap
ti
on
s

x2
64

0

5

10

15

20
Total Energy

E
n
e
rg

y
[k
J
]

(c) Scenario I3

0 1 2 3 4

0

25

50

75

100

Satisfaction of
Run-Time Surges

P
e
rc
e
n
ta

g
e
[%

]

0 1 2 3 4

0

50

100

150
Avg. Performance
Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4

0

25

50

75

100
Avg. Performance
Non-Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4

0

100

200

300

400

500
Total Peak Power

P
o
w
e
r
[W

]

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

fe
rr
et

sw
ap
ti
on
s

x2
64

0

5

10

15

20
Total Energy

E
n
e
rg

y
[k
J
]

(d) Scenario I4

Figure 8: Evaluation results for individual applications from Parsec. We consider multiple instances of the same application,
with different number of threads per instance, different thread-to-core mappings, different arrival periods for the run-time
performance surges, and different maximum expected boosting times. Details can be found in Table 1.

Boost can sometimes result in a higher average performance
for the boosted cores. However, the performance gains for
using Turbo Boost are relatively very small and arguably
unjustified when considering the big increments to the total
peak power and energy consumption. For example, Turbo
Boost achieves 3% higher boosted average performance for
scenario M6, while resulting in a peak power and energy
consumption of 105% and 51%, respectively, higher than se-
Boost.

With respect to the overheads incurred by seBoost, the
worst-case measured execution time for seBoost for all tested
cases was below 7.5ms, implemented in software (C++) as
a single threaded application. This clearly shows that se-

Boost is in fact a lightweight technique suitable for run-time
usage. Implementing seBoost as a dedicated hardware con-
troller would result in negligible time overheads, specially
given that the computations in Algorithms 1 and 2 can be
fully parallelized.

8. CONCLUSIONS
This paper presented seBoost, an efficient and lightweight

boosting technique based on transient temperature estima-
tion. This technique guarantees meeting run-time perfor-
mance requirements surges, by executing the boosted cores
at the required frequencies for the entire boosting intervals,
while throttling down the non-boosted cores. In order to

9

0 1 2 3 4 5 6 7 8 9

0

25

50

75

100
Satisfaction of Run-Time Surges

P
e
rc
e
n
ta

g
e
[%

]
Simple Turbo Boost seBoost

0 1 2 3 4 5 6 7 8 9

0

20

40

60
Avg. Performance of Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4 5 6 7 8 9

0

10

20

30

40
Avg. Performance of Non-Boosted Cores

T
h
ro

u
g
h
p
u
t
[a

p
p
s

s
]

0 1 2 3 4 5 6 7 8 9

0

100

200

300

400
Total Peak Power Consumption

P
o
w
e
r
[W

]

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0

5

10

15

20

25
Total Energy Consumption

Scenario Number (details in Table 2)

E
n
e
rg

y
[k
J
]

Figure 9: Evaluation results for mixed applications from Par-
sec. We consider different applications, with different num-
ber of threads per application instance, different thread-to-
core mappings, different arrival periods for the run-time per-
formance surges, and different maximum expected boosting
times. Details can be found in Table 2.

minimize the performance losses for the non-boosted cores,
the throttling down levels are chosen such that the maximum
frequencies among all cores reaches the critical temperature
precisely when the boosting is expected to expire. Our exper-
iments show that seBoost can in fact guarantee the required
performance surges, while the state-of-the-art control tech-
niques fail to constantly satisfy the run-time requirements.

9. ACKNOWLEDGEMENTS
This work was partly supported by the German Research

Foundation (DFG) as part of the Transregional Collabora-
tive Research Centre Invasive Computing [SFB/TR 89].

10. REFERENCES
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 72–81, 2008.

[2] N. Binkert, B. Beckmann, and others. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[3] J. Casazza. First the tick, now the tock: Intel microarchitecture
(nehalem). White paper, Intel Corporation, 2009.

[4] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova.
Evaluation of the intel core i7 turbo boost feature. In
Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), pages 188–197, 2009.

[5] A. K. Coskun, T. v. Rosing, and K. C. Gross. Utilizing
predictors for efficient thermal management in multiprocessor
socs. Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 28(10):1503–1516, Oct. 2009.

[6] A. Grenat, S. Pant, R. Rachala, and S. Naffziger. 5.6 adaptive
clocking system for improved power efficiency in a 28nm x86-64
microprocessor. In IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), pages
106–107, 2014.

[7] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. Performance
optimal online dvfs and task migration techniques for thermally
constrained multi-core processors. Transactions on
Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 30(11):1677–1690, Nov. 2011.

[8] Hardkernel Co., Ltd. Odroid-XU3. www.hardkernel.com.

[9] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan,
K. Skadron, and M. Stan. HotSpot: a compact thermal
modeling methodology for early-stage VLSI design. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 14(5):501–513, May 2006.

[10] Intel Corporation. Dual-core intel xeon processor 5100 series
datasheet, revision 003, August 2007.

[11] Intel Corporation. Intel turbo boost technology in intel CoreTM
microarchitecture (nehalem) based processors. White paper,
November 2008.

[12] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and
N. Jouppi. McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures.
In Proceedings of the 42nd IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 469–480,
2009.

[13] H. M. Moya-Cessa and F. Soto-Eguibar. Differential
Equations: An Operational Approach. Rinton Press, 2011.

[14] S. Nussbaum. AMD trinity APU. In Hot Chips, 2012.

[15] S. Pagani, J.-J. Chen, M. Shafique, and J. Henkel. MatEx:
Efficient transient and peak temperature computation for
compact thermal models. In Proceedings of the 18th Design,
Automation and Test in Europe (DATE), March 2015.

[16] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou,
K. P. Pipe, T. F. Wenisch, and M. M. K. Martin.
Computational sprinting. In Proceedings of the IEEE 18th
International Symposium on High-Performance Computer
Architecture (HPCA), pages 1–12, 2012.

[17] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann. Power-management architecture of the intel
microarchitecture code-named sandy bridge. IEEE Micro,
32(2):20–27, March 2012.

[18] Samsung Electronics Co., Ltd. Exynos 5 Octa (5422).
www.samsung.com/exynos.

[19] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder.
Discovering and exploiting program phases. IEEE Micro,
23(6):84–93, Nov. 2003.

[20] C. Tan, T. Muthukaruppan, T. Mitra, and L. Ju.
Approximation-aware scheduling on heterogeneous multi-core
architectures. In 20th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 618–623, Jan 2015.

[21] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face
recognition: A literature survey. Computing Surveys (CSUR),
35(4):399–458, December 2003.

10

www.hardkernel.com
www.samsung.com/exynos

