
5

Runtime Resource Allocation for Software Pipelines

JANMARTIN JAHN, SANTIAGO PAGANI, SEBASTIAN KOBBE, JIAN-JIA CHEN,
and JÖRG HENKEL, Karlsruhe Institute of Technology (KIT), Germany

Efficiently allocating the computational resources of many-core systems is one of the most prominent chal-
lenges, especially when resource requirements may vary unpredictably at runtime. This is even more chal-
lenging when facing unreliable cores—a scenario that becomes common as the number of cores increases
and integration sizes shrink.

To address this challenge, this article presents an optimal method for the allocation of the resources to
software-pipelined applications. Here we show how runtime observations of the resource requirements of
tasks can be used to adapt resource allocations. Furthermore, we show how the optimum can be traded for
a high degree of scalability by clustering applications in a distributed, hierarchical manner. To diminish
the negative effects of unreliable cores, this article shows how self-organization can effectively restore the
integrity of such a hierarchy when it is corrupted by a failing core. Experiments on Intel’s 48-core Single-Chip
Cloud Computer and in a many-core simulator show that a significant improvement in system throughput
can be achieved over the current state of the art.

Categories and Subject Descriptors: B.8.0 [Performance]; B.8.1 [Reliability/Fault Tolerance]; C.1.4.
[Parallel Architectures]; C.4 [Performance of Systems]; D.1.3. [Parallel Programming]

General Terms: Performance

Additional Key Words and Phrases: Many-core systems, resource allocation, task mapping, runtime system
management, distributed systems, software pipelines

ACM Reference Format:
Janmartin Jahn, Santiago Pagani, Sebastian Kobbe, Jian-Jia Chen, and Jörg Henkel. 2015. Runtime resource
allocation for software pipelines. ACM Trans. Parallel Comput. 2, 1, Article 5 (May 2015), 23 pages.
DOI: http://dx.doi.org/10.1145/2742347

1. INTRODUCTION

Many-core systems offer the potential for parallel processing. The cores and the com-
munication links between them (i.e., their resources) must be used efficiently to achieve
a high system throughput. This is largely determined by the allocation of cores to the
applications [Singh et al. 2013]. In scenarios where the resource requirements of tasks
may change at any time or where tasks may be started or stopped at any time (we
call such scenarios dynamic scenarios), the problem of allocating resources is extended
from finding allocations to adapting them at runtime to reflect those changes. Other-
wise, a significant degradation of the system throughput is observed in many instances
[Jahn and Henkel 2013; Kobbe et al. 2011; Schor et al. 2012] (Section 3 discusses an

Authors’ addresses: J. Jahn, S. Pagani, and J. henkel, Karlsruhe Institute of Technology, Chair for Embedded
Systems, Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany; emails: (jahn, santiago.pagani, henkel)@kit.edu;
J.-J. Chen, University of Dortmund, Fakultät für Informatik, Informatik 12, Otto-Hahn-Str. 16, 44227 Dort-
mund, Germany; email: jian-jia.chen@cs.uni-dortmund.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 2329-4949/2015/05-ART5 $15.00
DOI: http://dx.doi.org/10.1145/2742347

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

http://dx.doi.org/10.1145/2742347
http://dx.doi.org/10.1145/2742347

5:2 J. Jahn et al.

example). Dynamic scenarios are increasingly common, and therefore efficient and
effective resource (re-)allocation is of paramount importance [Schor et al. 2012].

State-of-the-art resource allocation techniques do not sufficiently address dynamic
scenarios as they target a limited set of predefined scenarios (e.g., Schor et al.
[2012]), because they balance the computational load while neglecting intertask
communication (e.g., Bahi et al. [2005]), or because their observations and resource
allocations are limited to local decisions (e.g., Jahn and Henkel [2013] and Kobbe et al.
[2011]). A thorough discussion of the state of the art can be found in Section 4. Comple-
menting the state of the art, we address the problem of efficiently allocating resources
in dynamic scenarios for malleable software pipelines by adapting allocations based on
runtime observations. Malleable applications provide the flexibility of deploying cores
dynamically (e.g., Turek et al. [1992] and Feitelson et al. [1997]) and thus allow re-
allocation of resources at runtime. This article focuses on software pipelines, as they
are a well-established means for parallelizing a large class of complex applications.
Many stream-processing applications, including common image/video and networking
applications, are well suited for software pipelining.

We start with a centralized method (as presented in Jahn et al. [2013]) that allo-
cates resources for the entire system based on global system knowledge. Based on
this, we detail how this centralized resource allocation is extended in a distributed,
hierarchical way to reduce its high computational and communication overheads. Our
proposed distributed allocation employs several nodes that communicate hierarchically
to achieve near-optimal resource allocations and a high degree of scalability—that is,
limited overheads even in scenarios with a large number of cores. This way, the compu-
tational overhead is distributed among cores. However, distributed allocation may be
vulnerable to unreliable cores because the communication of nodes can be significantly
impaired by malfunctioning cores. A decreased reliability of cores can follow the con-
tinued shrinking of integration sizes beyond 22nm. This shrinking causes high power
densities [Narayanan and Xie 2006] and an increasing impact on process variations
[Borkar 2005]. High power densities may lead to thermal problems that can cause
temporary or permanent malfunction of cores [Brooks et al. 2007; Narayanan and Xie
2006]. Due to process variations, manufacturing many-core systems for a guaranteed
reliability may lead to low yields. Both effects suggest that in the future, systems may
need to be able to operate on unreliable cores [Borkar 2005] even though distributed
resource allocation does not form a single point of failure (as opposed to centralized
allocation): the malfunctioning of a core may remove a node of the distributed resource
allocation, which can jeopardize its effectiveness and thus decrease the system through-
put significantly. We show that this can be severe, and we employ self-organizing nodes
to address this problem by increasing the resilience (i.e., the impact of crashing cores
on the system throughput) of our distributed allocation.

Self-organization is a paradigm for managing complex systems in a distributed man-
ner and is successfully employed in many instances. A comprehensive survey is pre-
sented by Huebscher and McCann [2008]. In the context of this article, self-organization
means that communicating nodes are responsible for finding their communication
counterparts and for observing the system state that is relevant to them. We use self-
organization to avoid the decreased throughput that would otherwise result when the
hierarchy of our distributed resource allocation is corrupted by crashing nodes.

We target systems with many cores; private, distributed memories; and network-on-
chips.

The contributions of this work are as follows:

(1) We present a novel concept of self-organizing software pipelines that increase the
resilience of distributed resource allocation against unreliable cores through a novel
concept of self-organizing software pipelines.

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:3

(2) We detail the centralized, optimal method for the allocation of resources to mal-
leable software pipelines for dynamic scenarios presented in Jahn et al. [2013].
Furthermore, we explain how the optimum can be traded for a high degree of
scalability.

The rest of this article is organized as follows. Section 2 defines some terms, and
Section 3 illustrates the need to adapt resource allocations at runtime. Section 4 dis-
cusses the related work, and Sections 5 and 6 detail our application models and define
the problem of allocating resources. Section 7 describes our algorithmic solution for
allocating resources. Section 8 outlines implementation details, and experiments on
the performance and overheads are presented and discussed in Section 9. Section 10
concludes this article.

2. TERMS AND DEFINITIONS

For the rest of this article, we will use the following terms and definitions:

—Resource allocation refers to decisions of (1) assigning cores to parallel applications
(consisting of multiple tasks) and of (2) choosing how to distribute the tasks of each
application to the cores assigned to it.

—A software pipeline is a parallel application that consists of several communicating
stages that repeatedly compute iterations on a stream of input data. Each stage is a
task that is assigned to a core. The output of one stage forms the input data of its
direct successor; there is no further communication between stages.

—A malleable software pipeline is a software pipeline that can reduce the number
of cores that it uses by fusing consecutive stages so that they are allocated to the
same core, similar to fusing filters in StreamIt [Thies et al. 2001]. Consequently,
no intercore communication is necessary between fused stages. Fused stages can be
split.

—Task migration refers to the mechanism for transferring the execution of a task from
one core to another.

—The throughput of an application denotes the number of iterations that it finishes
per second. Accordingly, the system throughput denotes the average throughput of
all running applications. A formal definition can be found in Section 5.

—In dynamic scenarios, the set of concurrently running applications, the resource
requirements of the individual tasks and the volume of intertask communication
may change unpredictably at any time. This can arise, for example, through user
interactions or because of changes in the input data.

3. MOTIVATION

Let us consider a simple example of a software-pipelined computer vision application
(object tracking) with eight stages allocated to a system with four cores.1

Figure 1(a) shows that an established resource allocation (core 1: stages 1 through 3,
core 2: stages 4 and 5, core 3: stages 6 and 7, core 4: stage 8) achieves a throughput of
approximately 20.13 iterations/second. The resource requirements change at runtime
when multiple tracked objects are added to the input scene. Figure 1(b) shows how the
average runtime of each stage changes. Due to these changing resource requirements,
the average throughput drops to 8.35 iterations/second. A possible solution to this
problem is to adapt the resource allocation as shown in Figure 1(d) (core 1: stage 1,
core 2: stage 2, core 3: stages 3 and 4, core 4: stages 5 through 8), which results in
a throughput of 18.40 iterations/second. Consequently, adapting resource allocations
at runtime based on observations of the (unpredictable) resource requirements can

1For this example, four cores of Intel’s Single-Chip Cloud Computer (SCC) [Howard et al. 2010] are used.

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:4 J. Jahn et al.

Fig. 1. Changing computational requirements, resulting throughputs, and initial/adapted resource alloca-
tions of stages S1−8 to four cores.

significantly improve the throughput. A more complex example of a system with up
to 1,024 cores running up to 275 instances of real-world applications concurrently is
discussed in Section 9.3.

However, adapting resource allocation at runtime is a challenging problem because
balancing the resource requirements of tasks leads to a large problem space (e.g., there
are approximately 1.6 · 10160 possible ways to allocate 100 stages to 48 cores). Jointly
balancing the computational and communication requirements between cores is an
NP-complete problem in a strong sense, which can be reduced from the 3-PARTITION
problem [Johnson and Garey 1979]. Hence, allocating resources for larger systems at
runtime may require a prohibitively high overhead or may require heuristics that lead
to suboptimal solutions.

4. RELATED WORK

This section highlights why the state of the art does not sufficiently address resource
allocation in dynamic scenarios. To do this, we group the related work into resource
allocation for software pipelines and similar concepts such as Kahn process networks
(KPNs) and synchronous dataflow (SDF), and for parallel applications in general, as-
suming either distributed or shared memories.

Resource allocation specific to software-pipelined systems has recently been proposed.
The authors of Schor et al. [2012] suggest calculating a set of optimal resource allo-
cations for given scenarios at design time. This works well when the set of possible
scenarios is known at design time, but it does not aim at capturing cases where the

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:5

resource requirements are unpredictable. This is, however, the case when they depend
on user interactions or on the input data. Dynamic allocation of stream-processing
applications, which are a superset of software pipelines, to embedded multicores with
scratchpad memories is proposed by Lee et al. [2012]. This approach targets unpre-
dictable resource availability, whereas the resource requirements of applications are
assumed to remain constant.

For application scenarios that consist of a single application, multiple methods for
resource allocation have recently been proposed. Stream-processing applications mod-
eled as SDF can be allocated to multicore processors using design-time adjustments
of the granularity of parallelism through loop unrolling [Che and Chatha 2012]. This
approach employs compiler techniques that aim at maximizing the use of on-chip
scratchpad memory and combines this with compiler-instrumented data buffering and
background data prefetching. Similarly, SDF-based applications can be allocated to
SPM-based multi/many-cores based on an evolutionary algorithm-based technique as
proposed by Choi et al. [2012]. This method generates a static schedule at design
time, which includes a schedule for prefetching data from off-chip DRAM to on-chip
scratchpads using hardware DMA units.

For hard-real-time tasks, Bamakharma and Stefanov [2012] propose to decompose
cyclostatic SDF graphs into asynchronous sets of periodic tasks with implicit dead-
lines. Under some conditions, this allows achievement of the maximum throughput.
To achieve this, the authors propose allocating resources to task subsets and focus on
finding good task set representations.

To jointly optimize resource allocation for computation and communication,
Castrillon et al. [2012] propose a heuristic design-time resource allocation phase fol-
lowing a phase of application synthesis of KPNs. However, a large runtime results due
to the large complexity that arises from the expressiveness of KPNs.

Resource allocation for parallel applications in general, assuming distributed mem-
ories. Bahi et al. [2005] present a heuristic runtime load balancing method for asyn-
chronous, iterative algorithms (AIAC) in grid computing systems. It aims at balancing
the computational load among cores by exchanging workload when imbalances are de-
tected. To achieve this, this method repeatedly observes the workloads of all cores and
performs distributed interactions among them. Workload is exchanged by transferring
an application’s individual work items, such as video frames, between neighboring
cores. Due to its focus, it does not take intertask communication into account. It there-
fore may achieve inferior performance when tasks communicate heavily, as is the case
for many complex, real-world applications.

In Kobbe et al. [2011], DistRM, a distributed heuristic for resource allocation, is
presented, which uses interacting software agents. Based on runtime observations and
offline profiles, agents possess local information and interact to allocate or re-allocate
resources when applications are started or stopped, or when their computational re-
quirements vary significantly. However, their approach for achieving a scalable solution
for up to 4,096 cores limits their decisions to local regions, which can potentially result
in a low throughput of the system.

Considering that AIAC [Bahi et al. 2005] and DistRM [Kobbe et al. 2011] are the
most similar to the methods for resource allocation presented in this article, Section 9
compares them to our proposed methods.

A statistical approach based on extreme value theory is presented in Radojković et al.
[2012]. It generates a large random set of resource allocations, and the calculations
have a runtime of 25 minutes to 2 hours, which we consider infeasible for dynamic
scenarios that require updating of resource allocations at runtime. In contrast to this,
our methods for resource allocation allow calculation of optimal resource allocations in
polynomial time and near-optimal resource allocations in nearly constant time.

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:6 J. Jahn et al.

Fig. 2. Our model for malleable software pipelines.

Resource allocation for parallel applications in general, assuming shared memories.
For shared-memory systems, numerous works [Stender et al. 2006; Luk et al. 2009;
Nollet et al. 2005; Carvalho et al. 2007; Klues et al. 2010; Lakshmanan et al. 2009; Li
et al. 2007; Rajagopalan et al. 2007] propose adaptive resource allocation for balancing
the computational load at runtime. Snavely and Tullsen [2000] propose deriving co-
schedules based on offline profiles, with an extension to support different priority levels
[Snavely et al. 2002]. However, the focus of these methods is on architectures with few
cores, and they require a shared address space.

To summarize, state-of-the-art resource allocations either achieve inferior perfor-
mance due to their scope, are not applicable to systems with distributed memories, or
do not target dynamic scenarios. However, it is important to address these scenarios
for systems with many cores and distributed memories.

5. PIPELINE MODEL

This section discusses the model for malleable software pipelines. Each application k
forms a pipeline Pk with Nk stages. Every stage Sj is characterized by c j , i j, and o j that
denote the time consumed (in each iteration) for computation, receiving the input data
from its direct predecessor, and transferring the output data to its direct successor,
respectively (Figure 2).

To decide upon the allocation of resources to applications, it is necessary to model
the throughput for a given allocation. Therefore, we require that each core is allocated
to at most one application (i.e., cores may not be shared among applications). Their
maximum throughput is limited by their slowest stage. The maximal response time Rk
for pipeline Pk can be defined consequently:

Rk = max
1≤ j≤Nk

{i j + c j + o j}. (1)

Hence, the maximum throughput of pipeline Pk is defined as 1s
Rk

.
We introduce the malleability property to software pipelines by defining the basic

operation fusion, in which multiple consecutive pipeline stages are combined.
A fusion of stages creates a new stage that combines the computational require-

ments of the original stages but does not require communication between them, as
shown in Figure 3. Communication between fused stages is not necessary because they
are executed sequentially. Thus, no concurrent memory access can occur; consequently,
fused stages can safely use shared memory. Furthermore, as fused stages form a single
task, no task scheduling is necessary. This way, fusing stages may reduce the maxi-
mal response time Rk of a pipeline. Additionally, fusing stages changes the degree of
parallelism of the application, which then runs on a smaller number of cores.

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:7

Fig. 3. Fusion of pipeline stages.

6. PROBLEM DEFINITION

This section defines the problem of allocating resources to malleable software pipelines.
To simplify this problem, it is divided into two parts:

(1) Global problem: Distributing the cores of a system among the applications
(Section 6.1) so that the overall system throughput is maximized.

(2) Subproblem: Assigning the stages of an application to a given number of cores
(Section 6.2), thus providing the fusions of the pipeline stages.

6.1. Global Problem: Optimizing System Throughput

Given a set of K applications P = {P1, P2, . . . , PK} with weights W = {w1, w2, . . . , wK} ∈
R

K (weights express priority levels), each application Pk uses up to Mk cores and
has a maximal response time Rk. The objective is to maximize the overall weighted
system throughput by finding an optimal allocation of (up to) M cores to the individual
applications.

Maximize

{
K∑

k=1

wk

Rk

}
such that

K∑
k=1

Mk ≤ M (2)

This definition of the global problem maximizes the overall weighted throughput.
This implies that applications with low weights may suffer from very low throughputs
in favor of the throughput of applications with high weights. In scenarios where this
is unacceptable, a minimum throughput can be guaranteed for each application. To do
so, the global problem may be formulated alternatively:

Maximize
{

min
1≤k≤K

{
wk

Rk

}}
such that

K∑
k=1

Mk ≤ M. (3)

This ensures a minimum target performance for each application. To solve the global
problem, we present centralized, optimal resource allocation in Section 7.2 and highly
scalable, distributed resource allocation in Section 7.3. However, solving the global
problem requires solving the Subproblem of fusing pipeline stages first.

6.2. Subproblem: Fusion of Pipeline Stages

The throughput of an application is affected by how the stages are fused. Thus, the
subproblem for fusing the stages of each application k ∈ K minimizes the maximal
response time Rk.

For this, for each application k, a set of Fk fusions is defined as

{F1(1, j1), F2(j1 + 1, j2), . . . , FFk(jFk−1 + 1, Nk)} such that Fk ≤ Mk

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:8 J. Jahn et al.

Fig. 4. Overview of our solution. Our centralized and distributed resource allocation, as well as the extension
for an increased resilience against malfunctioning cores, use the solution of fusing pipeline stages. Hence,
for each application, the optimal fusion of its pipeline stages is calculated for any number of cores up to the
number of its stages. Based on this solution, it is decided how many cores to allocate to each application so
that the system throughput is maximized.

so that each application k uses not more than Mk cores. Furthermore, according to
Section 5, we define

Fi(l, j) = il + o j +
j∑

h=l

ch

1 ≤ l ≤ Nk,

l ≤ j ≤ Nk,

and thus the subproblem is defined as

Minimize
{

max
1≤ f ≤Fk

{Ff }
}

| ∀k ∈ K. (4)

We present an algorithm to solve this problem in Section 7.1.

7. ALGORITHMIC SOLUTION FOR ALLOCATING RESOURCES

In the following, our solution for the problem of resource allocation is detailed. Figure 4
shows an overview. Our centralized and distributed resource allocation (Sections 7.2
and 7.3) use the solution of the subproblem of fusing pipeline stages (Section 7.1).
Section 7.4 shows how distributed resource allocation can be resilient against unreli-
able cores.

For simplicity, the equations are explained for the centralized resource allocation,
whereas the proposed distributed resource allocation extends this concept in a hierar-
chical way.

7.1. Fusion of Pipeline Stages

To find an optimal solution to this subproblem (i.e., a solution that results in the max-
imum throughput compared to all other possible fusions), all possible combinations of
fusions need to be taken into consideration. An exhaustive search would result in an
exponential time complexity, which may be unacceptable, especially since resources al-
locations are adapted at runtime. We therefore propose an algorithm based on dynamic
programming that derives optimal solutions for minimizing the maximal response time
by using m cores to execute pipeline Pk.

Let Pk, j be a subpipeline by considering only the pipeline stages from stage S1 to stage
Sj of pipeline Pk. The dynamic programming defines a recursive function Rk(j, m) to
store the optimal configurations for the maximal response time minimization for Pk, j
with (at most) m cores. In other words, let Rk(j, m) be the minimum maximal response

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:9

time for executing Pk, j on m cores. Moreover, table Fk(�, j) is built for all �, j such that
1 < � ≤ j ≤ Nk, in which

Fk (�, j) = i� + o j +
j∑

h=�

ch. (5)

Then, the initial boundary conditions for Rk(j, 0) and Rk(j, 1) are

Rk (j, 0) = ∞ ∀ j = 1 . . . Nk
Rk (j, 1) = Fk (1, j) ∀ j = 1 . . . Nk.

(6)

Furthermore, a function minmaxRFk(j, m) is defined as

minmaxRFk (j, m) = min
m−1≤�< j

{max {Rk (�, m− 1) , Fk (� + 1, j)}}. (7)

The recursive function for Rk(j, m) with m ≥ 2 is defined as

Rk (j, m) =
{

Rk (j, m− 1) j < m
min {Rk (j, m− 1) , minmaxRFk (j, m)} j ≥ m.

(8)

First, the maximal response times using one core are calculated for the first j =
1 . . . Nk stages. Then, the maximal response times for the first j = 1 . . . Nk stages are
calculated for up to two cores. Since the resulting maximal response times of using only
one core for the first j stages have already been calculated, it can be easily decided
whether to use one or two cores (in one of the possible fusion combinations) for the
same j stages. The process is repeated for three cores, knowing in advance if it is
optimal to use one or two cores for the first j stages. Hence, the previous result needs
to be compared to any new possible fusion for the same j stages, but now utilizing up
to three cores. Thus, iteratively, an optimal solution is obtained as all combinations of
stages and cores are considered, but the complexity is reduced since the subsolutions
do not need to be recalculated.

The space/time complexity is O(N2
k) for building the table Fk. The time complexity

for building an entry Rk(j, m) is O(j) = O(Nk). The size of the table Rk(j, m) is O(MkNk).
Therefore, the total time complexity is O(MkN2

k). The maximal response time by us-
ing at most Mk cores for pipeline Pk is stored in Rk(Nk, Mk). Algorithm 1 shows the
pseudocode for this dynamic programming problem.

The actual fusions that lead to the optimal result can be derived by backtracking the
dynamic programming table or by using an additional tracking table TRk(Nk, Mk) of

ALGORITHM 1: Maximal Response Time Minimization
Data: The computational requirements e, c, and o for the Nk stages of pipeline Pk, and the

maximum Mk cores available;
Result: The minimal maximal computational requirements using at most Mk cores;
Initialize table Fk(�, j) according to Equation (5), ∀ (�, j) such that 1 ≤ � ≤ j ≤ Nk;
for m = 0 to Mk do

for j = 1 to Nk do
if m ≤ 1 then

Build Rk(j, m) according to Equation (6);
else

Build Rk(j, m) according to Equation (8);
end

end
end
return Rk(Nk, Mk);

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:10 J. Jahn et al.

Fig. 5. Pipeline example.

Table I. Example Tables from Algorithm 1

size O(MkNk). When building TRk(j, m), each cell holds the j∗ value of the subsolution
that makes the programming optimal. For the initial condition m = 1, TRk(j, m) is set
to zero. When j < m, or when j ≥ m and Rk(j, m − 1) turn out to be minimal, then
TRk(j, m) = j. In the case where an additional core provides improvement, TRk(j, m)
will be set to the index � from Equation (7) that made this improvement possible, and
therefore TRk(j, m) �= j.

The fusions that provide an optimal maximal response time can be derived from
table TRk(Nk, Mk) as follows: starting from cell (j, m) = (Nk, Mk), the table is traversed
in the direction (TRk(j, m), m− 1).

If TRk(j, m) = j, this means that it is not possible to assign more cores to the pipeline
since no finer granularity can be achieved or that no additional core may improve the
throughput and the subsolution that uses one less core was already optimal.

If TRk(j, m) �= j, an additional core provides improvement, so if TRk(j, m) + 1 = j,
then stage Sj is allocated to one core, and if TRk(j, m) + 1 < j, all stages between
TRk(j, m) + 1 and j (both inclusive) should be fused.

Example. Given the pipeline k of Figure 5 with Nk = 4 stages and Mk = 4 cores, table
Fk(l, j) is built according to Equation (5), as stated in Algorithm 1:

Fk(1, 1) = 60 Fk(2, 2) = 110 Fk(3, 3) = 110
Fk(1, 2) = 150 Fk(2, 3) = 60 Fk(3, 4) = 140
Fk(1, 3) = 100 Fk(2, 4) = 90
Fk(1, 4) = 130 Fk(4, 4) = 70.

After deriving the initial conditions for Rk(j, m) according to Equation (6), the track-
ing table TRk(j, m) for m = 0, 1 is filled with zeros.

Table Rk(j, m) is built for m ≥ 2 according to Equation (8). With m = 2, the solution
for every subpipeline chooses to use the result from Rk(1, 1) and to fuse the rest of the
stages. Hence, table TRk(j, 2) contains j∗ = 1 for any j.

The results are shown in Table I. The solution is derived by traversing table TRk(j, m)
from cell (j, m) = (4, 4) in the direction (j∗, m−1): stages S2 and S3 are fused, and stages
S1 and S4 remain as they are.

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:11

7.1.1. Proof of Optimality.

PROOF. We prove the optimality by induction. Initially, ∀ j, Rk(j, 1), is optimal because
all stages are fused according to Fk(1, j).

Suppose that Rk(j ′, m) stores the optimal solution to minimize the maximal response
time for a given j ′ = 1, 2, . . . , j and m. We will prove that Rk(j, m + 1) is optimally
derived by using Equation (7). Assume for contradiction that Equation (7) does not
give an optimal solution to minimize the maximal response time for allocating the
first j stages of application Pk on m+ 1 cores. In the optimal solution, there must be
a core executing the j-th stage of application Pk, in which the �′-th stage is the first
stage fused with the j-th stage on the same core, �′ ≤ j. Therefore, according to the
definition, we know that the maximal response time of the preceding optimal solution
is the maximum between Fk (�′, j) and the maximal response time on the rest of m
cores for executing the first �′ − 1 stages of application Pk. Therefore, the assumption
that Equation (7) does not give an optimal solution implies that the maximal response
time on the rest of the m cores for executing the first �′ − 1 stages implies that there
exists j ′ = 1, 2, . . . , j and m in which Rk(j ′, m) is not optimal, which contradicts the
assumption.

As a result, by the mathematical induction hypothesis, we reach the conclusion that
Rk(j, m) is optimal ∀ j,∀m.

7.2. Centralized Resource Allocation

With the dynamic programming of Section 7.1, the overall weighted system through-
put can be maximized in a centralized manner. Suppose that Rk(Nk, m) for m =
1, 2, . . . , min{Nk, M} has been built. For notational brevity, if Nk < M, we define
Rk(Nk, m) = Rk(Nk, Nk) for any m ≥ Nk. Let G(k, m) be the maximum centralized
weighted system throughput for the first k pipelines based on any arbitrary order of
pipelines on at most m cores. Moreover, when there is no feasible solution (i.e., k > m),
G(k, m) is defined as −∞. Then, the initial (boundary) condition for G(1, m) is

G(1, m) = w1

R1 (N1, m)
∀m = 1, 2, . . . , M. (9)

The recursive function for G(k, m) with k ≥ 2 is expressed in Equation (10). The time
complexity, provided that Rk(Nk, m) is known, is O(KM2). Note that the last column
of Rk (i.e., Rk(Nk, m)∀m = 1, 2, . . . , M) contains the application’s weighted throughput.

ALGORITHM 2: Maximizing Overall Weighted System Throughput
Data: The maximum number of available M cores. For every pipeline Pk, the weights wk and tables

Rk(Nk, m) for m = 1, 2, . . . , M;
Result: Maximum overall weighted system throughput for K pipelines, using at most M cores;
for k = 1 to K do

for m = 1 to M do
if k = 1 then

Build G(k, m) according to Equation (9);
else

Build G(k, m) according to Equation (10);
end

end
end
return G(K, M);

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:12 J. Jahn et al.

Table II. Example Tables of Different Pipelines

Algorithm 2 shows a pseudocode for this dynamic programming.

G (k, m) =
{−∞ k>m

max
k−1≤m′<m

{
G (k − 1, m′) + wk

Rk(Nk,m−m′)

}
k≤m

(10)

An additional tracking table TG(K, M) of size O(KM) allows for deriving how many
cores should be allocated to each pipeline. Each cell of TG(k, m) holds the m∗ value of the
subsolution that makes the solution optimal. For the initial condition k = 1, TG (k, m)
is set to zero. When k > m, then TG (k, m) = −1. In the case where k ≤ m, TG (k, m) will
be set to the value of m′ from Equation (10) that made this subsolution optimal.

Once table TG(K, M) has been built, the number of cores for each pipeline can be
derived from it. Starting from the final cell (k, m) = (K, M), the table is traversed in
the direction (k − 1, TG (k, m)). If TG (k, m) = −1, then there is no feasible solution for
this set of values. In any other case, cores between TG (k, m) + 1 and m (both inclusive)
should be assigned to application k.

Example. Given the pipelines R1, R2, and R3 shown in Table II, with weights w1 =
w2 = w3 = 10,000 and having up to M = 6 cores, G(k, m) is calculated as follows.
First, the initial conditions are calculated according to Equation (9). The tracking table
TG(k, m) for k = 1 holds no value for m∗ and is therefore filled with zeros.

Table III contains G(k, m) according to Equation (10). The solution can be derived
by traversing TG(k, m) from cell (k, m) = (3, 6) in the direction (k − 1, m∗): one core is
allocated to R1, one core to R2, and four cores to pipeline R3.

7.3. Distributed, Hierarchical Resource Allocation

The method for resource allocation presented in Section 7.2 is designed in a centralized
manner. This requires global knowledge and allocates the resources to all running ap-
plications en bloc. This leads to a quadratic time complexity, which may be infeasible
for large systems. To achieve a highly scalable solution (i.e., its overhead should not
grow faster than the system size), this section proposes distributed, hierarchical re-
source allocation for which the pipelines are grouped into several independent clusters.
Clusters are grouped hierarchically into larger clusters and so on, therefore construct-
ing a tree, as shown in Figure 6.

Definition of the tree structure. There are K0 pipelines P1, P2, . . . , PK0 on level 0, which
form the leaves of the tree. They are clustered hierarchically in L levels. For for each

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:13

Table III. Example Tables from Algorithm 2

Fig. 6. Distributed solution. Applications are clustered at Level0, and these clusters are clustered hierar-
chically to form a tree.

cluster C�
i , � denotes index of the cluster on level i. All clusters on level 1 (� = 1) are

adjacent to the pipelines. Hence, there are L levels in the tree, where level L is the root
of the tree, and each level � holds K� nodes.

With this distributed model, the solution from Section 7.1 is used to build the tables
Rk(Nk, M) for every pipeline Pk, where M continues to be the total amount of cores
available in the system. In the following, we will detail how the Equations (9) and (10)
can be adapted in a distributed, hierarchical way.

Each cluster C1
i (level 1) contains the information of the weights wk and tables

Rk(Nk, M) of its children (pipelines) and utilizes the solutions of Section 7.2 to build the
corresponding tables G(K∗, M), where K∗ is the number of child nodes of the cluster.
This table contains the best configuration for cluster C1

i by allocating m = 1, 2, . . . , M
cores to its children pipelines, independently of the other clusters of the same level.

Similarly, the clusters C2
i (level 2) contain the information of table G(K∗, M) of its

child clusters C1
i (level 1). This applies likewise to all upper levels. In this way, each

level allocates cores among its children based solely on this (limited) information.
Consequently, the computational requirement is distributed hierarchically among the
system. When a cluster C j

i (re)computes G(K∗, M), this table must be (re)computed for
C j−1

i and for all C j+1
i . When this is not performed immediately (as is the case in our

implementation), the results may no longer be optimal.

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:14 J. Jahn et al.

G�
i (k, m) denotes the table for the modified version of the dynamic programming in

Section 7.2. Considering that w∗
1, R∗

1, N∗
1 are the parameters of the first child (pipeline)

of node C1
i , node C�−1

1∗ is the first child of node C�
i , value K∗

�−1 is the number of children
of node C�

i , and value K∗
�−2 is the number of children of node C�−1

1∗ and node C�−1
k , then

the initial conditions of G�
i (1, m) are analogous to Equation (9):

G�
i (1, m) = w∗

1
R∗

1(N∗
1 ,m) ∀m = 1, 2, . . . , M when � = 1

G�
i (1, m) = G�−1

1∗ (K∗
�−2, m) ∀m = 1, 2, . . . , M when � ≥ 2,

(11)

the value of G�
i (k, m) is set to −∞ whenever k > m, the recursive function when � = 1

and k ≤ m is

G�
i (k, m) = max

k−1≤m′<m

{
G�

i (k − 1, m′) + wk
Rk(Nk,m−m′)

}
, (12)

the recursive function when � ≥ 2 and k ≤ m is

G�
i (k, m) = max

k−1≤m′<m

{
G�

i (k − 1, m′) + G�−1
k

(
K∗

�−2, m− m′) }
, (13)

and finally, the result is found in cell G�
i (K

∗
�−1, M).

For � ≥ 2, a cluster C�
i allocates cores to its K∗

�−1 children. Hence, similarly to the
recursive function of Equation (10), Equation (12) calculates G�

i for � = 1 based on
the solution of the problem of Section 6.2 for the applications Rk, and Equation (13)
recursively calculates G�

i for the clusters of � ≥ 2.
It is important to note that even though the root node makes decisions that affect

every pipeline, this is still distributed and scalable resource allocation, as every node
only contains the partial information of its children.

7.4. Resilience against Malfunctioning Cores

When the reliability of a system cannot be guaranteed, cores may malfunction at
runtime. In the following, we illustrate how unpredictably malfunctioning cores can
lead to a significantly decreased system throughput and how the resilience of our
distributed resource allocation can be increased.

Fault model. In the following, we assume that cores may malfunction unpredictably
at any time. As a consequence, all tasks assigned to them crash. This has the following
consequences. (1) First, they stop to respond to other clusters. (2) Second, if a cluster
head is assigned to a malfunctioning core, it is terminated and all of its data is lost.
(3) Third, during runtime, it is assumed that a malfunctioning core does not resume
operation.

In the following, we refer to the task that forms the instance of a cluster as defined in
Section 7.3 as a cluster head. When a cluster head Cl

i is allocated to a malfunctioning
core, the integrity of the hierarchical tree structure (Section 7.3) of clusters is corrupted.
The reason is that all Cl−1

∗ become roots of subtrees. Figure 7 shows an example how
the integrity of the hierarchical tree of clusters can be corrupted (a) and how this leads
to disconnected subtrees (b).

As a result, our distributed resource allocation is still able to (re)allocate cores in
the remaining subtrees. However, there is no exchange of cores among subtrees. To
illustrate how this may lead to a significantly decreased system throughput, let us
consider a case of two disconnected subtrees A and B, and each subtree contains only
one application, a in A and b in B. When the resource requirements of a increase
and the requirements of b remain the same (or decrease), assigning cores from B to
A would increase the system throughput. However, as A and B are disconnected, this

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:15

Fig. 7. Effect of malfunctioning cores that corrupt the integrity of the hierarchical tree: a malfunctioning
core “removes” a cluster head and thus leaves disconnected subtrees.

Fig. 8. Effect when 5%, 10%, and 25% of cores malfunction over a period of 300 seconds in a 1,024-core system
running 275 applications. The resulting disconnected subtrees lead to significantly decreasing throughput.

is not possible. This is also the case for more than one application per subtree and
for more than two subtrees. Thus, disconnected subtrees may lead to core distribu-
tions that result in a decreased throughput. Simulations of a 1,024-core system where
cores malfunction randomly during a 300-second interval show that terminated cluster
heads can result in significantly reduced system throughputs of 17%, 29%, and 50%
for a malfunction rate of 5%, 10%, and 25% of the cores, respectively, as shown in
Figure 8. To address this problem, we propose employing self-organization to restore
the integrity of the hierarchical structure of cluster heads even when cores malfunction.
Self-organization of cluster heads is characterized as follows:

—A cluster head detects when its parent cluster head is terminated (i.e., it does not
respond).

—When its parent is terminated, a cluster head searches for another cluster head (that
is not among its children) by sending a connection request to randomly selected cores.

—Once such a cluster head is found, both cluster heads join their subtrees.
—This way, the integrity of the hierarchical tree is restored.

Algorithm 3 shows how this can be achieved. When a cluster head h finds that its
parent is terminated, it starts to resolve this in parallel to its duties of allocating
cores among its children. Until all cores have been searched or a new parent is found,
the cluster head tries to establish a connection to a random core. If a cluster head h′ is

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:16 J. Jahn et al.

Fig. 9. Overview of our implementation. At compile time, the applications are compiled for a maximum de-
gree of parallelism, whereas initial Rk tables are obtained through profiling. Resource allocation is performed
at runtime through application-layer control and task migration support by the middleware.

ALGORITHM 3: Self-Organization to Restore the Integrity of the Hierarchical Structure of
Cluster Heads
Data: Current cluster head h
while Parent terminated AND not all cores searched do

c = Random core;
if a cluster head h′ is assigned to c then

if h′ does not contain h among its children then
set h′ as new parent;

end
end

end

assigned to this core and h′ is not among its children, it joins h′—that is, h′ lists h among
its children, and h sets h′ as its new parent. When this is achieved, it stops searching
for a new parent. A handshake protocol prevents corner cases of two subtrees that both
search for a new parent to join each other.

This way, the integrity of the hierarchical structure of cluster heads of our distributed
resource allocation can be restored.

8. IMPLEMENTATION DETAILS

In the following, we discuss the components of our methods for resource allocation and
their implementation details. We have implemented our resource allocation on Intel’s
Single-Chip Cloud Computer (SCC) [Howard et al. 2010] and in a high-level system
simulator detailed in Section 9.1. Our resource allocation employs several components
written in C++ that communicate by exchanging network messages.

8.1. Components

The centralized resource allocation employs application heads and a centralized con-
troller (Figure 9). Each application denotes one of its cores to form its application head
(this core may execute a stage). The application head registers and signs off the ap-
plication with the centralized controller on starting and stopping of the application.
To register an application, the application head sends a message including a unique
identifier of the application (4 bytes), its number of stages (4 bytes), and an initial Rk
table of Section 7.1 (4 bytes · Nk stages × Mk cores). During runtime, application heads
recompute their Rk table when the values of ii, ci, or oi for one of their stages change
and send this to the centralized controller. The centralized controller (re)computes the
optimal allocation of cores and sends a list of cores to each application. Based on this
list, the application heads fuse and migrate their stages.

The distributed resource allocation employs application heads (see previous discus-
sion) and cluster heads: for each cluster, a cluster head receives the Rk tables (4 bytes

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:17

for each entry) from each of its children, which may be either cluster heads themselves
or application heads. However, instead of calculating the resource allocations globally,
cluster heads only calculate resource allocations for their children and propagate the
combined Rk tables to their parent.

8.2. Implementation of Task Migration

Task migration is required to fuse stages at runtime. It is carried out on application
level with a lightweight support by the middleware. The middleware is responsible
to load applications as needed. When the controlling resource allocation (this applies
both to the centralized and distributed resource allocation) chooses to change the fu-
sions or reallocates cores to applications, the respective stages are notified by the
middleware. When the corresponding stage reaches a checkpoint (after completing an
iteration), it saves its state and requests the middleware at the destination core to
load the executable file (if it is not already running). Then, it sends the saved state
to the destination core, which then continues the execution of the (fused) stage proce-
dure. The corresponding overheads of these operations are evaluated and discussed in
Section 9.6.

9. EXPERIMENTAL RESULTS

In the following, we describe the system setup of our experiments, our benchmark sce-
nario, and the results on the achieved system throughput and the involved overheads
of our resource allocation.

9.1. System Setup

Our experiments have been conducted on Intel’s SCC [Howard et al. 2010] and by using
a high-level many core simulator. The SCC is a platform that integrates 48 identical
x86 cores in 24 tiles (two cores each) on a single chip. The individual P54C cores (45nm
process) run at 800MHz, are connected via a 2GHz network-on-chip with a bisection
bandwidth of 2TB/s. Each core has 16KiB of instruction- and 16KiB of data cache, as
well as 256KiB of unified instruction/data L2 cache. It runs a single-core Ubuntu Linux
(kernel 3.1.4) on each core.

Our high-level many-core simulator executes task traces collected on the SCC and
simulates the network-on-chip interconnect. For experiments of large systems, sim-
ulated instances of the cores, network-on-chip routers, memories, and interconnect
of the SCC are replicated. This does not require changing the number of ports of a
router, the buffer size, and so forth due to the mesh topology of the interconnect of the
SCC. There is no hardware cache coherence on the SCC. Our simulations follow this
paradigm. This way, the networks-on-chip are simulated to correspond to the phys-
ical properties of the SCC—that is, each router performs X-Y-routing and transmits
data at 800MHz with a two-cycle latency and a flit size of 32 bytes. Corresponding
the the SCC, simulated routers arbitrate the communication links and queue transfers
when required. This way, our simulator delivers accurate information on the appli-
cation/system throughputs and on the communication volumes/overheads (algorithm
runtimes have been collected on the SCC). It runs on a six-core AMD OpteronTM 8431
CPU (2.4GHz) with 64GB DDR3 RAM. The SCC allows measuring the computational
overhead of our resource allocation accurately, but considering that it integrates 48
cores, we cannot analyze the system throughputs and the communication overhead
for larger systems. However, we measured the computational overhead on the SCC
even for (virtually) large systems because these computations do not demand physical
disposal of cores.

Measurements conducted on the SCC were as follows:

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:18 J. Jahn et al.

Table IV. Benchmark Applications

Name Stages Source
automotive 21 See Section 9.2.
h264ref 4 SPEC CPU 2006 [Henning 2006]
lame 4 MiBench [Guthaus et al. 2001]
PGP 5 MiBench [Guthaus et al. 2001]
sphinx3 22 SPEC CPU 2006 [Henning 2006]

—Computational overhead for up to 1,024 cores
—Throughput of the centralized resource allocation for up to 48 cores
—Fusion overheads.

Experiments conducted using our simulator were as follows:

—Communication overhead
—Throughput of our centralized and our distributed resource allocation.

For the experiments, the benchmark applications listed in Table IV are started mul-
tiple times so that the total number of stages in the system exceeds the number of cores
by at least a factor of 3 (we chose this number arbitrarily to establish a considerable
system load).

9.2. Benchmark Scenario and Adaption of the State of the Art

Table IV shows an overview of the benchmark applications and their number of stages.
The applications have been parallelized manually to form malleable software pipelines.
We chose this set of applications because they are complex, communicate heavily, and
are well suited to form software pipelines.

The automotive application is a vision-based application that takes its algorithms
from the IVT library [Azad et al. 2008]. It performs stereo vision, image enhancement,
object recognition (based on scale-invariant feature transform (SIFT) and Harris corner
detection), morphological operations, and pattern matching algorithms to identify and
track objects in a continuous stream of color stereo video data (648 × 480 pixels at
30fps). The other applications have been taken from the respective benchmark suites.

To achieve a fair comparison with our proposed resource allocation, we adapted the
state-of-the-art methods [Bahi et al. 2005] and [Kobbe et al. 2011].

AIAC. AIAC exchanges workload between physically neighboring cores to balance
the computational load evenly. To adapt AIAC [Bahi et al. 2005] to software-pipelined
applications in many-core systems, we exchange workload by migrating pipeline stages
when the computational load is not balanced. This is achieved by comparing the load
of adjacent cores and migrating a pipeline stage i when the difference of the summed
computational requirements among all stages on each core exceeds ci. To achieve a fair
comparison, we relax the assumption that only consecutive stages may be allocated to
the same core. For our implementation of AIAC, a core may execute any stage from any
application.

DistRM [Kobbe et al. 2011]. This distributed resource allocation distributes cores
among applications but relies on the applications to decide themselves how to distribute
their tasks. Therefore, we use our optimal fusion algorithm from Section 7.1 to achieve
a fair comparison. Consequently, only the number of cores assigned to each application
differs between DistRM and our resource allocation, whereas the fusions of pipeline
stages are carried out identically. We adapt DistRM by using the tables shown in
Section 7.1. As DistRM remains in local optima if the speedup of an application does not
increase with another core (even if this was the case for a larger number of additional

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:19

Fig. 10. Comparison of the system throughput that is achieved by our solutions and the state of the art.

cores), we report marginal improvements (we choose an ε = 5 ∗ 10−4) as long as the
number of cores does not exceed the number of stages of the corresponding application.
Using the described adaptations, we can achieve a fair comparison with DistRM.

9.3. System Throughput

In the following, we compare the throughput achieved by our distributed allocation
with our centralized resource allocation (thus against optimal resource allocation) and
with two state-of-the-art methods for runtime resource allocation: DistRM [Kobbe et al.
2011] and AIAC [Bahi et al. 2005]. Figure 10 shows the average system throughput over
50 runs when running seven instances of each benchmark application (35 applications,
or 392 stages in total) on 128 cores, connected by a network-on-chip mesh as provided
by the SCC. To show how each method gradually improves the resource allocation, we
initially start all stages on a single core and let the corresponding resource allocation
improve the system throughput incrementally. Then, 25% of the applications are ran-
domly stopped at t = 10 seconds. Whereas our centralized resource allocation achieves
an increased throughput of roughly 13.7%, the average system throughput drops for
the other methods from ca. 17 to 29 iterations/second to ca. 9 to 17 iterations/second
because without adapting the resource allocations, the cores that formerly executed the
stopped applications are now idle. The resource allocation then improves the through-
put by adapting the allocation of resources. Our distributed resource allocation achieves
a system throughput of 94.78% compared to our optimal (centralized) resource alloca-
tion. On average, the distributed resource allocation increases the throughput by 11.3%
and 60.6% over Kobbe et al. [2011] and Bahi et al. [2005], respectively. We thus con-
clude that our distributed resource allocation is near optimal, and that both methods
for allocating resources increase the throughput significantly over the state of the art.

9.4. Improved Resilience through Self-Organization

Figure 11 shows how the resilience of our distributed resource allocation against un-
reliable cores is improved through self-organization. In a period of 300 seconds, 5%
(a), 10% (b), and 25% (c) of the cores of a 1024-core system (in a benchmark scenario
according to Section 9.2) are shut down randomly. This way, runtime faults of cores are
simulated.

Such a scenario could be caused, for example, by exceptionally high on-chip temper-
atures due to a malfunctioning cooling system or fan. Through self-organization, an
increased system throughput of 9% (a), 22% (b), and 47% (c) can be achieved. Hence,

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:20 J. Jahn et al.

Fig. 11. Resilience against unreliable cores can be improved through self-organization. In a period of 300
seconds, 5%, (a), 10% (b), and 25% (c) of the cores of a 1,024-core system are randomly shut down to simulate
malfunction at runtime.

Fig. 12. Computational overhead of our methods for resource allocation. Infeasible combinations of appli-
cations/cores in brackets. Only one column is shown for our distributed resource allocation, as the runtime
does not change significantly with the number of applications.

we find that self-organization can increase the resilience of our distributed approach
significantly.

9.5. Overheads

Figure 12 shows how the computational overhead of our centralized resource allocation
grows with a growing number of cores and growing number of applications. Up to a
considerable problem size (e.g., 64 cores, less than 64 applications), optimal resource
allocations can be calculated in less than 0.5 seconds, but this overhead is significantly
larger for larger systems or more applications as the computational overhead grows
quickly beyond 37 seconds. We find that this is not acceptable when applications may be
started/stopped at any time or when the resource requirements of applications change
frequently.

The distributed resource allocation has a constant time complexity, as each cluster
head on level 1 C1

h only calculates the optimal distribution of the cores to its children
(which does not grow with the problem sizes). Thus, its computational overhead is
small (less than 0.1ms for 1,024 cores).

We measured the memory overhead of our centralized resource allocation to be ap-
proximately 24KiB. The maximum memory overhead of any node of our distributed
resource allocation is approximately 4KiB.

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:21

Fig. 13. Comparison of the communication overhead of our methods for resource allocation for different
numbers of cores.

Table V. Overheads of Fusion Operations

Figure 13 compares the total communication overhead of our centralized and our dis-
tributed resource allocation. This overhead includes status updates and notifications;
the updates of the ii, ci, and oi values; and the propagation of all tables and speedup
vectors. As this overhead merely reaches around 365.3KiB/s (0.025% of the total com-
munication for a system with 1,024 cores, 275 applications) for our centralized resource
allocation and roughly 138KiB/s (0.009%) for our distributed resource allocation, we
consider it negligible.

9.6. Fusion Overhead

Table V summarizes the overhead for fusions—that is, the overhead of the required
task migrations—of two stages of each application (collected on Intel’s SCC). When the
fusion incurs an old core (i.e., the application is already running on this core before
this operation), the overhead is limited to transferring the carried state of the stage
and is thus small (on average less than 0.6ms). Otherwise, the executable file of the
application needs to be started, which takes considerably more time (roughly 45ms on
average). However, our experiments show that this is only the case in less than 5% of
all conducted fusions.

The resulting average fusion overhead is less than 2.4ms, which allows adaptation
of resource allocations frequently.

We therefore conclude that the overhead of our proposed methods is small, and thus
we find that our methods for resource allocation are well suited for managing the
resource allocation of many-core systems at runtime.

10. CONCLUSION

In this article, we show how resources can be allocated to software pipelines in a way
that achieves and maintains high system throughput even in large many-core systems
despite unpredictable, significant variances in the demand for both computational and

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

5:22 J. Jahn et al.

communication resources. This is achieved by optimizing the configurations (fusion
of stages) of software pipelines and the distribution of cores among them at runtime.
Furthermore, we show how optimality can be sacrificed to achieve a high degree of
scalability in many-core systems with hundreds of cores. Problems that arise from
unreliable cores in current and future many-core systems are addressed by employing
self-organization. We show how self-organization can help to effectively counteract the
impaired system throughput that may arise from failing cores.

REFERENCES

Pedram Azad, Tilo Gockel, and Rudiger Dillmann. 2008. Computer Vision: Principles and Practice. Elektor.
Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphael Couturier. 2005. Dynamic load balancing and

efficient load estimators for asynchronous iterative algorithms. IEEE Transactions on Parallel and
Distributed Systems 16, 4, 289–299.

Mohamed A. Bamakharma and Todor Stefanov. 2012. Managing latency in embedded streaming appli-
cations under hard-real-time scheduling. In Proceedings of the ACM International Symposium on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). 83–92.

Shekhar Borkar. 2005. Designing reliable systems from unreliable components: The challenges of transistor
variability and degradation. IEEE Micro 25, 6, 10–16.

David Brooks, Robert P. Dick, Russ Joseph, and Li Shang. 2007. Power, thermal, and reliability modeling in
nanometer-scale microprocessors. IEEE Micro 27, 3, 49–62.

Ewerson Carvalho, Ney Calazans, and Fernando Moraes. 2007. Heuristics for dynamic task mapping in
NoC-based heterogeneous MPSoCs. In Proceedings of the IEEE/IFIP International Workshop on Rapid
System Prototyping (RSP). 34–40.

Jeronimo Castrillon, Andreas Tretter, Rainer Leupers, and Gerd Ascheid. 2012. Communication-aware map-
ping of KPN applications onto heterogeneous MPSoCs. In Proceedings of the IEEE/ACM Design Au-
tomation Conference (DAC). 1262–1267.

Weijia Che and Karam S. Chatha. 2012. Unrolling and retiming of stream applications onto embedded
multicore processors. In Proceedings of the IEEE/ACM Design Automation Conference (DAC). 1272–
1277.

Junchul Choi, Hyunok Oh, Sungchan Kim, and Soonhoi Ha. 2012. Executing synchronous dataflow graphs
on a SPM-based multicore architecture. In Proceedings of the IEEE/ACM Design Automation Conference
(DAC). 664–671.

Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik, and Parkson Wong. 1997. In
Proceedings of the Job Scheduling Strategies for Parallel Processing (IPPS’97). 1–34.

Matthew Guthaus, Jeff Ringenberg, Todd Austin, Trevor Mudge, and Richard Brown. 2001. MiBench: A free,
commercially representative embedded benchmark suite. In Proceedings of the Workshop on Workload
Characterization (WWC-4). 3–14.

John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. SIGARCH Computer Architecture News
34, 4, 1–17.

Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gregory Ruhl, David
Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom, Fabrice, Shailendra, Tiju Jacob, Satish Yada,
Sraven Marella, Praveen Salihundam, Vasantha Erraguntla, Michael Konow, Michael Riepen, Guido
Droege, Joerg Lindemann, Matthias Gries, Thomas Apel, Kersten Henriss, Tor Lund-Larsen, Sebas-
tian Steibl, Shekhar Borkar, Vivek De, Rob Van Der Wijngaart, and Timothy Mattson. 2010. A 48-core
IA-32 message-passing processor with DVFS in 45nm CMOS. In Proceedings of the IEEE International
Solid-State Circuits Conference (ISSCC). 108–109.

Markus C. Huebscher and Julie A. McCann. 2008. A survey of autonomic computing—degrees, models, and
applications. ACM Computing Surveys 40, 3, 7:1–7:28.

Janmartin Jahn and Jörg Henkel. 2013. Pipelets: Self-organizing software pipelines for many core architec-
tures. In Proceedings of the IEEE/ACM International Conference on Design, Automation, and Test in
Europe (DATE). 1516–1521.

Janmartin Jahn, Santiago Pagani, Sebastian Kobbe, Jian-Jia Chen, and Jörg Henkel. 2013. Optimizations
for configuring and mapping software pipelines in many core systems. In Proceedings of the IEEE/ACM
Design Automation Conference (DAC). Article No. 130.

Kevin Klues, Barret Rhoden, Andrew Waterman, and Eric Brewer. 2010. Processes and resource management
in a scalable many-core OS. In Proceedings of the USENIX Workshop on Hot Topics in Parallelism
(HotPar). 1–6.

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

Runtime Resource Allocation for Software Pipelines 5:23

Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-Preikschat, and Jörg Henkel. 2011. Dis-
tRM: Distributed resource management for on-chip many-core systems. In Proceedings of the Interna-
tional Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’11). 119–128.

Karthik Lakshmanan, Ragunathan Rajkumar, and John Lehoczky. 2009. Partitioned fixed-priority preemp-
tive scheduling for multi-core processors. In Proceedings of the Euromicro Conference on Real-Time
Systems (ECRTS). 239–248.

Haeseung Lee, Weijia Che, and Karam Chatha. 2012. Dynamic scheduling of stream programs on embedded
multi-core processors. In Proceedings of the ACM International Symposium on Hardware/Software
Codesign and System Synthesis (CODES+ISSS). 93–102.

Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. 2007. Efficient operating system scheduling
for performance-asymmetric multi-core architectures. In Proceedings of the International Conference on
Supercomputing (ICS). 53:1–53:11.

Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In Proceedings of the International Symposium on Microarchitecture
(MICRO). 45–55.

David S. Johnson and Michael R. Garey. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co.

Vijaykrishnan Narayanan and Yuan Xie. 2006. Reliability concerns in embedded system designs. IEEE
Transactions on Computers 39, 1, 118–120.

Vincent Nollet, Theodore Marescaux, Prabhat Avasare, Diederik Verkest, and Jean-Yves Mignolet. 2005.
Centralized run-time resource management in a network-on-chip containing reconfigurable hardware
tiles. In Proceedings of the IEEE/ACM International Conference on Design, Automation, and Test in
Europe (DATE). 234–239.

Mohan Rajagopalan, Brian T. Lewis, and Todd A. Anderson. 2007. Thread scheduling for multi-core platforms.
In Proceedings of the 11th USENIX Workshop on Hot Topics in Operating Systems (HOTOS’07). 2:1–2:6.

Petar Radojković, Vladimir Čakarević, Miquel Moretó, Javier Verdú, Alex Pajuelo, Francisco J. Cazorla,
Mario Nemirovsky, and Mateo Valero. 2012. Optimal task assignment in multithreaded processors:
A statistical approach. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 235–248.

Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang, Shin Haeng Kang, and Lothar Thiele. 2012.
Scenario-based design flow for mapping streaming applications onto on-chip many-core systems. In
Proceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES). 71–80.

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. 2013. Mapping on multi/many-
core systems: Survey of current and emerging trends. In Proceedings of the 50th Annual Design Automa-
tion Conference (DAC). Article No. 1.

Allan Snavely and Dean Tullsen. 2000. Symbiotic jobscheduling for a simultaneous multithreading processor.
In Proceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 234–244.

Allan Snavely, Dean M. Tullsen, and Geoff Voelker. 2002. Symbiotic jobscheduling with priorities for a simul-
taneous multithreading processor. In Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS IX). 66–76.

Jan Stender, Silvan Kaiser, and Sahin Albayrak. 2006. Mobility-based runtime load balancing in multi-
agent systems. In Proceedings of the International Conference on Software Engineering and Knowledge
Engineering (SEKE). 688–693.

William Thies, Michal Karczmarek, Michael Gordon, David Maze, Jeremy Wong, Henry Hoffmann, Matthew
Brown, and Saman Amarasinghe. 2001. StreamIt: A language for streaming applications. In Proceedings
of the 11th International Conference on Compiler Construction (ICCC). 179–196.

John Turek, Joel L. Wolf, and Philip S. Yu. 1992. Approximate algorithms for scheduling parallelizable tasks.
In Proceedings of the Symposium on Parallel Algorithms and Architectures (SPAA). 323–332.

Received August 2013; revised August 2014; accepted November 2014

ACM Transactions on Parallel Computing, Vol. 2, No. 1, Article 5, Publication date: May 2015.

