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ABSTRACT 
Today, a great shortcoming of most of the available modeling and simulation tools for per-
formance analysis is that model optimization is not sufficiently supported. One reason for this 
unsatisfying situation is the lack of qualified optimization strategies. Another reason is that 
modeling and simulation tools usually have a monolithic software design, which is difficult to 
extend with experimentation functionality. Such functionality has gained great importance in 
recent years because it allows to automatically extract valuable information and knowledge 
out of complex models. One of the most important experimentation goals is to find model pa-
rameter settings, which cause optimal model behaviour. In this paper we elaborate on the de-
sign of a powerful optimization component and its integration into existing modeling and 
simulation tools. For that purpose we propose a hybrid integration approach being a combina-
tion of loose document-based and tight invocation-based integration concepts. Beside the in-
tegration concept for the optimization component we also give a detailed insight into the ap-
plied optimization strategies. 

 

Key Words: Performance Modeling, Petri Nets, Model Optimization, Knowledge and Infor-
mation Management. 

 

1.  INTRODUCTION 
Complexity of computer software is constantly growing, both in the size of developed sys-
tems, and in the intricacy of its operations. This general observation particularly applies to 
modeling and simulation tools, which have grown enormously over the past decades. Today 
the most prominent approaches to master the complexities of large-scale software develop-
ment are object-orientation and component technology. Component approaches being usually 
built up on object-orientation concentrate design efforts on defining interfaces to pieces of a 
system and describing an application as the collaborations that occur among those interfaces. 
Implementers of a component can design and build the component in any appropriate tech-
nology as long as it supports the operations of the interface and is compatible with the com-
ponent execution environment. For that reason the interface is focal point for all analysis and 
design activities of component-based software development (Szyperski 1999, Brown 2000). 
Component technology has also deeply influenced the area of computer simulation. Here we 
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can distinguish two main fields of activity: component-oriented development of simulation 
models and component-oriented development of modeling and simulation (M&S) tools. 

For a component-oriented development of distributed simulation models the US Depart-
ment of Defense (DoD) Modeling and Simulation Office (DMSO) has adopted a global stan-
dard called High Level Architecture (Kuhl et al 2000). In contrary to the area of component-
oriented development of simulation models where a standard is available today and where a 
variety of research activities can be observed, the field of component-oriented development of 
M&S tools yet remains rather untouched. This is a very unsatisfying situation because many 
M&S tools still have a monolithical software design which is difficult to maintain and to ex-
tend and which doesn't correspond any more with the modern distributed Web-centered tech-
nologies of today. In order to illustrate this unsatisfying situation in greater detail we take a 
look at some existing and widely used M&S tools. We focus on Petri Net tools because they 
are a quite suitable example to explain the disadvantages of a monolithical software design. It 
should be mentioned for fairness that these observations also apply to other prominent classes 
of M&S tools for example Queuing Network tools. 

Having surveyed the software design of existing Petri Net tools in Chapter 2 a hybrid inte-
gration approach for legacy M&S tools based on a component architecture is presented in 
Chapter 3. Chapter 4 focuses on the design and implementation of a universally applicable 
optimization component. Finally, in Chapter 5 we summarize and draw some conclusions. 

2. DISADVANTAGES OF CURRENT PETRI NET BASED PERFORMANCE 
MODELING TOOLS 

Today about 100 different Petri Net tools are available. A comprehensive and up-to-date data-
base can be found at http://www.daimi.au.dk/PetriNets/tools/. Altogether these tools offer 76 
different graphical Petri Net editors, 50 different token game animations, 52 different imple-
mentations for structural analysis, and 39 different implementations for performance analysis. 
This variety on principal is not bad because it opens many possibilities to deal with Petri Nets. 
The monolithical software design however makes it almost impossible to integrate for exam-
ple an outstanding Petri Net evaluation module into a tool with a nice graphical Petri Net 
editor. Beyond that, all these tools are difficult to maintain and to extend. Another great dis-
advantage is the lack of interoperability. A user who has edited a Petri Net with one tool usu-
ally cannot analyse this Petri Net with another tool. The reasons for that incompatibility are 
the following: Every Petri Net tool uses its own proprietary file format and often supports 
only a special kind of Petri Net version. To overcome this unsatisfying situation international 
standards have to be established concerning 

− a mathematical semantic model, an abstract mathematical syntax, and a graphical 
notation for High-Level Petri Nets. The standards group of the International Organi-
zation for Standardization (ISO) relevant for the Petri Nets standardization effort is 
called ISO/IEC JTC1/SC7/WG11. An overview of the current activities of that group 
is available at http://www.daimi.au.dk/PetriNets/standardisation/#sc7resources. 

− a general Petri Net interchange format that supports all features of existing and forth-
coming Petri Net tools. An overview of the ongoing standardization efforts of an 
XML-based Petri Net interchange format is given in Section 3.1. 

− a component architecture for M&S tools. In addition to the two standards mentioned 
above appropriate component architecture for M&S tools is of great importance. 

In this paper one focus will be on component architecture for performance M&S tools. 
This architecture is described in detail in the following Chapter. 
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3. TOWARDS A COMPONENT-ORIENTED DESIGN OF PERFORMANCE MOD-
ELING TOOLS 

In contrary to the HLA, which provides with the RTI a very demanding infrastructure for a 
tight coupling of highly interdependent simulation components component architecture for 
M&S tools should support a much looser component coupling. This is justified because M&S 
tools usually consist of a very limited number of quite self-sufficient and coarse-grained com-
ponents. From the user's point of view usually the following software parts can be identified 
within an M&S tool: 

− Model editor: a model editor allows the modeller to edit new and to modify existing 
models. Model editors may exist in several forms. We can distinguish textual and 
graphical editors. Modern Web-based modeling tools may allow collaborative online 
editing of models. A model editor basically can be realized as an independent stand-
alone component. Its output is a model description in a specific description format, 
which is characterized by the supported modeling technique. 

− Model analysis/evaluation modules: these modules are used to analyse/evaluate mod-
els generated by the model editor. In case of High-Level Petri Nets (Jensen 1991) we 
can distinguish between a mathematical analysis of structural properties (place-invari-
ants, transition-invariants, boundedness, etc.) and performance evaluations (stationary 
or transient analyses). Performance evaluation can be computed either analytically or 
by (discrete-event) simulation. An evaluation module may also provide some anima-
tion features. In case of Petri Nets a token game animation for example. 

− Experimentation modules: these modules are optional. They allow goal-driven experi-
mentation with a model, for example to find optimal parameter settings, to determine 
sensitive model parameters, to perform a model validation, etc. To fulfil all these tasks 
usually a lot of model evaluations (experiments) are required. 
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Figure 1. M&S tool components and their interdependencies 

 
Fig. 1 shows the different M&S tool components and their interdependencies. As we have 

described above the collaboration of these components is based on two kinds of interactions: 
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exchange of documents and invocation of model evaluation functionality. For that reason an 
obvious and pragmatic integration approach for M&S tool components is a hybrid one being a 
combination of loose document-based and tight invocation-based integration techniques. For 
remote invocations universal component 'wiring' standards like CORBA (Common Object 
Request Broker Architecture), RMI (Remote Method Invocation) or DCOM (Distributed 
Component Object Model) can be used. A specialized standard like the HLA, which focuses 
on the special needs of tightly coupled simulation models (federation management, time man-
agement, etc.) is not needed in this case. For document-based integration standardized docu-
ment interchange formats are required. Today, the most promising ones are XML-based ap-
proaches. 
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Figure 2. Possible realization of a component-oriented M&S tool based on a distributed 4-tier 
architecture 

 
The advantages of the hybrid integration approach described above are manifold: 
1.) It enables a flexible distribution of the involved components within a computer net-

work. 
2.) It allows user access by traditional application clients or by Java-based Web clients. 
3.) It enables an easy integration of existing monolithical tools as a whole by transforma-

tion of the proprietary model description format into a standardized XML-based for-
mat or partially by appropriate component wrappers. 

4.) It considerably eases tool modifications and extensions (for example to achieve HLA 
compliance). 

5.) It represents a good basis for agent-based approaches. 
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6.) Beside all these technical advantages component-orientation opens several economic 
and organizational advantages (software reuse, clear separation of concerns, etc.). 

Fig. 2 shows a possible realization of a component-oriented M&S tool based on a modern 
distributed 4-tier architecture. The first tier contains client components, which allow access 
(Web- or application-based) to server components residing on the other tiers behind. The ap-
plication server contains the M&S tool components shown in Fig. 1. For their component-ori-
ented realization several component models can be applied for example J2EE/EJB, CCM 
(CORBA Component Model) or (D)COM/COM+ ((Distributed) Component Object Model). 
Persistent modeling data are saved on a database-server representing the fourth tier of the dis-
tributed architecture. 

In the following two Sections we will explain more detailed two important sub areas of our 
approach: 1.) An XML-based interchange format for models of a specific modeling technique 
(in our case High-Level Petri Nets) and 2.) experimentation components allowing the model-
ler to automatically extract information about the behaviour of complex simulation models. 
The presented methods and concepts have been already successfully used for the prototypical 
realization of a component-oriented Stochastic Petri Net M&S tool (Syrjakow et al 2002). A 
detailed description of Stochastic Petri Nets (SPN) being a special kind of High-Level Petri 
Nets can be found in (Lindemann 1998). 

 

3.1. An XML-Based Model Interchange Format for High-Level Petri Nets 
The idea of a standardized interchange format for Petri Nets is not new. However, the at-
tempts to define such a standard file format were not very successful in the past. The main 
reasons for that failure are the following: 

1.) Each Petri Net tool usually supports its own special version of Petri Nets. 
2.) As a consequence of this each Petri Net tool provides a special file format, which 

solely satisfies the needs of the supported Petri Net version. 
3.) The lack of appropriate description techniques being flexible enough to cover both the 

common essence of all existing Petri Net types and beyond that, the special features of 
any particular Petri Net extension. 

Recently however, the idea of a standardized Petri Net interchange format got a new boost 
due to the availability of the Extended Markup Language (XML). Today XML seems to have 
the power to become a mayor means for a homogeneous and standardized exchange of infor-
mation. XML allows the specification of specialized markup languages for the convenient 
exchange of information in specific areas of research or business. Examples of recent markup 
languages based on XML are the Chemical Markup Language (CML), the Mathematical 
Markup Language (MathML) or the Astronomical Instrument Markup Language (AIML). 

In the area of Petri Nets several research groups are currently working on an XML-based 
model interchange format which of course should be based on the ISO/IEC Petri Net stan-
dard. Beyond that, this format should be generic and extensible to be able to cover all existing 
and forthcoming Petri Net classes. A preliminary proposal for such an interchange format can 
be found in (Jüngel et al 2000). The proposed format consists of two parts: 

1.) A general part called Petri Net Markup Language (PNML), which captures the com-
mon features of all existing Petri Net versions. 

2.) A specific part called Petri Net Type Definition (PNTD), which allows specifying 
additional features. This part is of great importance because it provides openness for 
future Petri Net extensions. 

In our research work we are currently working on a PNTD for Stochastic Petri Nets (Syr-
jakow and Syrjakow 2003). An overview of the ongoing standardization efforts of an XML-
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based Petri Net interchange format can be found at http://www.oasis-open.org/cover/ 
xmlAndPetriNets.html. 

As shown in Fig. 1 appropriate description formats for models and modeling results are an 
integral part of our proposed M&S tool architecture. They allow a simple document based 
integration of tool components, which is usually much easier to realize than invocation-based 
approaches. Beyond that, existing monolithically designed M&S tools can be easily integrated 
into our architecture without any expensive software modifications. For that purpose only ap-
propriate file converters (C) have to be realized being able to convert the proprietary file for-
mats of the legacy tools into the XML-based model interchange format (see Fig. 3). This has 
been proven to be a very simple and efficient way to achieve compatibility between several 
legacy M&S tools allowing the mutual use of parts (editors, evaluation components, etc.) of 
them. 
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Figure 3. Necessary format conversions with an XML-based model interchange format 
 
As shown in Fig. 3 for the integration of a new legacy tool the realization of only one ad-

ditional file converter is required. Without such a standardized interchange format the number 
of required file converters would not increase linearly but quadratically. As indicated in Fig. 4 
for n different file formats (n2-n)/2 file converters would be required to achieve compatibility 
between the n corresponding M&S tools. 
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Figure 4. Necessary format conversions without an XML-based model interchange format 
 

3.2. Experimentation Components 
M&S tool developers often neglected or in the worst case just omitted experimentation com-
ponents in the past. This was mainly caused by the monolithical software design of the exist-
ing M&S tools, which made a later integration of additional experimentation functionality 
rather intricate and expensive. With the enormous increase of model complexity however 
these components have gained great importance because experimentation goals like finding 
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optimal or sensitive model parameters cannot be reached by hand any more. Following our 
hybrid integration approach it is very easy to supply an existing M&S tool with additional 
functionality for experimentation, which can be used to automatically extract valuable infor-
mation and knowledge out of complex models. In the following, we take a detailed look at a 
parameter optimization component, which provides efficient and universally applicable meth-
ods to optimize the behaviour of complex simulation models. 

4. TOOL SUPPORT FOR MODEL OPTIMIZATION 

4.1. Introduction to Model Optimization 
This Section gives a brief introduction to the fascinating field of model optimization. In the 
following, the instance of an optimization problem is formalized as a pair (S,F). The solution 
space S denotes the set of all possible problem solutions. The goal function F, which has to be 
optimized, is a mapping defined as F :S R→ . In this paper we focus on parameter optimiza-
tion problems where the search space is a subset of nR  (S⊂ nR ) and the goal function is de-
fined through a performance model, which is analysed by discrete event simulation. Such a 
goal function is called simulation-based goal function in the following. 
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Figure 5. Parameter optimization of a simulation-based goal function 

 
As shown in Fig. 5 a performance model maps a vector xG =( 1x , 2x ,..., nx ), ix ∈R, i∈{1,...,n} 
of model input parameters onto several model outputs jf (x)G , j∈{1,...,m}. Often the relation 
between input and output of a performance model is so complex that it cannot be described by 
mathematical means any more. In this case the performance model represents a so-called 
"black-box" system. 

A function n mf :S R R⊂ →  that is defined through a model is referred to as model func-
tion. In case of a performance model the model inputs can be roughly classified into system 
and workload parameters. The model outputs describe the system behaviour (performance, 
reliability, consumption of resources, etc.). As indicated in Fig. 5 the goal function F may be 
either one or a composition of several model outputs. The formulation of F usually is rather 
difficult, especially if contradictory goals are involved. Very frequently F is defined as a 
weighted sum of model outputs 

 
m

k k k
k 1

F(x) f (x),  R
=

= ω ⋅ ω ∈∑G G .        (1) 

The overall goal of optimizing a simulation-based goal function is to find a parameter 
vector x∗G

∈S which satisfies: 
 { }x S : F(x) F(x )=F , with ,∗ ∗∀ ∈ ∈ ≤ ≥

G G GD D .      (2) 
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A solution x∗G  is called global optimum point. The goal function value F(x )∗G = F∗  is re-
ferred to as global optimum of F. Beside global optimum points there may exist local opti-
mum points x∧G , having the property that all neighbouring solutions have the equal or a worse 
goal function value. A local optimum F∧ = F(x )∧G  is defined as follows: 

 { }0, x S :  x-x   F(x) F(x )=F , with , .∧ ∧ ∧∃ε > ∀ ∈ < ε ⇒ ∈ ≤ ≥
G G G G GD D    (3) 

Goal functions with several global and/or local optimum points are called multimodal 
functions. An optimization problem is either a minimization (  D =≥ ) or a maximization (  D =≤ ) 
problem. Minimization problems can be easily transformed into maximization problems and 
vice versa, because min{F( xG )} = -max{-F( xG )}. 

Optimization of a simulation-based goal function has been proven to be a demanding task. 
The main challenges are the following: 

− Black-box situation: Usually the relation between input and output of performance 
models being analysed by discrete event simulation cannot be described mathemati-
cally. For that reason classical mathematical optimization methods, which require ana-
lytical information like gradients or other problem specific knowledge, are not appli-
cable any more. 

− Expensive model evaluation process: Evaluation of a simulation model usually re-
quires a lot of computation time which in practice may last from several minutes until 
many hours or even days. For that reason the optimization process should only require 
a very limited number of simulation runs (goal function evaluations) to reach the op-
timization goal. 

− Inaccurate simulation results: The model outputs of probabilistic performance models 
being evaluated by discrete event simulation may be considerably distorted by sto-
chastic inaccuracies. For that reason the applied optimization methods should be ro-
bust against inaccurately evaluated goal function values. 

− High dimensional search space with complex parameter restrictions 
− Multimodal goal function with many local and/or global optimum points 

Summing up, for optimization of simulation models methods are required, which first of 
all are able to deal with the black-box situation. For that reason only optimization methods are 
applicable which solely use goal function values to guide the optimization process (blind 
search). Methods with this property are called direct optimization methods. As shown in Fig. 
5 direct optimization methods work iteratively. A parameter vector xG  generated by the direct 
optimization process is passed on to the simulation process, where a simulation tool evaluates 
the optimized simulation model. Afterwards, the calculated goal function value F(x)G  is sent 
back to the optimization process. Outgoing from F(x)G , a new parameter vector is generated, 
which is in turn transferred to the simulation process. This way, the goal function is improved 
step by step until a termination condition is fulfilled. Because the evaluation of a simulation-
based goal function usually requires considerable computational resources the optimization 
goal should be reached with a minimum number of iteration steps. 

Today the most common and powerful direct methods for global optimization are Genetic 
Algorithms (Goldberg 1989), Evolution Strategies (Schwefel 1981), and Simulated Annealing 
(Aarts and Korst 1989). All these methods apply sophisticated probabilistic search operators 
which imitate principles of nature. Although these operators have been proven to be well-
suited for global search the required computational effort (number of goal function evalua-
tions) and the quality of the generated optimization results still remain a big problem. In the 
following, an approach to further improvement of direct optimization methods is presented. 
Our considerations are restricted to global optimization of continuous parameter optimization 



 9

problems. In order to make direct optimization more efficient and to achieve high quality so-
lutions, we propose a combination of existing global and local optimization methods. The 
structure of the resulting combined 2-phase optimization strategy is described in Section 4.2. 
The excellent heuristic properties of this hybrid method allow using it as the basic component 
of a multiple-stage optimization strategy, which is presented in Section 4.3. In Section 4.4 
several methods to reduce goal function evaluations are presented. Section 4.5 is about the 
realization of our developed optimization algorithms. Finally, Section 4.6 deals with their 
evaluation. 
 

4.2. Combined 2-Phase Optimization 
To be able to cope with the non-trivial task of model optimization described above, we have 
developed a new kind of direct optimization algorithm called combined 2-phase optimization 
strategy. The basic idea of this hybrid method is to split the optimization process into two 
phases: pre-optimization with a probabilistic global optimization method and fine-optimiza-
tion performed by a deterministic local Hill-Climber. The task of pre-optimization is to ex-
plore the search space in order to get into the direct neighbourhood (catchment area) of a 
global optimum point. The catchment area of an extreme point represents all the search points 
in its neighbourhood from which the extreme point can be localized by a local optimization 
method. Outgoing from the best solution found by pre-optimization (pre-optimization result) 
the task of fine-optimization is to efficiently localize the neighbouring extreme point with a 
user-defined accuracy. Thus, pre-optimization is predominantly responsible for optimization 
success, whereas fine-optimization has to ensure the quality of the optimization result. 
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Figure 6. Basic structure of a combined 2-phase optimization strategy 

 
Fig. 6 shows the basic structure of a combined 2-phase optimization strategy which is re-

ferred to as 2Pos  in the following. For pre-optimization 2Pos  uses a direct global optimiza-
tion method. For fine-optimization a direct local optimization method is applied. The two 
strategies are coupled by means of an interface, comprising a method to select starting points 
(ssp) as well as a method to derive control parameter values from optimization trajectories 
(dcp). The result of a combined 2-phase optimization strategy as well as the required compu-
tational effort mainly depend on the specific capabilities of the employed global and local 
optimization method but also on the 

− choice of suitable control parameter settings for the global optimization method 
For pre-optimization control parameter settings have to be used rather forcing explora-
tion of the search space than convergence towards a search space region. This can be 
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achieved by emphasizing the probabilistic search operators of the global optimization 
method. 

− choice of an advantageous switch-over point from pre- to fine-optimization 
This problem affects the specification of a suitable termination condition poT  for the 
global optimization method in order to stop pre-optimization in time. This is not a 
trivial task because a good compromise between two contrary goals has to be found. 
On the one hand, a thorough exploration of the search space is required in order to 
avoid to get trapped into a sub-optimal region. On the other hand, the computational 
effort (number of goal function evaluations) for pre-optimization has to be kept as 
small as possible. 

− choice of suitable control parameter settings for the local optimization method 
During pre-optimization the goal function is evaluated many times. The computed 
goal function values (optimization trajectory), representing valuable knowledge about 
the goal function, can be used profitably to calculate suitable control parameter set-
tings for the local optimization method. For this purpose a method to derive control 
parameter settings from optimization trajectories (dcp) was developed. It is based on 
analysing the optimization trajectory of the global optimization method by application 
of cluster analysis methods. From the size and form of the found clusters appropriate 
step sizes for the local optimization method can be derived. Well-suited initial step 
sizes are very important to keep the required number of goal function evaluations for 
local search small. 

− selection of a favourable starting point startxG  for the local optimization method (ssp) 
The simplest way to solve this problem is to choose the best solution found during 
pre-optimization as the starting point startxG  for fine-optimization. A more complex ap-
proach is described in Section 4.4. 

As already mentioned the specification of an appropriate termination condition poT  is deci-

sive for the efficiency of a combined 2-phase strategy. On principal poT  may be based on the 
following criteria: 

− The number of generated search points: This criterion allows specifying the maximum 
number of goal function evaluations which should be spent for pre-optimization. 

− Search point constellations: Specific search point constellations (regional accumula-
tions of search points in the search space) indicate convergence of the global optimi-
zation method towards a search space region. Applying standard cluster analysis 
methods, this property can be exploited profitably to compute switch-over points of 
good quality. 

− The improvement of the goal function: This criterion has been proven to be the most 
powerful one. Pre-optimization is stopped, if the goal function could not be improved 
p%, p∈ +R  over a specified number of iteration steps. 

− A priori knowledge about the goal function: A priori knowledge about the goal func-
tion usually provides advantageous hints to improve efficiency. Hence, if available, it 
should be exploited in any case. 

Of course, it is also possible to specify termination conditions which combine several of 
the criteria listed above. 

Table 1 shows some powerful direct optimization methods for global and local search 
which are well-suited for realization of a combined 2-phase optimization strategy. 
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Table 1. Powerful direct optimization methods for global and local search 
 

 global local 

direct optimization 
methods 

Genetic Algorithm (GA) 

Simulated Annealing (SA) 

Pattern Search (PS) of Hooke and 
Jeeves (Hooke and Jeeves 1961) 

 
Outgoing from the optimization methods presented in Table 1 there exist the following re-

alization possibilities for a combined 2-phase optimization strategy: 
− Genetic Algorithm + Pattern Search (GA+PS) 
− Simulated Annealing + Pattern Search (SA+PS) 

 

4.3. Multiple-Stage Optimization 
All optimization strategies considered so far localize only one optimum point when executed. 
Outgoing from these so-called single-stage optimization strategies, we want to present an 
optimization algorithm which is able to detect several optimum points of a given (multimo-
dal) optimization problem. The basic structure of such a multiple-stage optimization algo-
rithm which is referred to as msos  in the following is shown in Fig. 7. 
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Figure 7. Basic structure of a multiple-stage optimization strategy 

 
The main component of a multiple-stage optimization strategy is a combined 2-phase strategy 

2Pos . 2Pos  is embedded in an exterior iteration process, which generates step-by-step a se-

quence of optimum points 1
optxG , 2

optxG ,..., k
optxG , k∈N. An iteration step of a multiple-stage 

optimization strategy is called optimization stage. msos  stops, if the termination condition 

msT  is fulfilled. A good termination criterion has been proven to be: stop, if a new optimum 
point could not be located over a specified number of optimization stages. If msT  is not ful-
filled, a method called avoidance of reexploration (AR) is applied. The task of AR is to avoid, 
that previously found optimum points are located again in subsequent optimization stages. 
This is done by making already explored regions of the search space unattractive for the 
global optimization method used for pre-optimization. For that purpose attractiveness values 
are introduced and related to each search point of the search space. Attractiveness values are 
computed by means of an attractiveness function 



 12

k

i
i=1

av(x)= 1 (1 d )  −β⎡ ⎤− + α ⋅⎣ ⎦∏G ,        (4) 

with i 2
i optd = (x-x )G G ; α,β: scaling factors; k: number of already found optimum points. 

Multiple-stage optimization can be viewed as a substantial improvement compared to con-
ventional optimization methods because not only one optimal solution is localized but a se-
quence of the most prominent extreme points of the given optimization problem. This enables 
the modeller to get a comprehensive overview of the behaviour of the optimized system. For a 
further description of multiple-stage optimization we refer to (Syrjakow and Szczerbicka 
1994, Syrjakow 1997). 

 

4.4. Methods to Reduce Goal Function Evaluations 
As already mentioned simulation-based goal functions may require a lot of time for evalua-
tion. Thus, for direct optimization of these functions additional methods to reduce goal func-
tion evaluations are of great importance. A very simple and obvious way to save goal function 
evaluations is to avoid reevaluations of search points, which are generated several times dur-
ing the optimization process. This can be done very easily by search of the optimization tra-
jectory, which comprises all generated search points together with their corresponding goal 
function values. 
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Figure 8. Acceleration of pre-optimization through goal function approximation 

 
Within a combined 2-phase strategy the pre-optimization phase offers an additional possi-

bility to save goal function evaluations. This is due to the primary goal of pre-optimization, 
which is not to exactly localize a globally optimal solution but only to get into its catchment 
area. This property as well as the robustness of probabilistic global optimization strategies 
against inaccurately evaluated goal function values makes it possible to also use goal function 
approximations. The goal function value of a search point can be approximated if there are 
several search points in its direct neighbourhood, which have been already evaluated. 
Through goal function approximation a lot of possibly very expensive goal function evalua-
tions can be saved without a substantial loss of optimization success. Especially multiple-
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stage optimization makes the application of a goal function approximator very advantageous. 
In this case with each optimization stage some more information about the goal function is 
gathered which in turn can be exploited in subsequent optimization stages for approximation. 
Fig. 8 shows the multiple-stage optimization strategy of Fig. 7 extended by a goal function 
approximator, which is embedded between the pre-optimization process and the process of 
goal function evaluation. For approximation we use a simple grid-based technique as well as a 
special kind of neural networks called Rectangular Basis Function Networks (Berthold and 
Huber 1995). A more detailed description of our approach to accelerate pre-optimization by 
goal function approximation can be found in (Syrjakow et al 1996). 

Another possibility to save goal function evaluations is to start fine-optimization not only 
once after a pre-optimization run but several times. This repeated start of fine-optimization 
which is shown in Fig. 9 has been proven to be very successful, especially in case of multi-
modal goal functions with many global and/or local extreme points. Then, the probability is 
rather high that during pre-optimization several similar good solutions are found being located 
in the catchment areas of different extreme points. Through the repeated start of fine-optimi-
zation these extreme points can be found with only one pre-optimization run. 
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Figure 9. Repeated start of fine-optimization 

4.5. Realization 
All the optimization strategies described above have been already implemented and integrated 
into the parameter optimization component shown in Fig. 10. Such a parameter optimization 
component can be viewed as a special kind of experimentation component. As already de-
picted in Fig. 1 the extension of an M&S tool by an experimentation component requires in 
addition to the exchange of standardized documents also a more tight invocation-based inte-
gration concept. This is unavoidable because the two alternating processes of experimentation 
(generation of model input parameters) and model evaluation have to be coupled with each 
other allowing data exchange as well as process synchronisation. 

Fig. 10 shows the interactions of a direct parameter optimization component with a model 
evaluation component. For specification of the optimization problem the optimization com-
ponent has access to two files: the model description and the evaluation results. The model 
description comprises all existing model parameters allowing the user to select the parameters 
which have to be optimized. To define the goal function the user has to select one or to com-
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bine several model outputs which can be found in the evaluation results file. In each iteration 
step of the optimization process the direct search strategy generates a vector of parameter val-
ues which are entered into the model description. Subsequently, the optimization component 
sends a request to the evaluation component containing several evaluation parameters. In case 
of a discrete-event simulation component for example the simulation run length, kind of 
confidence interval method etc. has to be defined. After model evaluation the evaluation com-
ponent sends a response message to the optimization component to indicate that the required 
model outputs have been calculated and are now available in the evaluation results file. Out-
going from these outputs the optimization strategy generates a new parameter vector. This 
alternating process continues until a termination criterion is fulfilled. 
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Figure 10. Interactions between the components for model evaluation and optimization 

 
For realization of the required invocations of the model evaluation component universal 

middleware standards like CORBA, RMI or DCOM can be used. In our case we have used 
CORBA because it provides a programming-language independent interface as well as a rich 
set of distributed object services and facilities. 
 

4.6. Evaluation 
Some very important theoretical results regarding direct optimization strategies are summa-
rized in the so-called "No Free Lunch" theorems for optimization (Wolpert and Macready 
1997) which can be viewed as a framework to explain the connection between effective direct 
optimization algorithms and the problems they are solving. These theorems, loosely speaking, 
say that all algorithms that search for an extremum of a goal function perform exactly the 
same, when averaged over all possible goal functions. In other words no direct optimization 
algorithm, when averaged across all possible goal functions, is able to outperform pure Monte 
Carlo search. This in turn means that without any structural assumptions on an optimization 
problem it doesn't make any difference what kind of direct optimization algorithm is chosen. 
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At first sight this is a very unpleasant result because pure Monte Carlo search gets the same 
rating as much more sophisticated nature-analogous optimization methods like Genetic Algo-
rithms or Simulated Annealing which don't use chance completely arbitrarily but in a goal-
driven way. Fortunately however, many simulation-based goal functions from practice are 
structured that way that nature-analogous optimization methods perform rather well (Droste et 
al 1999). Such good-natured optimization problems can be characterized as follows: 

1.) The search space comprises only a limited number of extreme points. 
2.) Each extreme point has an extensive catchment area. 
3.) The goal function surface above the catchment area of an extreme point is not a thin 

peak. 
The properties listed above usually are fulfilled if the system which has to be optimized is 

a technical system. This is not surprising because in this case a well-defined (non-chaotic) 
system behaviour can be assumed. Quantitative results of a comprehensive empirical per-
formance evaluation which confirm that our developed optimization methods work very well 
on good-natured optimization problems can be found in (Syrjakow and Szczerbicka 1994, 
Syrjakow et al 1996, Syrjakow 1997, Syrjakow and Szczerbicka 1999). 

5. CONCLUSION 
In this paper we presented a hybrid integration approach for M&S tool components being a 
combination of loose document-based and tight invocation-based integration concepts. The 
core of our approach is an XML-based model interchange format, which allows a homogene-
ous and standardized information exchange between tool components. For the tight coupling 
of tool components universal component 'wiring' standards are used. Our integration concept 
has been proven to be very flexible and applicable to all kinds of M&S tools. For its valida-
tion we have applied it to realize a component-oriented SPN-based M&S tool. A great ad-
vantage of M&S tools with a component-oriented software design is their openness for all 
kinds of extensions. As a result tool developers can fully concentrate on the development of 
such extensions and are not any longer needlessly stressed with their integration. 

Today, especially experimentation components are of great importance because they allow 
to automatically extract valuable information and knowledge about the behaviour of complex 
simulation models which isn't possible by hand any more. In this paper an experimentation 
component was presented in detail, which provides efficient and universally applicable meth-
ods to optimize the behaviour of complex simulation models. Beside common direct strate-
gies for global and local search our optimization component offers combined 2-phase and 
multiple-stage optimization being a substantial improvement compared to existing nature-
analogous optimization methods like Genetic Algorithms, Simulated Annealing, and Hill-
Climbing. Combined 2-phase strategies are combinations of global and local search methods 
trying to exploit their advantages. The excellent heuristic properties of combined 2-phase op-
timization are an important prerequisite for multiple-stage optimization allowing to efficiently 
localize not only one but a sequence of prominent extreme points of a given goal function. 
Altogether our optimization component offers a powerful modular assembly system of direct 
optimization strategies which can be flexibly adapted to a broad range of optimization prob-
lems. In our future work we intend to further improve our optimization algorithms. At the 
moment we are looking for local fine-optimization strategies which could replace the deter-
ministic Pattern Search algorithm. A promising candidate seems to be the probabilistic SPSA 
(Simultaneous Perturbation Stochastic Approximation) method (Spall 1998). Beyond that, we 
will develop other kinds of experimentation components e.g. for sensitivity analysis or model 
validation. And finally, we will further apply our hybrid integration concept to build powerful 
and innovative M&S tools. 
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