Multiple Bachelor/Master Theses

Dynamic Execution of Accelerators for a Run-Time Reconfigurable Processor

The i-Core is a run-time adaptive reconfigurable processor. It has containers that can be reconfigured (like in FPGAs) and that are used to load hardware accelerators at runtime, i.e. while the application is running. These accelerators are used to execute so-called Special Instructions (SIs). The SIs improve the overall execution time of the processor.

Several SIs are already developed for the i-Core. Some of the SIs deal with accelerating the execution of complex floating-point algorithms. These algorithms include object detection or water bodies flow prediction.

The SIs previously required a predetermined static control-flow. Recently, we implemented support for dynamic control-flow for the i-Core SIs. This flyer advertises multiple theses. The main goals are to use this dynamic control-flow for the above-mentioned SIs and to develop new SIs and automatic test for new/existing SIs.

Possible Tasks for the Student

Tasks will vary according to whether it is a bachelor or master thesis. Mainly hardware development will be performed. However, software development is also possible. The tasks could include but are not limited to:

- Testing and evaluating the existing SIs
- Extending the developed SIs with dynamic execution
- Automated scheduling of the SIs
- Developing new SIs that benefit of dynamic execution, e.g.
 - Machine Learning SIs
 - Encryption and security SIs

Skills beneficial for the thesis

- Programming Skills (C, C++, Python)
- Knowledge of VHDL
- Background on Processor Architecture and/or reconfigurable computing (FPGAs)

Skills acquired with the Thesis

- Work in a research environment
- Technical writing skills
- In depth knowledge of adaptive reconfigurable processors

Contact

- Hassan Nassar, M.Sc., hassan.nassar@kit.edu
 http://ces.itec.kit.edu/~nassar
- Dr.-Ing. Lars Bauer, lars.bauer@kit.edu
 http://ces.itec.kit.edu/~bauer