Multiple Bachelor/Master Theses
Dynamic Execution of Accelerators for a Run-Time Reconfigurable Processor

The *i*-Core is a run-time adaptive reconfigurable processor. It has *containers* that can be reconfigured (like in FPGAs) and that are used to load hardware accelerators at runtime, i.e. while the application is running. These accelerators are used to execute so-called Special Instructions (SIs). The SIs improve the overall execution time of the processor.

Several SIs are already developed for the *i*-Core. Some of the SIs deal with accelerating the execution of complex floating-point algorithms. These algorithms include object detection or water bodies flow prediction.

The SIs previously required a predetermined static control-flow. Recently, we implemented support for dynamic control-flow for the *i*-Core SIs. This flyer advertises multiple theses. The main goals are to use this dynamic control-flow for the above-mentioned SIs and to develop new SIs and automatic tests for new/existing SIs.

Possible Tasks for the Student
Tasks will vary according to whether it is a bachelor or master thesis. Mainly hardware development will be performed. However, software development is also possible. The tasks could include but are not limited to:

- Testing and evaluating the existing SIs
- Extending the developed SIs with dynamic execution
- Developing new SIs for object detection
- Developing automatic Tests for the SIs
- Comparing the SI performance with dynamic control-flow compared to static control-flow

Skills beneficial for the thesis
- Programming Skills (C, C++, Python)
- Knowledge of VHDL
- Background on Processor Architecture and/or reconfigurable computing (FPGAs)

Skills acquired with the Thesis
- Work in a research environment
- Technical writing skills
- In depth knowledge of adaptive reconfigurable processors

Contact
Hassan Nassar, M.Sc., hassan.nassar@kit.edu
http://ces.itec.kit.edu/~nassar

Dr.-Ing. Lars Bauer, lars.bauer@kit.edu
http://ces.itec.kit.edu/~bauer