

Low Power Techniques for Massive Data Rate Multiview Video Coding

Muhammad Shafique

Bruno Zatt, Sergio Bampi, Jörg Henkel

CES – Chair for Embedded Systems

Outline

- Introduction and Basics
- Multiview Video Coding
- Challenges: Performance, Memory, Energy/Power
- Low-Power Algorithms for MVC
- Low-Power Architectures for MVC
- VideoArch^{3D}- A Joint Collaborative Project between KIT and UFRGS (PROBRAL)

Conclusion

Introduction

- Increasing trend of devices with 3D-video
- Encoding and decoding features
 - 3D personal recording, 3DTV, FTV, Immersive Teleconferencing
- Growing number of views
 - Currently: 2 views
 - Expected: 4 - 8 views: PCS'10 panel sessions 16 - >100 views: IEEE Themes'11
- Multiview Video Coding (MVC)
 - 20-50% better compression and quality
 - 10-19x increased computational complexity and energy
 - Expanded mode decision space due to inter-view dependencies and prediction
 - HW acceleration is required!!!

Fujifilm, Mitsubishi

Digital Video Basics

CES – Chair for Embedded Systems

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

Digital Videos: Terminology

CE

Trends in Video Resolutions

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

Src. Wikipedia,

Matrix, Pdurland

Digital Video Coding Evolution of video codecs and video services Video standards storage HEVC - : mobile and internet (MPEG-H/H.265) HD-DVD (2013)(2006) - : broadcasting in Korea AVC/H.264 AT-DMB (2003)(2013)DVD MPEG-4 (1996)T-/S-DMB (1999)(2004)3DTV VCD (201x) MPEG-2 Mobile VoD (1993)(1994)(2001)UDTV ? IPTV (201x) Satellite TV MPEG-1 (2008)(2002)(1991)Digital TV Cable TV (2001)(1991, 95)1990 1995 2000 2005 2010 Sim, Donggyu 2011: High Efficiency Video Coding(HEVC)

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

Scaling Trends

Spatial Scaling

- HD1080p \rightarrow QuadHD (4Kx2K pixels) \rightarrow 7K videos
- Pixel-Accuracy Scaling
 - higher pixel data representations from 8-bit to 16 bit pixel representation to realized high-dynamic range videos
- Temporal Scaling
 - 30fps \rightarrow 60fps \rightarrow 120fps
- Camera View Scaling
 - Mobile devices: 2→4→8 views
 - High-end devices: $8 \rightarrow 16 \rightarrow >100$
 - => Massive Data Rate Processing
 - On-demand streaming of multiple views

Emerging Application Scenarios

- Free-View Point TV (FTV), Realitic-TV, True-3D-TV, etc.
- 3D-surveillance, immersive video conferencing, etc.
- Multiview personal video recording and playback
- Telepresence, tele-office, tele-work, tele-shopping, etc.
- Telemedicine, Teleoperation theaters
- Real time conversational services (video phone)
- Audiovisual communication over mobile networks
- Video storage and retrieval services (video on demand)

Video Services Over Time

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

2010

Issues in H.264/MPEG-4 AVC Video Encoder

Issues in H.264/MPEG-4 AVC Video Encoder

Multiview Video Technologies

CES – Chair for Embedded Systems

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

Multiview Video Processing System

ICE

Multiview Video Acquisition

- Array of multiple synchronized cameras
- One producer PC has implemented PCI card to synchronize all cameras
- Arbitrary arrangement of cameras
- Densely-spaced linear alignment of cameras
 - Hard calibration procedures

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

Multiview Video Encoding

- Huge amount of raw video data to be encoded for transmission
- Video coding approaches
 - Simulcast: video streams are encoded individually with existing video coding standards (e.g. H.264)
 - Multiview video coding (MVC)
 - Based on H.264/AVC standard
 - Provides random access and bit-stream switching, stream adaption, buffer management, parallel processing of different views, etc.
 - MVC structure combines inter-view and temporal prediction

Multiview Video Encoding

Simulcast vs. MVC

- 20-50% higher coding gains [Merkle,2007]
- Enormous complexity increase

Multiple block-sized Motion and Disparity Estimation

Multiview Video Transmission

- High quality 3D TV broadcasting requires transmission to multiple users simultaneously
- MVC has layered approach → suitable for independent transmission of each layer over broadcast

Multiview Video Decoding

Receiver side generates the appropriate views

- Decoded only needed views → depends on the type of display (how many views can provide a display and which ones)
- Viewpoint generation

[Chen, 2009] Y. Chen, et al. The Emmerging MVC Standard for 3 Video Services. EURASIP Journal on Advances on Video Processing. 2009.

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

ces.itec.kit.edu

Multiview Video Displaying

- Stereoscopic 3D display \rightarrow 2 views glasses
- Autostereoscopic 3D display \rightarrow 2 views w/ support of glasses
- Multiview 3D display
 - Head tracking (2views, 1 observer)
 - Multiple views (multiple observer, multiple viewpoints)
 - Holography
- Design approaches stereo/multiview displays
 - Autostereoscopic display (parallax barrier, lenticular)
 - Head-tracked two-view display
 - Multi-view display

Natural view perception \rightarrow infinite number of views

Autostereoscopic Display

Two different views of the scene where each is appropriate only for the corresponding viewer's eye → otherwise pseudoscopic image

Provide only binocular parallax

Head-Tracked Stereo Display

Two-views of a scene at once

■ Require a viewing window steering mechanism in the display for and headtracking mechanism linked to it to detect viewer's head → motion parallax

Available only for one viewer

Multiview Display

- Multiple viewing windows (typically 8 16 views) each simultaneously visible → one viewer sees only two of them at once
- Wide viewing freedom

Parallax Display

- Window width set to average viewer's eye separation (65 mm)
- Each pair of left and right view pixels visible at the center of the viewing window
- Parallax barrier placed
 - **behind the display** \rightarrow lower crosstalk performance
 - In front of the display → better utilization of a viewing-window and more uniform intensity

Lenticular Display

- Lenticular sheet → a linear array of narrow cylindrical lenses called lenticules that acts as a light multiplexer
- Lenticules direct diffuse light from a pixel and it can only be seen in a limited angle in front of a display
- Lenticules disturbingly magnify the underlying display's pixel structure → dark zones between viewing slots

Multi-Projector Display

Rear-projection system → two lenticular sheets mounted back-to-back with optical diffuser material in the center

Front-projection system → only one lenticular sheet with retro-reflexive front-projection screen material mounted in the back

MVC: Multiview Video Coding Standard

CES – Chair for Embedded Systems

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

MVC Encoder based on H.264

Motion and Disparity Estimation

- Search a good matching block in reference frame/view
- FS, DS, TSS, EPZS, UMHex, TZ
- SAD, SATD, SSE

 $SAD = \sum_{i=0}^{w} \sum_{j=0}^{h} Abs(O_{(i,j)} - R_{(i,j)})$

- Motion/Disparity Vectors (MV, DV)
- Optimal Full Search
- Fast Algorithms
- ME/DE present distinct search behavior
- DE tends to require more search steps and find longer vectors

Encoding Structure

MVC Mode Decision

- The mode decision targets the reduction of Rate-Distortion cost (RDCost)
 - $J = RDCost(c, r, Mode|QP) = D(c, r, Mode|QP) + \lambda_{Mode} * R(c, r, Mode|QP)$
- $\blacksquare D \rightarrow \text{Distortion}$
 - SSE, SATD, SAD measured after complete coding & reconstruction
- R → Rate
 - Number of bits to encode the macroblock (MB 16x16 samples)
- **a** $\lambda \rightarrow$ Lagrange Multiplier
 - Depends on the Quantization Parameter (QP = (0...51))
- Optimal/Exhaustive solution is called RDO (Rate-Distortion Optimization), test all possible coding modes
- All Intra-frame, Inter-frame and Inter-view prediction modes

MVC Challenges (Performance, Memory, Power/Energy)

CES – Chair for Embedded Systems

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

Computational Complexity – ME/DE

Performance-Related Challenges

Memory-Related Challenges

4-Views HD1080p @ 30fps using Full Search [±96,±96] 101.90 GBps for ME/DE

Power/Energy-Related Challenges

3D-Neighborhood Correlation Analysis

CES – Chair for Embedded Systems

3D-Neighborhood

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

CES

3D-Neighborhood: Coding Mode Distribution

ME/DE Distribution Analysis

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

IC E

3D-Neighborhood: Coding Mode Correlation

3D-Neighborhood: Vectors Correlation

Observation

Vectors from the neighborhood may accurately predict the motion vectors of the current MB.

Selected 13 predictors \rightarrow 99% Hit Probability

3D-Neighborhood: Vector Hit Ratio

Hit: the frequency that the predictor is equal to the optimal vector (MV_{Pred} = MV_{Curr})

Availability: percentage of cases when the predictor is available

Predictor	Neighbor	Lit [0/]	Available		Neighbor	Lit [0/]	Available	
Spa For most of the cases the predictors' accuracy is high enough to completely avoid the ME/DE search or pattern stages								
		100000000000000000000000000000000000000	8 Marchaelananananananananananananananananan		vvest	54.99	99.89	
Collogated	East	66.79	99.90	Median	East	63.92	99.89	
Collocated	North	95.39	72.39	Down	North	93.21	74.13	
	South	96.75	23.48		South	94.70	23.93	

Low-Power Algorithms for MVC

CES – Chair for Embedded Systems

Adaptive Heirarchical Complexity Reduction

ICE

Adaptive Heirarchical Complexity Reduction

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

CE

ces.itec.kit.edu

Energy-Aware Complexity Control

Three Quality Complexity Classes (QCC) are defined

Enabling Energy~Quality Tradeoff

Quality State	Video Quality	Even Views	Odd Views
<i>QS1</i>	Highest	QCC-3	QCC-3
QS2	High	QCC-3	QCC-2
QS3	Medium	QCC-2	QCC-1
QS4	Low	<i>QCC-1</i>	QCC-1

Results & Evaluation

JMVC @ 35.69dB

Shen[24]@ 35.64dB

Relax @ 35.62dB

Aggressive @ 35.37dB

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

CES

Results & Evaluation

CES

Results & Evaluation

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

CE

ces.itec.kit.edu

Low-Power Architectures for MVC

CES – Chair for Embedded Systems

Power/Energy-Related Challenges

The memory is responsible for about 90% of the energy consumption in ME/DE

Key Challenge

How to reduce the number of external memory accesses and number of bits for on-chip storage in order to reduce the energy consumption?

CΕ

Motion/Disparity Estimation Architecture with Application-Driven Power Management

Multi-Level Pipeline Schedule: Parallelism

Multi-Level Parallelism

- View-Level
- Frame-Level
- Reference Frame-Level
- MB-Level

Multi-Level Pipeline Schedule: GOP-Level Schedule

- TZ Search and Fast ME/DE Modules in parallel
- The coding time for one GOP is the time of 16 TZ searches
 - 4-views, GOP=8
 - 81% reduction compared to the 88 searches without Fast ME/DE
- The KF are processed following our predefined order
- Solved the KF dependencies the NKF are processed in burst
- Fast ME/DE control is clock-gated

Case Study: On-Chip Memory Usage Analysis

Motion Estimation

Disparity Estimation

Case Study: On-Chip Memory Usage Analysis

Motion Estimation

Multibank Memory and Power Model

CES

Balancing leakage savings vs. data miss energy overhead

Balancing leakage savings vs. data miss energy overhead

Balancing leakage savings vs. data miss energy overhead

Balancing leakage savings vs. data miss energy overhead

Multibank Video Memory: Organization

Multibank Video Memory: Organization

 $Size_{Sector} = \lfloor (Usage_{Max} - Usage_{Min}) / Usage_{StdDeviation} \rfloor$

Multibank Video Memory: Organization

$$N_{Sector_dir} = \left\lceil Size_{dir} / (N_{Banks} \times Size_{Sector}) \right\rceil$$

CES

Application-Aware Power Management

Frame-Level

1. ApplicationAwarePowerManager(dir, v, f, S_{Total}, S_{Sector}, MR_{Offline})

2. BEGIN

- 3. *list<NeighboringFrames>N* ← getNeighboringFrames(dir, v, f);
- 4. $\forall n \in N \quad MR_n \leftarrow (n \text{ is Available }) ? getMemReq(n) : MR_{Offline};$
- 5. $MR_{Current} \leftarrow frameMemReq(MR_{Left}, MR_{Right}, MR_{Top}, MR_{Down});$
- 6. $list < MBGroups > G \leftarrow getMBGroups (f); // combine MBs in Groups$
- 7. For all $g \in G$
- 8. $MR_{Group} \leftarrow reAdjustMemReq(g, MR_{Current}, E_{MissGroup});$
- 9. list<Sectors> $PS \leftarrow$ setSleepModes(S_{Total}, S_{Sector}, MR_{Group});
- 10. For all $mb \in g$
- 11. {E_{MissGroup}, E_{LeakGroup}, memUsed_{MB}} ← performSearch(); // perform ME and DE search and log memory requirements of the current MB
- 12. $MR_{Current} \leftarrow mbLevelPowerGating(PS, memUsed_{MB});$
- 13. End For
- 14. End For
- 15. *MR* ← computeMemStatistics(PM₃, PM₂, PM₁);
- 16. return *MR*;
- 17. END

$$MR_{Current} = [(MR_{W} * d_{W} + MR_{E} * d_{E}) * \alpha + (MR_{N} * d_{N} + MR_{S} * d_{S}) * \beta] / 4$$

Application-Aware Memory Usage Prediction

 $\blacksquare MR = \{PM_1, PM_2, PM_3\}$

Assuming a Gaussian distribution:

- PM₁ \leftarrow $F(\mu+\sigma; \mu, \sigma^2) F(0; \mu, \sigma^2) \approx 0.84$
- PM₂ \leftarrow $F(\mu+2\sigma; \mu, \sigma^2) F(0; \mu, \sigma^2) \approx 0.975$

Effect of Macroblock Properties on Memory Usage Distribution

Macroblock-Group Level Power Management

BEGIN

2

Macroblock Group-Level

list<NeighboringFrames> $N \leftarrow$ getNeighboringFrames(dir, v, f); 3. $\forall n \in N \quad MR_n \leftarrow (n \text{ is Available }) ? getMemReg(n) : MR_{Offline};$ $MR_{Current} \leftarrow frameMemReg(MR_{Left}, MR_{Right}, MR_{Top}, MR_{Down});$ 6. list < MBGroups > G \leftarrow get MBGroups (f); // combine MBs in Groups For all $g \in G$ 7. $MR_{Group} \leftarrow reAdjustMemReq(g, MR_{Current}, E_{MissGroup});$ $list < Sectors > PS \leftarrow setSleepModes(S_{Total}, S_{Sector}, MR_{Group});$ For all $mb \in g$ 10. $\{E_{MissGroup}, E_{LeakGroup}, memUsed_{MB}\} \leftarrow performSearch(); // perform$ 11. ME and DE search and log memory requirements of the current MB $MR_{Current} \leftarrow mbLevelPowerGating(PS, memUsed_{MB});$ 12. End For 13. 14. End For 15. $MR \leftarrow computeMemStatistics(PM_2, PM_2, PM_1);$ 16. return *MR*; 17. END

1. ApplicationAwarePowerManager(dir, v, f, S_{Total}, S_{Sector}, MR_{Offline})

 $N_{Group} > \begin{cases} E_{wakeup} / E_{Leak} & If S_1 \text{ or } S_2 \\ (E_{wakeup} + E_{MissGroup}) / E_{Leak} & Else \end{cases}$

Computation Reordering

Macroblock-Level Power Management

Macroblock-Level

Switch only between ON S₀ and state-retentive S₁ and S₂

1. ApplicationAwarePowerManager(dir, v, f, S_{Total}, S_{Sector}, MR_{Offline})

2. BEGIN

- 3. *list<NeighboringFrames>N* ← getNeighboringFrames(dir, v, f);
- 4. $\forall n \in N \quad MR_n \leftarrow (n \text{ is Available }) ? getMemReq(n) : MR_{Offlime};$
- 5. $MR_{Current} \leftarrow frameMemReq(MR_{Left}, MR_{Right}, MR_{Top}, MR_{Down});$
- 6. *list<MBGroups>G* \leftarrow *getMBGroups* (*f*);// combine MBs in Groups
- 7. For all $g \in G$
- 8. $MR_{Group} \leftarrow reAdjustMemReq(g, MR_{Current}, E_{MissGroup});$
- 9. list<Sectors> $PS \leftarrow$ setSleepModes($S_{Total}, S_{Sector}, MR_{Group}$);
- 10. For all $mb \in g$
- 11. {E_{MissGroup}, E_{LeakGroup}, memUsed_{MB}} ← performSearch(); // perform ME and DE search and log memory requirements of the current MB
- 12. $MR_{Current} \leftarrow mbLevelPowerGating(PS, memUsed_{MB});$
- 13. End For
- 14. End For
- 15. $MR \leftarrow computeMemStatistics(PM_3, PM_2, PM_1);$
- 16. return *MR*;
- 17. END

ICE
Macroblock-Level Power Management

Macroblock-Level

Switch only between ON S₀ and state-retentive S₁ and S₂

1. ApplicationAwarePowerManager(dir, v, f, S_{Total}, S_{Sector}, MR_{Offline})

2. BEGIN

- 3. list<NeighboringFrames>N← getNeighboringFrames(dir, v, f);
- 4. $\forall n \in N \quad MR_n \leftarrow (n \text{ is Available }) ? getMemReq(n) : MR_{Offlime};$
- 5. $MR_{Current} \leftarrow frameMemReq(MR_{Left}, MR_{Right}, MR_{Top}, MR_{Down});$
- 6. *list<MBGroups>G* \leftarrow *getMBGroups* (*f*);// combine MBs in Groups
- 7. For all $g \in G$
- 8. $MR_{Group} \leftarrow reAdjustMemReq(g, MR_{Current}, E_{MissGroup});$
- 9. list<Sectors> $PS \leftarrow$ setSleepModes($S_{Total}, S_{Sector}, MR_{Group}$);
- 10. For all $mb \in g$
- 11. {E_{MissGroup}, E_{LeakGroup}, memUsed_{MB}} ← performSearch(); // perform ME and DE search and log memory requirements of the current MB
- 12. $MR_{Current} \leftarrow mbLevelPowerGating(PS, memUsed_{MB});$
- 13. End For
- 14. End For
- 15. $MR \leftarrow computeMemStatistics(PM_3, PM_2, PM_1);$
- 16. return MR;
- 17. END

ICE

Dynamic Expanding Search Window

The usage of search window samples depends on the MB characteristics, search direction and search pattern

Dynamic Expanding Search Window

Search window-based \rightarrow Dynamic expanding window

CE

Normalized Leakage Savings

Results on Leakage Savings

Results on Leakage Savings

S₃ is defined at frame level → non-state retentive
 S₂ is preferred at MB- and MB Group-levels

Prediction Accuracy

Prediction Accuracy and Memory Misses

- Search map is more accurate for low motion/disparity (e.g., Vassar)
- *Hits* > 80%

- On-chip misses are higher in low motion sequences
- The search pattern access only the center of the SW
- Less overlapping between
 neighbor MB SWs

ME/DE Hardware Architecture

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

CES

Hardware Results

- Our motion & disparity estimation hardware
 - 64x4-pixel SAD
 - 21 SAD trees
- Savings
 - 78% intra-chip power
 - 66% gate count

	Tsung@ICASSP'09	Architecture with our on-chip video memorv
Technology	TSMC 90 nm	IBM ST 65 nm LPe,
	Low Power LowK Cu	Low K, 7 metal layer
Gate Count	230k	102k
SRAM	64 Kbits	832 Kbits
Frequency	300 MHz	300 MHz
Power	265mW, 1.2v	57mW, 1.0v
Throughput	4-views 720p	4-views HD1080p

IC E

Publications

- M. Shafique, B. Zatt, F. Walter, S. Bampi, J. Henkel, "Adaptive Power Management of On-Chip Video Memory for Multiview Video Coding", ACM/EDAC/IEEE 49th Design Automation Conference (DAC'12), San Francisco, United States (accepted).
- B. Vizzotto, B. Zatt, M. Shafique, S. Bampi, J. Henkel, "A Model Predictive Controller for Frame-Level Rate Control in Multiview Video Coding", IEEE International Conference on Multimedia & Expo (ICME¹²), Melbourne, Australia, 2012 (accepted).
- M. Shafique, B. Zatt, J. Henkel, "A Complexity Reduction Scheme with Adaptive Search Direction and Mode Elimination for Multiview Video Coding", 29th Picture Coding Symposium (PCS'12), Krakow, Poland, 2012 (accepted).
- B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, J. Henkel, "Run-Time Adaptive Energy-Aware Motion and Disparity Estimation in Multiview Video Coding", ACM/EDAC/IEEE 48th Design Automation Conference (DAC'11), San Diego, United States.
- B. Zatt, M. Shafique, S. Bampi, J. Henkel, "A Low-Power Memory Architecture with Application-Aware Power Management for Motion & Disparity Estimation in Multiview Video Coding", IEEE/ACM 48th International Conference on Computer-Aided Design (ICCAD'11), San Jose, United States.

Publications

- B. Zatt, M. Shafique, S. Bampi, J. Henkel, "Multi-Level Pipelined Parallel Hardware Architecture for High Throughput Motion and Disparity Estimation in Multiview Video Coding", IEEE/ACM 14th Design Automation and Test in Europe Conference (DATE 11), Grenoble, France.
- B. Zatt, M. Shafique, S. Bampi, J. Henkel, "A Multi-Level Dynamic Complexity Reduction Scheme for Multiview Video Coding", IEEE 18th International Conference on Image Processing (ICIP'11), Brussels, Belgium, 2011.
- B. Zatt, M. Shafique, S. Bampi, J. Henkel, "An Adaptive Early Skip Mode Decision Scheme for Multiview Video Coding", 28th Picture Coding Symposium (PCS'10), Nagoya, Japan, 2010.
- M. Shafique, B. Zatt, S. Bampi, J. Henkel, "Power-Aware Complexity-Scalable Multiview Video Coding for Mobile Devices", 28th Picture Coding Symposium (PCS'10), Nagoya, Japan, 2010.

VideoArch^{3D} CAPES/DAAD PROBRAL Project

CES – Chair for Embedded Systems

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

VideoArch^{3D} Team

VideoArch^{3D} Team

Coordinators

- Jörg Henkel (KIT)
- Sergio Bampi (UFRGS)

Associated Professors

- Altamiro Susin (UFRGS)
- Luciano Agostini (UFPEL)
- Team Lead
 - Muhammad Shafique (KIT)
- Senior Members
 Bruno Zatt (KIT/UFRGS)

Students

- M. Usman K. Khan (KIT)
- Anton Ivanov (KIT)
- Orcun Tüfek (KIT)
- Fellipe Lima (KIT)
- Duo Sun (KIT)
- Cláudio Diniz (UFRGS)
- Bruno Vizzotto (UFRGS)
- Felipe Sampaio (UFRGS)
- Daniel Palomino (UFRGS)
- Eduarda Monteiro (UFRGS)
- Cauane Blumenberg (UFRGS)
- Mateus Grellert (UFPEL)

VideoArch^{3D}

Goals

- Power-efficient real-time Multiview (3D) video encoding/decoding of high-resolution multiview videos;
- Flexibility and Adaptivity:
 - Run-time changing scenarios (battery level, video properties)
 - Support for multiple video coding standards;

Research Topics

- Modeling 3D-Videos Properties and Computational Requirements
- Specialized 3D-Multimedia Manycore Processor Architecture
- Low-Power Algorithms and System Level Techniques
- Scalable Distributed Resource Management
- Complexity Reduction Techniques
- Parallelization of Multiview Video Coding

Thank you for Attention!

89

M. Shafique @ EMICRO, 26th April. 2012, São Miguel das Missões, Brazil

