
158

Energy Efficiency Analysis for the Single Frequency
Approximation (SFA) Scheme

SANTIAGO PAGANI and JIAN-JIA CHEN, Karlsruhe Institute of Technology (KIT)

Energy-efficient designs are important issues in computing systems. This article studies the energy efficiency
of a simple and linear-time strategy, called the Single Frequency Approximation (SFA) scheme, for periodic
real-time tasks on multicore systems with a shared supply voltage in a voltage island. The strategy executes
all the cores at a single frequency to just meet the timing constraints. SFA has been adopted in the literature
after task partitioning, but the worst-case performance of SFA in terms of energy consumption incurred is
an open problem. We provide comprehensive analysis for SFA to derive the cycle utilization distribution for
its worst-case behaviour for energy minimization. Our analysis shows that the energy consumption incurred
by using SFA for task execution is at most 1.53 (1.74, 2.10, 2.69, respectively), compared to the energy
consumption of the optimal voltage/frequency scaling, when the dynamic power consumption is a cubic
function of the frequency and the voltage island has up to 4 (8, 16, 32, respectively) cores. The analysis shows
that SFA is indeed an effective scheme under practical settings, even though it is not optimal. Furthermore,
since all the cores run at a single frequency and no frequency alignment for Dynamic Voltage and Frequency
Scaling (DVFS) between cores is needed, any unicore dynamic power management technique for reducing the
energy consumption for idling can be easily incorporated individually on each core in the voltage island. This
article also provides an analysis of energy consumption for SFA combined with procrastination for Dynamic
Power Management (DPM), resulting in an increment of 1 from the previous results for task execution.
Furthermore, we also extend our analysis for deriving the approximation factor of SFA for a multicore
system with multiple voltage islands.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Single frequency approximation, SFA, energy efficiency, voltage island,
power management, multicore

ACM Reference Format:
Santiago Pagani and Jian-Jia Chen. 2014. Energy efficiency analysis for the single frequency approximation
(SFA) scheme. ACM Trans. Embedd. Comput. Syst. 13, 5s, Article 158 (September 2014), 25 pages.
DOI: http://dx.doi.org/10.1145/2660490

1. INTRODUCTION

Energy-efficient and low-power designs have become important issues for computing
systems in order to prolong the battery lifetime of embedded systems, or to reduce
the power bills for servers. This is one of the main motivations for why single-core
computing systems have moved to multicore platforms, mainly to balance the power
consumption and computation performance.

As shown in the literature, such as Jejurikar et al. [2004], the dynamic power con-
sumption (mainly generated by switching activities) and the static power consumption

This work is supported in part by Baden Wurttemberg MWK Juniorprofessoren-Programme.
Authors’ addresses: S. Pagani (corresponding author), Department of Informatics, Karlsruhe Institute of
Technology (KIT), Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany; email: santiago.pagani@kit.edu; J.-J.
Chen, Department of Informatics, TU Dortmund University, Otto-Hahn-Str. 16, 44227 Dortmund, Germany.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1539-9087/2014/09-ART158 $15.00

DOI: http://dx.doi.org/10.1145/2660490

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:2 S. Pagani and J.-J. Chen

(mainly generated by the leakage current) are the two major sources of power con-
sumption in CMOS processors. When static power is negligible, due to the convexity
of the power consumption function, it is usually better to execute at lower frequency
for energy minimization by using the Dynamic Voltage and Frequency Scaling (DVFS)
technique. However, for systems with nonnegligible static power, the energy consump-
tion function for execution is no longer an increasing function. Hence, executing any
task at some frequency lower than a critical frequency might consume more energy for
execution, since the static power plays a role. This motivates the combination of DVFS
and Dynamic Power Management (DPM), so that cores can be slowed down and then
shut down after finishing their workloads (e.g., [Irani et al. 2003; Albers and Antoniadis
2012; Jejurikar et al. 2004]).

In the past decade, task scheduling and partitioning have been explored for energy
reduction while still meeting the performance requirements. However, most research
either assumes that each core can change its own supply voltage independently from
the others (denoted as per-core DVFS, e.g., [Chen et al. 2006; Aydin and Yang 2003; Xu
et al. 2005; de Langen and Juurlink 2006; Chen and Thiele 2010; Moreno and de Niz
2012]), or considers the other extreme and energy-inefficient direction where there
exists only one shared supply voltage whereby the maximum frequency of all cores
is limited (denoted as global DVFS), such as Yang et al. [2005], Devadas and Aydin
[2010], and Seo et al. [2008].

For next-generation many-core systems, a trade-off between global DVFS and per-
core DVFS platforms is to adopt a multicore architecture with different voltage islands
in which the cores on a voltage island share the same supply voltage (modifiable by
DVFS at any time), but individual islands can have different voltages [Borkar 2007;
Herbert and Marculescu 2007]. For example, Intel has released a research multicore
platform called Single-chip Cloud Computer (SCC) [Intel 2009; Howard et al. 2011]
with such a feature. The cores on a voltage island are naturally consolidated as a
cluster.

Related Work. For per-core DVFS, power-aware and energy-efficient scheduling for
homogeneous multicore systems has been widely explored, especially for real-time em-
bedded systems (e.g., [Chen et al. 2006; Aydin and Yang 2003; Xu et al. 2005; de Langen
and Juurlink 2006; Chen and Thiele 2010; Moreno and de Niz 2012]). It has been shown
in Chen and Thiele [2010] that applying the Largest-Task-First (LTF) strategy for task
mapping results in solutions with approximation factors, in terms of energy consump-
tion, in which the factors depend on the hardware platforms. Specifically, by turning
off a processor to reduce the energy consumption in homogeneous multiprocessor sys-
tems, Xu et al. [2005] and Chen and Thiele [2010] propose polynomial-time algorithms
to derive task mappings that try to execute at a critical frequency. For homogeneous
multiprocessor systems with discrete voltage levels and frequencies, de Langen and
Juurlink [2006] provide heuristics for energy-aware scheduling, and Moreno and de
Niz [2012] present an algorithm that runs in polynomial time and computes the opti-
mal voltage and frequency assignment for systems with uniform frequency steps and
negligible static/leakage power consumption. Providing an individual supply voltage
for each core locally can be energy efficient but is costly for implementation. Based on
VLSI circuit simulations, it has been suggested in Herbert and Marculescu [2007] that
per-core DVFS suffers complicated design problems.

For global voltage scaling, the result in Yang et al. [2005] provides answers on volt-
age scaling to minimize the energy consumption by using an accelerating schedule
when the system has frame-based real-time tasks (all the tasks have the same arrival
time and period). However, the approach in Yang et al. [2005] is highly restricted
and cannot be easily extended to handle periodic real-time tasks (where tasks have

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:3

different arrival times and periodicity), or systems with nonnegligible static/leakage
power consumption. The study in Devadas and Aydin [2010] and Seo et al. [2008]
relaxes the assumptions in Yang et al. [2005] by considering periodic real-time tasks
with nonnegligible static- and voltage-independent power consumptions and nonneg-
ligible overhead for turning to low-power idle modes. The approach in Devadas and
Aydin [2010] decides the number of active cores and then the frequency of the active
cores. However, there is no theoretical analysis in Devadas and Aydin [2010] to show
the effectiveness of their approach for energy minimization. The work in Seo et al.
[2008] dynamically balances the task loads of multiple cores to optimize power con-
sumption during execution and adjusts the number of active cores to reduce leakage
power consumption under low-load conditions.

Motivation. When considering energy efficiency for scheduling periodic real-time
tasks on multicore systems with a shared supply voltage in a voltage island (or a
system with a global supply voltage), it is necessary to choose a policy that decides
the voltage of the island and the frequencies of the cores for execution. The simplest
and most intuitive strategy is to use a single voltage and frequency for executing,
particularly the lowest voltage and frequency that satisfies the timing constraints. We
denote such a scheme as the Single Frequency Approximation (SFA) scheme. After the
task partitioning is done (which is not the focus of this article), SFA has linear-time
complexity, only from evaluating the core with the highest cycle utilization.

Even though SFA is not an optimal strategy for energy efficiency, it significantly
reduces the management overhead. SFA does not require frequent voltage/frequency
changes at runtime, as it only requires one voltage and one frequency. Furthermore,
since no frequency alignment for DVFS between cores is needed under SFA, any unicore
Dynamic Power Management (DPM) technique can be adopted individually in each
core, together with SFA, with no additional effort.

SFA has been adopted by several researchers in the past, for instance, Devadas
and Aydin [2010] (when tasks do not complete earlier than the estimated worst-case
execution times) and Nikitin and Cortadella [2012]. SFA is indeed a good strategy when
the workload is perfectly balanced, that is, when all the cores are assigned with the
same cycle utilization. On the contrary, if the utilizations of the cores are skewed, that
is, one core with high cycle utilization and all the others with very low cycle utilization,
then SFA would consume much more energy than the optimal solution, especially when
the number of cores in the voltage island grows. This comes from the cases wherein
cores with light cycle utilizations are forced to run at higher frequencies than they
need to meet their timing constraints.

Therefore, we know that SFA is a practical approach for executing periodic tasks
after task partitioning in multicore systems in a voltage island. Moreover, under such
settings, we are also not aware of any other good heuristic voltage/frequency scheduling
algorithms that have such low overhead, low energy consumption, and that allow for
easy integration with existing DPM techniques. However, the worst-case performance
of SFA, in terms of energy consumption, is an open problem.

Objective. Motivated by the preceding discussions, the goal of this article is to provide
comprehensive analysis from a theoretical point of view to show the effectiveness of
SFA for energy minimization, particularly for state-of-the-art designs that have a lim-
ited number of cores per voltage island.

Our Contributions. Under fixed task sets of periodic real-time tasks in a voltage
island, our contributions are as follows.

—We reveal the effectiveness of SFA for energy efficiency and show that it has an
approximation factor (worst-case ratio of the energy consumption for SFA against

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:4 S. Pagani and J.-J. Chen

the optimal energy consumption) that can be bounded, in which the factor depends
on the parameters of the power consumption function and the number of cores per
voltage island.

—Furthermore, we also show the effectiveness of SFA by analysing the approximation
factor when applying SFA together with the unicore DPM procrastination scheme
from Irani et al. [2003] and with the optimal DPM solution [Baptiste et al. 2012]. We
show that the overall approximation factor by considering such DPM schemes and
SFA is increased by 1 from the analysis in Section 6.

—Specifically, we evaluate several cases with practical settings when the number of
cores in the voltage island is limited. When the voltage island has up to 4 (8, 16,
32, respectively) cores, the approximation factor of SFA for minimizing the energy
consumption for execution is at most 1.53 (1.74, 2.10, 2.69, respectively). The factor
can be further improved if the task sets are balanced.

—Finally, we sketch simple extensions to consider cores with a limited set of available
frequencies and systems with multiple voltage islands.

The analysis in this article shows that SFA is an effective scheme which dramatically
simplifies the complexity compared to current DVFS algorithms, even though not opti-
mal. We believe that the analysis for SFA for fixed task sets (that are already mapped
onto cores) can be used as the cornerstone when considering task partitioning.

Organization. The rest of the article is organized as follows.

—Section 2 details the system model and defines the problem to solve.
—In Section 3, we derive a lower bound for the energy consumption of the cores in a

voltage island for periodic real-time tasks.
—Section 4 provides the energy consumption of the cores in a voltage island that uses

SFA to decide the voltage of the island and the frequencies of the cores.
—In Section 5 we derive the approximation factor of SFA in terms of energy consump-

tion when the static/leakage power consumption is considered negligible.
—Continuing the analysis, Section 6 derives the approximation factor of SFA in terms

of energy consumption when the static/leakage power consumption is nonnegligible.
—Section 7 constrains the analysis for the case wherein the system uses a load balancer

for task partitioning, thus deriving a lower value for the approximation factor under
such conditions.

—On the other hand, Section 8 extends the analysis in the previous sections to consider
nonnegligible energy overhead for entering/leaving a low-power mode.

—Moreover, Section 9 presents numerical results for the theoretical worst-case approx-
imation factors derived in Section 6, Section 7, and Section 8.

—Section 10 presents an extension to consider systems with discrete frequencies.
—Section 11 extends all the previous analysis, which is for a single voltage island, to

consider multicore systems with multiple voltage islands.
—In Section 12 we simulate the performance of SFA in terms of energy consumption

for different scenarios and in a single voltage island. Thus, we provide a concrete
factor based on the energy consumption of SFA.

—Finally, Section 14 concludes the article.

2. SYSTEM MODEL AND PROBLEM DEFINITION

This section reviews the power and energy model adopted for the rest of the article and
defines the problem to solve.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:5

2.1. Hardware Model

This article focuses on a single voltage island, where all the cores in the island have
the same supply voltage and run at the same frequency at any given time point, such
as one voltage island of SCC [Intel 2009; Howard et al. 2011].1 The system can change
the voltage and frequency of the island by adopting DVFS. This model has also been
adopted in Yang et al. [2005] and Devadas and Aydin [2010]. For a core to support a
frequency, the supply voltage in the island has to be adjusted accordingly, in particular
to the least available supply voltage such that stable execution on the core is achievable
for the frequency. The available frequencies are in the range of [smin, smax].2

We denote the power consumption of a core executing a certain task at frequency s
as P (s). The energy consumption during time interval �t at frequency s is denoted as
E (s) = P (s) ·�t. We assume that P (s) is a convex and increasing function with respect
to s, which complies with most of the power models for CMOS processors adopted in
the literature, for example, Aydin and Yang [2003], Xu et al. [2005], de Langen and
Juurlink [2006], Yang et al. [2005], and Devadas and Aydin [2010]. Among these, the
most widely used power consumption function, adopted for this article, is

P(s) = β + αsγ , (1)

where α > 0 is a constant dependent on the effective switching capacitance, γ > 1 is
related to the hardware, and β ≥ 0 represents the static power consumption.

During interval �t, a core running at frequency s executes a certain amount �c of
core cycles such that �t = �c

s and

E (s) = (β + αsγ)
�c
s

. (2)

This energy consumption is a convex function. Hence, by setting to zero the first-order
derivative of Eq. (2) with respect to s, the minimum value for E (s) is found when s is
γ

√
β

(γ−1)α . In order to consider the case when such value is smaller than smin, we define

the critical frequency as scrit = max{smin, γ

√
β

(γ−1)α }. The critical frequency represents the
frequency that minimizes the energy consumption for execution when the overhead for
sleeping is considered negligible, as also shown in Jejurikar et al. [2004] and Chen
et al. [2006].

Furthermore, we can use the power consumption function from Eq. (1) to model
the experimental results from Howard et al. [2011], in which a multicore system that
integrates 48 cores was developed. Figure 12 (frequency versus voltage) and Figure 13
(measured power versus voltage) from Howard et al. [2011] are of particular interest
and the values are summarized in Figure 1(a) and Figure 1(b).

We approximate the table in Figure 1(a) using a quadratic function. Thus, by having
a function that relates frequency with voltage, we are able to rewrite the table in
Figure 1(b) relating frequency with power. The power values of this new table are
divided by 48, since these experiments were conducted on the entire chip, but we are
interested in the power function of each individual core. Finally, we approximate this
new table with the power consumption function from Eq. (1), where α = 1.76 Watts

GHz3 , γ =
3, and β = 0.5 Watts, resulting in scrit = 0.52 GHz. These values result in a goodness
of fit of Sum of Squares due to Error (SSE) of 0.05041, a Square of the correlation
between the response values and the predicted response values (R-square) of 0.9958,

1The analysis will be extended for multiple voltage islands in Section 11.
2For systems with discrete frequencies, all the analysis still holds based on a simple extension presented in
Section 10.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:6 S. Pagani and J.-J. Chen

Fig. 1. Experimental results from the 48-core system in Howard et al. [2011] and the derived power model
for a single core with α = 1.76 Watts

GHz3 , γ = 3, β = 0.5 Watts, and scrit = 0.52 GHz.

an adjusted R-square of 0.9958 and a Root Mean Squared Error (RMSE) of 0.07938.
Figure 1(c) shows this power model and the original experimental measurements from
Howard et al. [2011]. Moreover, Figure 1(d) illustrates function E (s) from Eq. (2) for a
single core executing 109 computer cycles with the same α, γ , and β values, where it is
easy to observe the concept of a critical frequency.

When a core finishes executing all its workload in the ready queue, it has to wait
until a new task instance arrives. During this waiting interval, the core can choose to
stay idle (in execution mode), consuming β power. Moreover, the core can also choose
to go to a low-power mode that consumes β ′ ≥ 0 power. As we can transfer the power
consumption β ′ to the power consumption of the voltage island for being active, without
loss of generality, we can set P(s) as P(s) − β ′ such that we can disregard the effect of
the power consumption of a core in a low-power mode. Nevertheless, the core consumes
some energy during the transition process of entering/leaving the low-power mode.
Given that we handle periodic tasks that always go back to the execution mode after a
certain amount of time, we denote the overhead for sleeping as the summation of the
energy consumption both for entering and leaving the low-power mode.

When the duration of the waiting interval until the arrival of a new task instance
is short enough, idling is more energy efficient than sleeping. Contrarily, when the
interval is sufficiently long, sleeping results in higher energy savings. Thus, we define
the break-even time as the time such that the energy consumption for idling is equal
to the overhead for sleeping.

The analysis for Sections 4 to 6 considers negligible overhead for sleeping, for which
the break-even time is 0 and every core goes to sleep immediately when it has no work-
load to execute. For systems with nonnegligible overhead, the strategy by considering
the break-even time and procrastination schemes, such as in Irani et al. [2003] and
Chen and Kuo [2007], can be further adopted; this is extended in Section 8.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:7

2.2. Task Model

We consider periodic real-time tasks with implicit deadlines, where each task τ j re-
leases an infinite number of task instances with period (and relative deadline) pj and
each instance has worst-case execution cycles e j . We consider partitioned scheduling
in which each task is assigned onto a core, that is, when a task instance arrives at the
system, it is executed on the assigned core. Specifically, we use Earliest-Deadline-First
(EDF) scheduling in which the task instance with the earliest absolute deadline on a
core has the highest priority. The least common multiple (LCM) of the periods of all
tasks is called the hyperperiod and is denoted as L.

After the task partitioning is completed by using M cores3, the tasks are grouped
into M task sets {T1, T2, . . . , TM}. Note that the task partitioning is not the focus of
this article and is assumed given. Without loss of generality, we assume that task
set Ti is assigned on core i and we define its cycle utilization as wi = ∑

τ j∈Ti

e j

pj
. By

defining w0 for simplicity and without loss of generality, we order the cores such that
0 = w0 ≤ w1 ≤ w2 ≤ · · · ≤ wM. It has been well studied, for instance, in Liu and Layland
[1973], that executing core i at a frequency higher than or equal to wi with EDF will
meet the timing constraint.

2.3. Problem Definition

We consider the Single Frequency Approximation (SFA) scheme in which all cores in
the island always execute at single frequency su and each core enters a low-power
mode after executing its workload. The time complexity of SFA is O (M) to ensure the
feasibility, where M is the number of cores in the voltage island and this complexity
comes only from evaluating the highest cycle utilization. Clearly, su must be at least
wM to ensure feasible schedules.

The objective of this work is to analyse the approximation factor of SFA, defined
AFSFA, and expressed as

AFSFA = max
ESFA

EOPT
≤ max

ESFA

E∗ , (3)

where EOPT is the optimal energy consumption during a hyperperiod, ESFA is the energy
consumption for SFA during a hyperperiod, and E∗ is a lower bound for the optimal
energy consumption for any feasible schedule during a hyperperiod. Since EOPT is not
easily obtained, in the analyses we use its lower bound E∗ that should not be very far
away from EOPT.

Note that SFA does not require any capability of voltage/frequency scaling at run-
time, as it only uses one frequency. However, to explore the approximation factor we
need E∗, in which changing the supply voltage and frequency of the island is with neg-
ligible overhead and the available frequencies are continuous between (0, smax]. This
approach results in a safe lower bound for the optimal energy consumption. We only
focus on the analysis of the approximation factor. The applicability of SFA with slack
reclamation to deal with early completion of tasks can be found in Devadas and Aydin
[2010].

To improve the readability of this article, Figure 2 presents a reference diagram that
relates all equations, lemmas, theorems, and figures.

3Note that, if the tasks are partitioned into M′ task sets with M′ > M, this would result in an infeasible
task partition as there would be more task sets than cores. Furthermore, if the tasks are partitioned into M′
task sets with M′ < M, all the analysis in the following sections still holds by simply considering that the
voltage island has M′ cores, which in fact reduces the approximation factor.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:8 S. Pagani and J.-J. Chen

Fig. 2. Reference diagram relating equations, lemmas, theorems, and figures.

3. LOWER BOUND ENERGY CONSUMPTION

This section provides a lower bound for the energy consumption for periodic real-time
tasks that is needed to obtain the approximation factor in Eq. (3).

3.1. Preliminary Results with β = 0

A special case of the problem is with frame-based real-time tasks in which all the tasks
arrive at time 0 and have the same period and deadline. For such a case, the period of
any task is also the hyperperiod L. Yang et al. [2005] have proposed a scheme based
on the deep sleeping property (every core is put to sleep after executing its workload),
as shown in Figure 3. For completeness, we summarize the schedule proposed in Yang
et al. [2005] when the task sets are already assigned onto cores. In Yang et al. [2005],
the schedule is divided into M fragments. In the i-th fragment, all cores run at speed
si during time ti. Moreover, in the i-th fragment there are M − i + 1 cores that execute
ci = L (wi − wi−1) core cycles during ti such that ti = ci

si
(the rest of the cores are in the

sleep state). Therefore, considering Eq. (2) with β = 0 and �c = ci for each fragment,
the energy consumed by the active cores during ti in the i-th fragment, with smin = 0,
is expressed as

E(ti) =
M∑

i=1

(M − i + 1)α
cγ

i

tγ

i
ti. (4)

By computing the values of ti based on the Lagrange multiplier method with con-
straint

∑M
i=1 ti = L, Yang et al. [2005] provide an optimal frequency assignment for the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:9

Fig. 3. A schedule satisfying the deep sleeping property.

previous case, that results in an energy consumption of

E∗
β=0 = αL

[
M∑

i=1

(wi − wi−1) γ
√

M − i + 1

]γ

. (5)

However, when we move further to consider periodic real-time tasks, it becomes
very complicated to calculate the optimal frequency scaling to minimize the energy
consumption for executing tasks. Fortunately, to analyse the approximation factor, we
only need a lower bound of the energy consumption.

For systems with periodic real-time tasks, the workload to be completed on core i
during the hyperperiod is L · wi. To derive E∗, we can simply consider that all the L · wi
workload arrives at time 0 and has to be done by time L. Even though an optimal
frequency scaling for such a relaxation is not always a feasible solution for periodic
tasks, such a simplification provides a good lower bound estimation of the optimal
energy consumption. Finally, when β = 0, we simply apply the result from Yang et al.
[2005] in Eq. (5).

Note that this simplification is only applied for obtaining the lower bound. This
may result in pessimistic analysis, but does not limit the applicability of SFA for the
considered task models. Furthermore, Section 9 presents numerical examples that
show the analysis is in fact not pessimistic.

3.2. Lower Bound with β �= 0

This section analyses the lower bound of the energy consumption when β is not negli-
gible. Similar to Section 3.1, we can again consider the same relaxation when all the
tasks arrive at time 0 and negligible overhead for entering/leaving low-power modes
and changing the supply voltage of the island, which is a safe approach. For the same
schedule as in Yang et al. [2005], with smin = 0 and β �= 0, Eq. (4) changes to

E(ti) =
M∑

i=1

(M − i + 1)
(

β + α
cγ

i

tγ

i

)
ti. (6)

To obtain the lower bound for energy consumption, we apply the Kuhn-Tucker
conditions [Rardin 1998] on Eq. (6) under the constraint

∑M
i=1 ti ≤ L and ti ≥ 0 for

i = 1, 2, . . . , M. Due to space constraints, the details are omitted. Once the Lagrangian
is solved, the set of ti that minimizes the energy consumption for frame-based tasks is

ti = γ

√
α (γ − 1) (M − i + 1)

(M − i + 1) β + λ
ci. (7)

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:10 S. Pagani and J.-J. Chen

When
∑M

i=1 ti < L, then λ is 0, and from Eq. (7) the resulting ti is equal to ci
scrit

for all
i = 1, 2, . . . , M. In other words, all the cores run at frequency scrit for execution. Clearly,
when wM ≤ scrit, the preceding solution is a feasible one.

For the case that
∑M

i=1 ti = L, then λ > 0, conceptually meaning that it is no longer
feasible to meet the timing constraints by running all cores at scrit for execution. Hence,
from Eq. (7) it holds that

M∑
i=1

ti =
M∑

i=1

γ

√
α (γ − 1) (M − i + 1)

(M − i + 1) β + λ
ci = L. (8)

The only unknown variable in Eq. (8) is λ. Since Eq. (8) is strictly decreasing with
respect to λ, one possibility to derive it is to apply Newton’s method. However, Newton’s
method only gives the numerical results for a specific case study, but we do not have
an explicit form to solve Eq. (8). Therefore, for analysing the worst-case performance
for a given task partitioning, we have to find a safe approximation for estimating lower
bound E∗ for the optimal energy consumption. Lemma 3.1 shows how we estimate E∗
based on an auxiliary frequency defined as sdyn.

LEMMA 3.1. For a given frequency sdyn with scrit < sdyn < smax, a safe lower bound for
the optimal energy consumption for any feasible schedule can be expressed as

E∗ (wM) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αγ L
(
scrit

γ−1
) M∑

i=1

wi if wM ≤ sdyn

αL

[
M∑

i=1

(wi − wi−1) γ
√

M − i + 1

]γ

otherwise.

(9)

PROOF. According to the previous analysis and lower bound for the optimal energy
consumption in Eq. (5) by ignoring the static and independent power consumption, we
know that both cases are safe lower bounds for the energy consumption. Therefore,
either one can be adopted.

The goal for using sdyn is to provide a tighter lower bound of energy consumption
by choosing these two lower bounds in proper cases. It is clear that, when wM is high,
the energy consumption resulting from the dynamic power plays a more important
role. Therefore, for a given sdyn, when wM > sdyn, we only consider the dynamic energy
consumption in Eq. (9). The other case considers the lower bound of energy consumption
by running at the critical frequency.

An example of the lower bound for the energy consumption from Eq. (9) can be found
in Figure 4.

4. ENERGY CONSUMPTION OF SFA

This section analyses the energy consumption of SFA needed to obtain the approxima-
tion factor in Eq. (3).

For periodic real-time tasks, the workload to be completed on core i during the
hyperperiod is L · wi. From Eq. (2), with �c = L · wi, the energy consumption for core
i under SFA is (β + αsγ

u)wi
su

L, therefore, the energy consumption for all M cores in the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:11

Fig. 4. E∗(wM) with α = 1.76 Watts
GHz3 , β = 0.5 Watts and M = 16, with L = 1 second, constant

∑M
i=1 wi =

5 · 109 cycles
second , and w1 =w2 =· · ·=wM−1 = (

∑M
i=1 wi)−wM

M−1 .

Fig. 5. Example for a voltage island with four cores using SFA. When a core has no workload to execute, it
idles or sleeps according to the DPM policy (further details are presented in Section 8).

voltage island is

ESFA (su) = L
(

β

su
+ αsγ−1

u

) M∑
i=1

wi. (10)

Function ESFA(su) is convex with respect to su and its first-order derivative with
respect to su is the same as the first-order derivative of Eq. (2) with respect to s. Hence,
the optimal su for SFA is also found at scrit. Similarly to E∗, when wM ≤ scrit, the aforesaid
solution is a feasible one. Therefore, when wM ≤ scrit, SFA is optimal and has the
same energy consumption as the lower bound for the energy consumption E∗. For this
reason, the relation between smin and γ

√
β

(γ−1)α is of no consequence. Thus, for simplicity

in presentation, we consider that smin = 0 and therefore set scrit to γ

√
β

(γ−1)α . This was
implicit in Section 3 and will be considered until Section 9, inclusive. The approximation
factors obtained for this condition are safe upper bounds for the general case.

Finally, the frequency chosen by SFA, namely su, is (1) scrit if wM is less than or equal
to scrit, and (2) wM otherwise. In other words, su = max {scrit, wM}. An example for a
voltage island with four cores using SFA is presented in Figure 5.

By replacing su for the two cases in Eq. (10), we obtain the optimal energy
consumption for SFA as a function of wM, defined as ESFA (wM) and presented

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:12 S. Pagani and J.-J. Chen

in Eq. (11).

ESFA (wM) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αγ L
(
scrit

γ−1
) M∑

i=1

wi if wM ≤ scrit

L
wM

(
β + αw

γ

M

) M∑
i=1

wi, otherwise.

(11)

In the case that β = 0, then scrit is also zero and only the dynamic energy consumption
is present for SFA, which is

Eβ=0
SFA (wM) = αL

(
wM

γ−1) M∑
i=1

wi. (12)

5. APPROXIMATION FACTOR FOR SFA WITH β = 0

This section presents the approximation factor of SFA when β = 0 defined as AFβ=0
SFA,

using Eq. (5) and the dynamic energy consumption of SFA in Eq. (12). Note that, even
though this is not a practical setting, we do incremental analysis for simplicity in
presentation. The properties derived in this section will also be used in Section 6 when
β �= 0.

Since 0 = w0 ≤ w1 ≤ · · · ≤ wM from the problem definition, by introducing the scaling
factor ri we can rephrase the utilization wi for i = 0, 1, . . . , M as wi = ri · wM, where

0 = r0 < r1 ≤ r2 ≤ · · · ≤ rM−1 ≤ rM = 1. (13)

The approximation factor of SFA when β = 0 can be expressed as

AFβ=0
SFA = max H (r0, . . . , rM) , (14)

where, for notational brevity,

H (r0, . . . , rM) =
∑M

i=1 ri[∑M
i=1 (ri − ri−1) γ

√
M − i + 1

]γ . (15)

Intuitively, from Eqs. (11) and (12), when wM and
∑M

i=1 wi are constant, SFA
has a fixed energy consumption no matter how the cycle utilizations, namely w1,
w2, . . . , wM−1, are distributed. However, for the lower bound of energy consumption, the
utilization distribution matters. Specifically, we find a critical utilization distribution

when w1 = w2 = · · · = wM−1 =
∑M−1

i=1 wi

M−1 , resulting in a lower bound for Eqs. (5) and (9),
as well as an upper bound for H (r0, . . . , rM). This is formally presented Lemma 5.1.

LEMMA 5.1. For all r0, r1 . . . , rM defined in Eq. (13) and, by defining δ as
∑M−1

i=1 ri

M−1 , with
γ > 1, we have

H (r0, . . . , rM) ≤ h (δ) = 1 − δ + δM(
1 − δ + δ

γ
√

M
)γ . (16)

PROOF. Suppose that we change the configuration from r1, . . . , rM−1 to r′
1, . . . , r′

M−1

such that rM = r′
M = 1 and

∑M−1
i=1 ri = ∑M−1

i=1 r′
i . Since

∑M
i=1 ri = ∑M

i=1 r′
i , by Eq. (15),

we know that H(r′
0, . . . , r′

M) under fixed
∑M−1

i=1 r′
i is maximized if and only if

∑M−1
i=1 (r′

i −
r′

i−1) γ
√

M − i + 1 under fixed
∑M−1

i=1 r′
i is minimized. By using the extreme point theorem,

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:13

Fig. 6. Resulting cycle utilization relation
change.

Fig. 7. h (δ) when γ = 3, highlighting δ∗.

it is not difficult to know that
∑M−1

i=1 (r′
i − r′

i−1) γ
√

M − i + 1 under a fixed
∑M−1

i=1 r′
i has a

global minimum when δ =
∑M−1

i=1 r′
i

M−1 = r′
i−1 = r′

i for all r′
1, . . . , r′

M−1 (as shown in Figure 6).
By setting ri to δ for i = 1, 2, . . . , M − 1 in Eq. (15), the lemma is proven.

By taking the first-order derivative of h (δ) with respect to δ, defined in Lemma 5.1,
it can be easily seen that h (δ) is a convex function of δ when γ > 1 and its maximum
value happens when δ is δ∗, defined as

δ∗ = γ − 1 + M − γ
γ
√

M

(γ − 1)(M γ
√

M − M − γ
√

M + 1)
. (17)

A representation of h (δ) when γ is 3 can be seen in Figure 7.
Finally, when wM and

∑M
i=1 wi are fixed, the approximation factor of SFA is maximized

when w1 = w2 = · · · = wM−1 = δ∗ · wM. This is formally expressed in Theorem 5.2.

THEOREM 5.2. When β = 0, the approximation factor AFβ=0
SFA of SFA for periodic

real-time tasks is

AFβ=0
SFA ≤ h(δ∗), (18)

where δ∗ is defined as a function of γ and M in Eq. (17) and where h (δ) is defined in
Eq. (16). Since h (δ∗) only depends on γ and M, AFβ=0

SFA is independent of the value of α.

PROOF. Based on the definition of function h (δ) in Lemma 5.1, the definition of
H (r0, . . . , rM) in Eq. (15), and the relation between AFβ=0

SFA and H (r0, . . . , rM) in Eq. (14),
we can express AFβ=0

SFA as a function of δ∗ to obtain the inequality in Eq. (18). That is,

AFβ=0
SFA = max H(r0, . . . , rM) ≤ max h (δ) ≤ h

(
δ∗) ,

and thus the theorem is proven.

A representation of AFβ=0
SFA for different values of M when γ = 2 and γ = 3 can be

seen in Figure 8.

6. APPROXIMATION FACTOR FOR SFA WITH β �= 0

After deriving the lower bound of energy consumption that considers the leakage in
Eq. (9) and the energy consumption of SFA in Eq. (11), this section presents the analysis
for the approximation factor, defined in Eq. (3), for SFA with β �= 0. We will first present
the analysis based on a given sdyn as defined in Lemma 3.1. Then, we will analyse the
approximation factor based on the critical utilization distribution among the task sets
to provide a safe factor.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:14 S. Pagani and J.-J. Chen

Fig. 8. Approximation factor for SFA with β = 0.

6.1. Approximation Factor as a Function of sdyn

Replacing inside Eq. (3) the different possible values of ESFA from Eq. (11) and of E∗

from Eq. (9) in Lemma 3.1, we get the relation ESFA
E∗ as a function of wM as

ESFA

E∗ (wM) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

β+αw
γ

M
wMαγ (scrit

γ−1) if scrit < wM ≤ sdyn

β+αw
γ
M

αwM

∑M
i=1 wi[∑M

i=1(wi−wi−1) γ
√

M−i+1
]γ if sdyn < wM < smax

1 otherwise.

(19)

By using the scaling factor ri from Eq. (13) and the definition of H (r0, . . . , rM) from
Eq. (15), we have the following lemma for the approximation factor.

LEMMA 6.1. By defining sdyn as

sdyn = scrit[γ H (r0, . . . , rM)]
1

γ−1 , (20)

we have
ESFA

E∗ (wM) ≤ 1
αγ (scrit

γ−1)

(
β

sdyn
+ αsdyn

γ−1
)

. (21)

PROOF. Since α, β, γ and scrit are all constants, we know that ESFA
E∗ (wM) is a convex

and increasing function with respect to wM when scrit < wM ≤ sdyn. Therefore, for this
case, ESFA

E∗ (wM) is less than or equal to ESFA
E∗

(
sdyn

)
.

With ri from Eq. (13) and the definition of H (r0, . . . , rM) from Eq. (15) we can rephrase
Eq. (19) when sdyn < wM < smax to

β

w
γ

M
+ α

α
H (r0, . . . , rM) . (22)

Clearly, for a given task partitioning, the cycle utilization relations between task
sets are fixed, therefore, H (r0, . . . , rM) is also constant for a given task partitioning.
Together with the fact that α, β, M, and γ are constants, we know that Eq. (22) is a
decreasing function with respect to wM.

Examples for the approximation factor function ESFA
E∗ (wM), for different choices of

sdyn, can be seen in Figure 9. Particularly, the examples in Figure 9(a) and Figure 9(b)
show bad choices for sdyn that would result in pessimistic approximation factors. With
the preceding analysis, function ESFA

E∗ (wM) reaches the lowest upper bound when the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:15

Fig. 9. ESFA
E∗ (wM) when α = 1.76 Watts

GHz3 , β = 0.5 Watts, and M = 16 with L = 1 second, as well as wi =0.51·wM

for all i=1, . . . , M − 1, considering different choices for sdyn.

aforesaid two cases intersect each other, as shown in the example in Figure 9(c), that
is, when

αγ
(
scrit

γ−1)wM

M∑
i=1

ri = αw
γ

M

[
M∑

i=1

(ri − ri−1) γ
√

M − i + 1

]γ

,

resulting in the definition of sdyn in Eq. (20). Thus, Eq. (21) holds and this lemma is
proven.

6.2. Approximation Factor for the Critical Utilization Distribution

Lemma 6.1 presents the analysis of relation ESFA
E∗ (wM) for a given cycle utilization

distribution, namely w1, w2, . . . , wM. To obtain the approximation factor from Eq. (3),
we rephrase this relation for the critical utilization distribution (also used when β = 0)
presented in Lemma 5.1.

From Lemma 5.1, we rewrite Eq. (20) as a function of h (δ∗) and define s∗
dyn as the

upper bound for the value of sdyn as

s∗
dyn = scrit[γ h(δ∗)]

1
γ−1 . (23)

The following theorem concludes the analysis of AFSFA.

THEOREM 6.2. When β �= 0, the approximation factor AFSFA for periodic real-time
tasks is

AFSFA ≤ γ − 1

[γ γ h (δ∗)]
1

γ−1

+ h(δ∗), (24)

where δ∗ is defined as a function of γ and M in Eq. (17) where and h (δ) is defined in
Eq. (16). Since h (δ∗) is only a function of γ and M, AFSFA is independent of α and β.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:16 S. Pagani and J.-J. Chen

PROOF. From the definition of AFSFA in Eq. (3) based on Eq. (21) in Lemma 6.1,
Eq. (16) in Lemma 5.1, and Eq. (23) as well as the definitions scrit

γ = β

(γ−1)α and
function h (δ), we can replace s∗

dyn as a function of δ∗ to obtain the inequality in Eq. (24).
In other words,

AFSFA ≤ β + αsdyn
γ

sdynαγ
(
scrit

γ−1
) =

β + αscrit
γ

{
[γ h (δ∗)]

1
γ−1

}γ

scrit[γ h (δ∗)]
1

γ−1 αγ
(
scrit

γ−1
)

=
α (γ − 1) β

(γ−1)α + αscrit
γ

{
[γ h (δ∗)]

1
γ−1

}γ

[γ h (δ∗)]
1

γ−1 αγ
(
scrit

γ
)

=
(γ − 1) +

{
[γ h (δ∗)]

1
γ−1

}γ

[γ h (δ∗)]
1

γ−1 γ
= γ − 1

[γ γ h (δ∗)]
1

γ−1

+ h(δ∗),

and thus the theorem is proven.

7. APPROXIMATION FACTOR FOR SFA FOR BALANCED TASK SETS

This section analyses the approximation factor of SFA when the system uses a load
balancer for task partitioning.

LEMMA 7.1. Given 0 < r1 ≤ r2 ≤ · · · ≤ rM = 1, M ≥ 2 and γ > 1, if
∑M−1

i=1 ri

M−1 ≥ 0.5, then
h (δ) ≤ h (0.5).

PROOF. From Eq. (16) (illustrated in Figure 7), it is clear that h (δ) is a decreasing
function with respect to δ when δ∗ ≤ δ ≤ 1, M ≥ 2, and γ > 1. By taking the first-
order derivative of δ∗ with respect to M from Eq. (17), it can be easily proven that δ∗
is a decreasing function with respect to M, since ∂δ∗

∂M ≤ 0 for all M ≥ 2 and γ > 1.
Hence, the highest value of δ∗ for a given γ occurs when M = 2, which we define as
δ∗

M=2 = γ−γ
γ
√

2+1
(γ−1)(γ

√
2−1)

.
Furthermore, by taking the first-order derivative of δ∗ with respect to γ from Eq. (17),

it can also be proven that δ∗ is an increasing function with respect to γ , since ∂δ∗
∂γ

≥ 0
for all M ≥ 2 and γ > 1. Therefore, the highest value of δ∗ is obtained when M = 2,
that is, for δ∗

M=2, and γ → ∞, which converges to 1
ln 2 −1 = 0.443. Finally, since δ∗ < 0.5

for any M ≥ 2 and γ > 1, then h (δ) is a decreasing function after 0.5 for any M ≥ 2
and γ > 1, thus the lemma is proven.

THEOREM 7.2. Given M ≥ 2, if δ, defined in Lemma 5.1 as
∑M−1

i=1 ri

(M−1) , is no less than 0.5,
then the approximation factor of SFA for periodic real-time tasks is

AFβ=0
SFA (δ ≥ 0.5) ≤ h (0.5) , (25)

or

AFSFA (δ ≥ 0.5) ≤ γ − 1[
γ γ h (0.5)

] 1
γ−1

+ h (0.5) , (26)

when β = 0 and β �= 0, respectively.

PROOF. This is based on Lemma 7.1, Theorem 5.2, and Theorem 6.2.

COROLLARY 7.3. Clearly, δ plays a major role in the approximation factor of SFA.
Even though we do not analyse task partitioning for SFA, from Theorem 7.2 we can

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:17

conclude that, if the system uses a load balancer for task partitioning, this would lead
to a better approximation factor for SFA. Technically, if the number of execution cycles
of any task is no more than that of the average execution cycles on all cores, a load
balancer like the largest-task-first strategy in Yang et al. [2005] results in w1

wM
≥ 0.5 (as

proved in Yang et al. [2005, Lemma 5]).

8. APPROXIMATION FACTOR FOR SFA WITH NON-NEGLIGIBLE SWITCHING OVERHEAD

When the energy overhead for entering/leaving a low-power mode is nonnegligible,
we cannot always switch a core to a low-power mode immediately when there is no
workload on it to execute. We have to consider the break-even time, defined as the time
such that the energy consumption for idling (in execution mode) is the same as the
overhead for entering and leaving a low-power mode.

The SFA strategy can be combined with any unicore procrastination algorithm in
the literature to decide when to switch a core to a low-power mode, such as in Irani
et al. [2003] and Chen and Kuo [2007], and the analysis for combining SFA with each
algorithm should accordingly be studied.

8.1. Approximation Factor of Using SFA Combined with Algorithm Left-to-Right (LTR)

Particularly, this section analyses the approximation factor of using SFA combined
with algorithm Left-to-Right (LTR) from Irani et al. [2003] against the optimal DVFS
and DPM solution. That is, we use SFA to decide the voltage/frequency of the island
and use LTR to decide whether/when each individual core should sleep/activate.

For notational brevity, we isolate certain portions of energy consumption for a sched-
ule S, as done in Irani et al. [2003].

—energy (S). This is the total energy consumed by schedule S during a hyperperiod.
—active (S). This is the energy expended while the system is active, that is, the energy

consumption for executing tasks.
—idle (S). It is the cost to keep the system active or enter and leave a low-power mode

during idle periods (depending on which action is the most energy efficient).
—on (S). This is the cost to keep the system in the on state while the system is on.
—sleep (S). It is the cost to leave the low-power mode at the end of each sleep interval.

For the rest of this section, we define SOPT as an optimal DVFS and DPM sched-
ule, whereas SOPT,m is the corresponding schedule by considering only the m-th core.
Similarly, we define SSFA

LTR as the schedule made using SFA for executing and LTR for
sleeping, whereas SSFA

LTR,m is the corresponding schedule made by considering only the
m-th core.

According to Theorem 6.2, we know that

active
(
SSFA

LTR

) ≤ AFSFA · active (SOPT) . (27)

Additionally, independently from the task execution on a single core m, adopting LTR
on the core ensures that idle(SSFA

LTR,m) ≤ on(SOPT,m) + 2 · sleep(SOPT,m) (i.e., from Irani
et al. [2003, Lemma 10]). By using the summation of all the cores in the island, we
have

idle
(
SSFA

LTR

) ≤ on (SOPT) + 2 · sleep (SOPT) . (28)

THEOREM 8.1. When P (s) is a convex and increasing function, combining SFA and
LTR results in an approximation factor, against the optimal DVFS and DPM solution,
defined as AFSFA-LTR, less than or equal to AFSFA + 1.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:18 S. Pagani and J.-J. Chen

PROOF. From Eqs. (27) and (28) and considering that by definition AFSFA ≥ 1, we
have

energy
(
SSFA

LTR

) = active
(
SSFA

LTR

) + idle
(
SSFA

LTR

)
≤ AFSFA · active (SOPT) + on (SOPT) + 2 · sleep (SOPT)
≤ AFSFA · active (SOPT) + active (SOPT) + idle (SOPT) + sleep (SOPT)
≤ (AFSFA + 1) · active (SOPT) + 2 · idle (SOPT)
≤ max {AFSFA + 1, 2} · energy (SOPT)
≤ (AFSFA + 1) · energy (SOPT) .

Hence, the theorem is proven.

8.2. Approximation Factor of Using SFA Combined with the Optimal DPM Solution

In Theorem 8.2, this section extends the results in Section 8.1 in order to analyse the
approximation factor of using SFA combined with the optimal DPM solution (for such
a case) [Baptiste et al. 2012] against the optimal DVFS and DPM solution.

We define SSFA
DPM∗ as the schedule obtained by using SFA for executing and the op-

timal DPM solution for sleeping, whereas SSFA
DPM∗,m is the corresponding schedule by

considering only the m-th core. Furthermore, Eq. (28) can be extended to

idle
(
SSFA

DPM∗
) ≤ idle

(
SSFA

LTR

) ≤ on (SOPT) + 2 · sleep (SOPT) . (29)

THEOREM 8.2. When P (s) is a convex and increasing function, combining SFA with
the optimal DPM solution (for such a case) results in an approximation factor, against
the optimal DVFS and DPM solution, defined as AFSFA-DPM∗ , less than or equal to
AFSFA + 1.

PROOF. From Eq. (27) (for SSFA
DPM∗ instead of SSFA

LTR) and Eq. (29), the proof of this
theorem is similar to that of Theorem 8.1.

9. NUMERICAL RESULTS FOR WORST CASES

This section presents numerical results for the approximation factor of SFA for the
critical utilization distribution.

As stated in Theorem 5.2 and Theorem 6.2, the approximation factor of SFA depends
on γ and M. Hence, we consider some practical settings for γ , namely γ = 2 and
γ = 3, and explore the impact of M on the approximation factor. Theoretically, the
approximation factor can go up to ∞ when M → ∞. However, practically speaking, the
number of cores in a voltage island is not a very large number, thus we would like to
explore the applicability of SFA for a limited number of cores per island.

Figure 10(a) presents the approximation factor, based on Theorem 6.2, for M up
to 32 when γ = 2 and γ = 3. Whenever the voltage island has at most 4 (8, 16,
32, respectively) cores and negligible overhead for sleeping is considered, SFA has an
approximation factor that can be bounded to at most 1.53 (1.74, 2.10, 2.69, respectively)
when γ = 3 and to at most 1.35 (1.49, 1.73, 2.09, respectively) when γ = 2. When
we consider nonnegligible overhead for sleeping, from Theorem 8.1, these values are
incremented by 1.

Motivated by the conclusions from Corollary 7.3, Figure 10(b) shows the approxima-
tion factor for SFA under the condition w1

wM
≥ 0.5 based on Theorem 7.2, that is, δ = 0.5.

Practically, this leads to a better approximation factor for SFA. When w1
wM

≥ 0.5 and
the voltage island has at most 4 (8, 16, 32, respectively) cores and negligible overhead
for sleeping is considered, SFA has an approximation factor that can be bounded to at
most 1.52 (1.67, 1.87, 2.10, respectively) when γ = 3 and to at most 1.34 (1.44, 1.55,

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:19

Fig. 10. Approximation factors for SFA.

1.66, respectively) when γ = 2. When we consider nonnegligible overhead for sleeping,
from Theorem 8.1, these values are incremented by 1.

10. SYSTEMS WITH DISCRETE FREQUENCIES

This section presents a simple extension for systems with power consumption function
P(s) = β + αsγ , from Eq. (1), and with discrete frequencies { f1, f2, . . . , fF} such that
f1 = smin and fF = smax. For notational brevity, we define the auxiliary frequencies
f0 = 0 and fF+1 → ∞.

For such systems, given the convexity of P(s)
s , the lower bound of the energy consump-

tion by considering continuous frequencies, namely E∗, is also a lower bound for the
optimal energy consumption under discrete frequencies.

To meet the timing constraints, the discrete execution frequency for SFA, denoted
as fi, will simply be chosen among all the available frequencies such that fi is the
lowest frequency ∈ { f1, f2, . . . , fF} with fi ≥ su = max{scrit, wM}. Moreover, the fol-
lowing lemma relates the ratio between the energy consumption of SFA for discrete
frequencies, denoted as Ediscrete

SFA , and the energy consumption of SFA for continuous
frequencies, previously defined as ESFA in Eq. (11).

LEMMA 10.1. When fi−1 < su ≤ fi, the energy consumption of SFA for execution by
running at frequency fi is equal to the energy consumption of SFA for execution by
running at frequency su, multiplied with θ (su) = P(fi)·su

P(su)· fi
.

PROOF. From Eq. (11), ESFA = L P(su)
su

∑M
i=1 wi. Similarly, when considering discrete

frequencies, Ediscrete
SFA = L P(fi)

fi

∑M
i=1 wi such that fi−1 < su ≤ fi. Therefore, Ediscrete

SFA
ESFA

=
P(fi)·su
P(su)· fi

= θ (su) and the lemma is proven.

From Lemma 10.1 we can derive the following theorem for the approximation factor
of SFA for systems with discrete frequencies.

THEOREM 10.2. For systems with power consumption function P(s) = β + αsγ and
with discrete available frequencies { f1, f2, . . . , fF} such that f1 = smin and fF = smax,
the approximation factor of SFA for discrete frequencies, defined as AFdiscrete

SFA , is

AFdiscrete
SFA ≤ AFSFA · θmax

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:20 S. Pagani and J.-J. Chen

with

θmax = max
{

P (fh) · scrit

P (scrit) · fh
, max

h<i≤F

P (fi) · fi−1

P (fi−1) · fi

}
such that fh−1 < scrit ≤ fh,

where fh is the lowest available discrete frequency higher than scrit and where θmax
depends on the hardware parameters α, γ and β, and also on the set of available
frequencies.

PROOF. For a given wM, the approximation factor of SFA for discrete frequencies can
be expressed as

AFdiscrete
SFA ≤ max

Ediscrete
SFA

E∗ = max

{
ESFA

E∗ · Ediscrete
SFA

ESFA

}
= AFSFA · max {θ (su)}

for which the worst case of θ (su) for any possible su, is denoted as θmax = max {θ (su)}.
Let frequency fh be the lowest available discrete frequency higher than scrit, that is,

fh−1 < scrit ≤ fh. Because P(s)
s is a convex and nondecreasing function when s ≥ scrit,

we know that, for a given su, the highest value of θ (su) happens: (1) when the value of
su is close to fi−1, if fh ≤ fi−1; or (2) when su = scrit, otherwise. Therefore, θmax is the
maximum value among all such cases and the theorem is proven.

For example, based on Theorem 10.2, for a system with α = 1.76 Watts
GHz3 , β = 0.5 Watts,

γ = 3, scrit = 0.52 GHz, and available frequencies {0.1 GHz, 0.2 GHz, . . . , 3.0 GHz}, the
value of θmax is about 1.14.

11. SYSTEMS WITH MULTIPLE VOLTAGE ISLANDS

The analysis of SFA in a single voltage island, in terms of energy consumption, can be
easily extended to consider multicore systems with multiple voltage islands as stated
in the following theorem.

THEOREM 11.1. For a system with V voltage islands under a given mapping of task
partitions, that is, each island has a set of task sets already assigned to it and these
task sets cannot be swapped between islands, the approximation factor (with respect
to the energy consumption) by running each voltage island with SFA against running
each island with the optimal DVFS schedule, denoted as AFV-islands

SFA , is equal to the
approximation factor of SFA in an individual voltage island, namely AFSFA.

PROOF. The proof comes directly from the definition of AFSFA in Eq. (3), that is,

AFV-islands
SFA = max

∑V
j=1 ESFA j∑V
j=1 EOPT j

≤
∑V

j=1 AFSFA · E∗
j∑V

j=1 E∗
j

= AFSFA,

where ESFA j , EOPT j , and E∗
j are the energy consumptions for SFA, for an opti-

mal schedule, and for the lower bound, all three during a hyperperiod on voltage
island j.

12. SIMULATIONS

This section simulates the performance of SFA for different scenarios in a single voltage
island. Instead of analysing the approximation factor by using Theorem 6.2, we use
Newton’s method for solving Eq. (8) for a given input instance, thus providing a concrete
factor based on the energy consumption of SFA.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:21

Fig. 11. Simulation results with α = 1.76 Watts
GHz3 , β = 0.5 Watts, γ = 3.

12.1. Simulation Setup

The parameters of P (s) are chosen as α = 1.76 Watts
GHz3 , β = 0.5 Watts, and γ = 3, resulting

in scrit = 0.52 GHz, modelled from the experimental measurements from Howard et al.
[2011] as explained in Section 2.1. We consider three cases for the cycle utilization
distributions of the task sets: (1) the theoretical critical utilization distribution from
Lemma 5.1 with δ = δ∗, (2) the critical utilization distribution based on Lemma 5.1 with
δ = 0.5 (for balanced task partitions), and also (3) 100 different random utilization dis-
tributions for every M. For all three utilization distributions, we consider wM stepped by
20 MHz in the range of: (a)

[
0.2 GHz; 1.3 GHz

]
and (b)

[
0.2 GHz; 3.0 GHz

]
, with differ-

ent hyperperiods L = 1, 2, . . . , 5 seconds for every wM. Case (a) corresponds to the prac-
tical setting of (noncontinuous) available frequencies {0.1 GHz, 0.2 GHz, . . . , 1.3 GHz}
in the 48-core system from Howard et al. [2011]; higher utilization values would lead to
infeasible solutions for partitioned scheduling using such platform. However, we would
like to test SFA for higher utilizations (particularly not so close to scrit), which is the
reason why we also consider case (b), which is a hypothetical platform with the same
power parameters but with available frequencies {0.1 GHz, 0.2 GHz, . . . , 3.0 GHz}.

For distributions (1) and (2), the maximum concrete factor among these (a) 280 and
(b) 705 settings for wM and L is reported as the peak factor for approximation, denoted
by ESFA

E∗ peak. For random distributions (3), the peak factor is taken from the: (a) 2.8 · 104

and (b) 7.05 · 104 values for every M.

12.2. Simulation Results

Figure 11(a) presents the results of ESFA
E∗ peak for the six configurations, namely (1a),

(1b), (2a), (2b), (3a), and (3b), together with the analytical upper bounds θmax · AFSFA
derived from Theorem 6.2 and Theorem 7.2 for γ = 3, with θmax = 1.14. Cases (1b)
and (2b) provide a lower bound for AFSFA when δ = δ∗ and δ = 0.5, respectively. The
difference between these values and the theoretical values of θmax · AFSFA is at most
0.62 for each case. This means that all the pessimism introduced in our analysis to
obtain a safe upper bound for the approximation factor of SFA does not provide results
so far away from simulated concrete cases. In fact, the theoretical θmax · AFSFA is not as

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:22 S. Pagani and J.-J. Chen

pessimistic as the assumptions lead to believe, even for discrete frequencies. For cases
(1a) and (2a), the difference against the theoretical factor is much larger, resulting
not only because of the precise computation of E∗ by using Newton’s method to solve
Eq. (8), but because smax is close to scrit (2.5 times its value). This result, although
making our analysis pessimistic for such a practical consideration, further supports
the effectiveness of SFA for such platforms, such as SCC [Intel 2009]. Moreover, for
cases (3a) and (3b), ESFA

E∗ peak is no more than 1.5, suggesting that for general cases SFA
is a simple and effective scheme for energy minimization and that complicated DVFS
solutions are not necessary unless better results for the worst case are required.

Figure 11(b) presents similar results as Figure 11(a), but for frame-based tasks using
SFA in combination with LTR. The nonnegligible energy overhead for entering/leaving
a low-power mode is set to 0.2 Joule. However, for computing E∗ we only consider the
energy consumption for executing, by ignoring the overhead for entering/leaving a low-
power mode that is a lower bound for the optimal energy consumption. The reason why
we choose this lower bound is due to the difficulty in deriving tighter lower bounds when
β �= 0 and when nonnegligible energy overhead for entering/leaving a low-power mode
is considered. Especially such ignorance in our setting also leads to the significantly
higher factor ESFA-LTR

E∗ peak for cases (3a) and (3b) when M ≤ 6 in Figure 11(b). This
happens because, for such cases, the energy consumption for executing results in low
values both for SFA and the lower bound, which are shadowed by only considering the
overhead for entering/leaving a low-power mode for SFA. Moreover, the effect of the
overhead is more important than the relation of scrit and smax, since similar results are
obtained for wM settings (a) and (b) for all three distributions (1), (2), and (3).

13. APPROXIMATION FACTOR FOR SFA CONSIDERING TASK PARTITIONING

The work in Pagani and Chen [2013] uses the results presented in this article and
extends our theoretical analysis to derive the approximation factor of SFA combined
with a task partitioning strategy, called the Double-Largest-Task-First (DLTF) strategy,
against the optimal task partitioning and optimal DVFS schedule in terms of energy
efficiency. For completeness, this section summarizes the results from Pagani and Chen
[2013].

The Double-Largest-Task-First (DLTF) strategy is based on the Largest-Task-First
strategy, which in turn is mainly a reformulation of the Longest-Processing-Time (LPT)
algorithm from Graham [1969] for the makespan problem. The approximation factor
of LTF in terms of task partitioning, denoted as ψLTF, is expressed as

ψLTF = 4
3

− 1
3M

due to the approximation factor of LPT for the makespan problem from Graham [1969].
With this consideration, the approximation factor for DLTF combined with SFA in

terms of energy consumption, when β = 0 and when β �= 0, defined as AFDLTF(β=0)
SFA and

AFDLTF
SFA respectively, is formalized in Theorem 13.1 and Theorem 13.2, respectively.

THEOREM 13.1. When applying DLTF for task partitioning, if β = 0, the approxima-
tion factor of DLTF combined with SFA in terms of energy consumption is

AFDLTF
SFA

(β=0) ≤ max
{

AFβ=0
SFA, ψ

γ−1
LTF · h

(
4M + 1

6M

)}
.

PROOF. This comes from Pagani and Chen [2013, Lemmas 4 and 6].

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:23

Fig. 12. Approximation factors for SFA combined with DLTF.

THEOREM 13.2. When applying DLTF for task partitioning, if β �= 0, the approxima-
tion factor of DLTF combined with SFA in terms of energy consumption is

AFDLTF
SFA ≤ max

⎧⎨
⎩AFSFA,

γ − 1

ψLTF
[
γ γ h

(4M+1
6M

)] 1
γ−1

+ ψ
γ−1
LTF · h

(
4M + 1

6M

)⎫⎬
⎭ .

PROOF. This comes from Pagani and Chen [2013, Lemmas 8 and 9].

The first case for both theorems, with values equal to the approximation factor of
SFA for a given task partition (presented in Theorem 5.2 and Theorem 6.2), happens
when there exists a task with much higher utilization than the rest of the tasks. For
a specific γ , after a certain number of cores per island, such a case dominates over the
other case in which the tasks can be more fairly partitioned. Furthermore, this effect
can be observed in Figure 12(a) and Figure 12(b), where we present the approximation
factor for DLTF combined with SFA in terms of energy consumption when β = 0 and
when β �= 0, respectively.

14. CONCLUSIONS

To the best of our knowledge, SFA is the state-of-the-art solution for energy effi-
ciency when considering periodic real-time tasks. In fact, SFA has been adopted by
several researchers in the past, for example, Devadas and Aydin [2010] and Nikitin
and Cortadella [2012], mainly because executing always at a single feasible frequency
inside a voltage island is a simple and intuitive scheme. Furthermore, since all the
cores run at a single frequency and no frequency alignment for DVFS between cores
is needed, any unicore dynamic power management technique for reducing the en-
ergy consumption for idling can be easily incorporated. We only focus on the analysis
of the approximation factor for the worst cases. The applicability of SFA with slack
reclamation to deal with early completion of tasks can be found in Devadas and Aydin
[2010].

In this article we have analysed the approximation factor of SFA for energy efficiency.
We have shown that the approximation factor can be bounded to a value depending on
γ and the number of cores in the voltage island. We also evaluated the lower bound of
the approximation factor for SFA by providing case studies with different utilization

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

158:24 S. Pagani and J.-J. Chen

distributions. The simulations show that the analytical upper bound is not far away
from the peak factor of approximation based on simulations and also that, in general
SFA is a good scheme, whereas the worst case only happens under particular utilization
distributions. Based on the simulation results for a concrete case study of SCC [Intel
2009], SFA is shown as a good approximation even for such worst cases. In other
words, our analysis is for the worst case and further practical considerations, such as
scrit close to smax for some platforms with 22nm technology, would make our analysis
more pessimistic, further supporting the effectiveness of SFA.

The analysis for SFA for fixed task sets (already mapped to cores) can be used as a
cornerstone for task partitioning, as shown by the work from Pagani and Chen [2013]
in which the results presented in this article are extended to derive the approximation
factor of SFA combined with a task partitioning strategy against the optimal task
partitioning and optimal DVFS schedule in terms of energy efficiency.

REFERENCES

Susanne Albers and Antonios Antoniadis. 2012. Race to idle: New algorithms for speed scaling with a sleep-
state. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 1266–1285.

Hakan Aydin and Qi Yang. 2003. Energy-aware partitioning for multiprocessor real-time systems. In Pro-
ceedings of the 17th International Parallel and Distributed Processing Symposium (IPDPS’03). 113–121.

Philippe Baptiste, Marek Chrobak, and Christoph Durr. 2012. Polynomial-time algorithms for minimum
energy scheduling. ACM Trans. Algor. 8, 3.

Shekhar Borkar. 2007. Thousand core chips: A technology perspective. In Proceedings of the 44th Design
Automation Conference (DAC’07). 746–749.

Jian-Jia Chen, Heng-Ruey Hsu, and Tei-Wei Kuo. 2006. Leakage-aware energy-efficient scheduling of real-
time tasks in multiprocessor systems. In Proceedings of the 12th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS’06). 408–417.

Jian-Jia Chen and Tei-Wei Kuo. 2007. Procrastination determination for periodic real-time tasks in leakage-
aware dynamic voltage scaling systems. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’07). 289–294.

Jian-Jia Chen and Lothar Thiele. 2010. Energy-efficient scheduling on homogeneous multiprocessor plat-
forms. In Proceedings of the ACM Symposium on Applied Computing (SAC’10). 542–549.

Pepijn J. de Langen and Ben H. H. Juurlink. 2006. Leakage-aware multiprocessor scheduling for low power.
In Proceedings of the 20th International Parallel and Distributed Processing Symposium (IPDPS’06).

Vinay Devadas and Hakan Aydin. 2010. Coordinated power management of periodic real-time tasks on chip
multiprocessors. In Proceedings of the International Conference on Green Computing (GREENCOMP’10).
61–72.

Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 263–269.
Sebastian Herbert and Diana Marculescu. 2007. Analysis of dynamic voltage/frequency scaling in chip-

multiprocessors. In Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED’07). 38–43.

Jason Howard, Saurabh Dighe, Sriram R. Vangal, Gregory Ruhl, Nitin Borkar, et al. 2011. A 48-core ia-32
processor in 45 nm cmos using on-die message-passing and dvfs for performance and power scaling.
IEEE J. Solid-State Circ. 46, 1, 173–183.

Intel. 2009. Single-chip cloud computer (scc). http://www.intel.com/content/www/us/en/research/intel-labs-
single-chip-cloud-overview-paper.html.

Sandy Irani, Sandeep Shukla, and Rajesh Gupta. 2003. Algorithms for power savings. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03). 37–46.

Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. 2004. Leakage aware dynamic voltage scaling
for real-time embedded systems. In Proceedings of the 41st Design Automation Conference (DAC’04).
275–280.

Chang L. Liu and James W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20, 1, 46–61.

Gabriel A. Moreno and Dionisio de Niz. 2012. An optimal real-time voltage and frequency scaling for uniform
multiprocessors. In Proceedings of the 18th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’12). 21–30.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme 158:25

Nikita Nikitin and Jordi Cortadella. 2012. Static task mapping for tiled chip multiprocessors with multiple
voltage islands. In Proceedings of the 25th International Conference on Architecture of Computing Systems
(ARCS’12). Springer, 50–62.

Santiago Pagani and Jian-Jia Chen. 2013. Energy efficient task partitioning based on the single frequency
approximation scheme. In Proceedings of the 34th IEEE Real-Time Systems Symposium (RTSS’13).
308–318.

Ronald L. Rardin. 1998. Optimization in Operations Research. Prentice Hall.
Euiseong Seo, Jinkyu Jeong, Seon-Yeong Park, and Joonwon Lee. 2008. Energy efficient scheduling of real-

time tasks on multicore processors. IEEE Trans. Parallel Distrib. Syst. 19, 11, 1540–1552.
Ruibin Xu, Dakai Zhu, Cosmin Rusu, Rami Melhem, and Daniel Mosse. 2005. Energy-efficient policies for

embedded clusters. In Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’05). 1–10.

Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. 2005. An approximation algorithm for energy-efficient
scheduling on a chip multiprocessor. In Proceedings of the Conference on Design, Automation, and Test
in Europe (DATE’05). 468–473.

Received September 2013; accepted May 2014

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 158, Publication date: September 2014.

