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Abstract—Energy-efficiency is an important issue in computing
systems, and operating within a safe power budget is a necessary
constraint. This paper presents a simple and practical solution
both for energy minimization and peak power reduction, called
Single Voltage Approximation (SVA) scheme, for periodic real-
time tasks on multi-core systems with a shared supply voltage
in a voltage island. SVA is inspired by the Single Frequency
Approximation (SFA) scheme, in which all the cores in the island
run at a single voltage and frequency such that all tasks can
meet their deadlines. In SVA, all the cores in the island are
also executed at the same single voltage as in SFA. However,
the frequency of each core is individually chosen, such that
the tasks in each core can meet their deadlines, but without
running at unnecessarily high frequencies. Thus, all the cores are
executing tasks all the time, and there is no need for any Dynamic
Power Management (DPM) technique for reducing the energy
consumption for idling. For task partitioning, SVA is combined
with the Double Largest Task First (DLTF) partitioning scheme.

Most importantly, this paper provides comprehensive analysis
for combining DLTF and SVA, deriving its worst-case behavior
both for energy minimization and peak power reduction, com-
pared against the optimal solutions. Our analysis shows that,
depending on the hardware, the energy consumption by combin-
ing DLTF and SVA is at most 1.95 (2.21, 2.42, 2.59, respectively),
compared to the optimal solutions, when the voltage island has
up to 4 (8, 16, 32, respectively) cores, which outperforms the
worst-case factors of SFA when the cores fail to sleep efficiently.
For peak power reduction, due to running at slower frequencies,
combining DLTF and SVA always outperforms SFA, both in aver-
age and corner cases. Finally, we extend our analysis considering
multi-core systems with discrete voltage and frequency pairs, and
multiple voltage islands.

Keywords—Single Voltage Approximation (SVA), Single Fre-
quency Approximation (SFA), Peak Power, Energy Efficiency, Task
Partitioning, Multiple Voltage Islands, Power Management

I. INTRODUCTION

ENERGY efficiency and low power design are major issues
in modern computing systems, for example to prolong

the battery lifetime of embedded systems or to reduce the
power bills for servers. This was a main motivation for
moving from single-core to multi-core platforms, mainly to
balance the power consumption and computation performance.
Furthermore, the trend of improvement of the power efficiency
in transistors is not following the current trend for higher
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integration. In the following years, this issue will result in
dramatical power density increases in chips with every new
process generation, deriving what is referred to as the dark
silicon problem [8], [26], where big areas of a chip will need
to remain gray (slowed down) or dark (turned off) at all times.

Reducing the peak power consumption is a major step
towards dealing with dark silicon. For example, consider the
Thermal Dynamic Power (TDP), which is a commonly used
abstraction that allows the system to guarantee that the thermal
constraints are satisfied [13]. By keeping the peak power
consumption below the TDP value, the system can safely run
without further thermal considerations. Nevertheless, energy
efficiency should only be sacrificed when there are no feasible
solutions under the given power constraints.

The difference between energy and power can make exist-
ing energy minimization schemes unsuitable for peak power
minimization. When referring to power consumption, the time
instant in question is absolutely relevant, given that power is an
instantaneous measurement. On the other hand, energy is the
integration of power through time. This means that minimizing
the energy consumption is generally equivalent to minimizing
the average power consumption, while the peak power con-
sumption values are ignored. An energy minimization strategy
that ignores the power budgets could easily violate the dark
silicon constraints, while consuming the same average power.

As shown in the literature, e.g. [15], the dynamic power
consumption (mainly generated by switching activities) and
the static power consumption (mainly generated by leakage
currents) are the two major sources of power consumption
in CMOS processors. Moreover, the power consumption in
a CMOS core is mainly a convex function. Thus, it is usually
better to execute at low frequencies both for energy and peak
power minimization by using Dynamic Voltage and Frequency
Scaling (DVFS) techniques. Nevertheless, for systems with
considerable static power consumption, executing at low fre-
quencies by recurring to greater parallelism might consume
more energy and power than using less cores at higher frequen-
cies, due to the simultaneous activation of several cores that
consume high static power for long periods of time. Moreover,
next-generation multi-core systems consider architectures with
several voltage islands, in which the cores in an island share
the same supply voltage, naturally consolidating a cluster [4],
[11]. For example, Intel’s Single-chip Cloud Computer (SCC)
[12], [14] counts with such a feature.

Motivation: In multi-core systems with a shared supply
voltage in a voltage island (or systems with a global supply
voltage) and periodic real-time tasks, it is necessary to choose
a policy for the task partitioning stage and to decide the voltage
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of the island and the frequencies of the cores for execution.
For periodic tasks, a practical strategy is to partition the

tasks using the Double Largest Task First (DLTF) scheme [23],
and then use a single voltage and frequency for execution.
Particularly, the lowest voltage and frequency such that all
tasks meet their deadlines, denoted as the Single Frequency
Approximation (SFA) scheme [22], [23]. However, under SFA,
cores with low computational requirements are forced to run
at high frequencies in order to meet the deadlines of the
highest loaded core. Another strategy is to use the same
single voltage as in SFA, but to choose the frequencies of the
cores individually, such that the tasks in all cores meet their
deadlines, but without executing cores at unnecessarily high
frequencies. We define such a strategy as the Single Voltage
Approximation (SVA) scheme.

Combining DLTF with SVA (referred to as DTLF-SVA)
is not the optimal DVFS scheduling strategy for energy
minimization or peak power reduction. Nevertheless, it is a
practical and simple solution, which significantly reduces the
overhead for changing the supply voltage of the islands and
frequencies of cores, because SVA does not require voltage or
frequency changes at run time. Moreover, given that all the
cores are executing tasks at all times, there is no need for any
Dynamic Power Management (DPM) technique for reducing
the energy consumption for idling. However, the worst-case
performance of DLTF-SVA in terms of energy efficiency and
peak power reduction is an open problem.

Objective: Motivated by the above discussions, the goal
of this paper is to present and analyze a simple and practi-
cal solution, both for energy minimization and peak power
reduction, which uses DLTF for task partitioning and SVA to
decide the voltage of the islands and the frequencies of the
cores. For the analysis, we compare such a scheme against the
optimal energy and peak power solutions, especially for the
state-of-the-art designs, that have a few number of cores per
voltage island. Furthermore, we compare these results against
the results of SFA [22], [23].

Our Contributions: For periodic real-time tasks in a
system with multiple voltage islands, our contributions are:
• We present the SVA scheme, and propose combining DLTF

and SVA for energy minimization and peak power reduction.
• We provide comprehensive analysis for the approximation

factor of combining DLTF and SVA, both for energy min-
imization and peak power reduction, in a single voltage
island with continuous voltages and frequencies.

• We compare the results of SVA against the results of SFA,
extending the results in [22], [23] for SFA considering a
more general power model for fair comparison.

• We extend our results to consider cores with a limited set
of available voltages and frequencies.

• We extend our results to consider systems with multiple volt-
age islands, by applying a dynamic programming algorithm
for mapping tasks sets to voltage islands [24].

II. RELATED WORK

Energy-efficient scheduling for homogeneous multi-core
systems with per-core DVFS has been widely explored for

real-time systems, e.g., [1], [5], [6], [28]. The work in [6]
shows that applying the Largest-Task-First (LTF) strategy for
task mapping results in solutions with energy consumption
approximation factors that depend on the hardware plat-
forms. Particularly, by turning off cores to reduce the energy
consumption, Xu et al. [28] and Chen et al. [6] propose
polynomial-time algorithms to derive task mappings that try
to execute at a critical frequency. Even though per-core DVFS
is energy-efficient, based on VLSI circuit simulations, Herbert
and Marculescu [11] suggest that it suffers from complicated
design problems, making it costly for implementation.

For systems with a shared supply voltage, Yang et al. [29]
use DVFS to minimize the energy consumption in systems
with negligible static power consumption and frame-based
real-time tasks. The assumptions in [29] are relaxed in [7],
by considering periodic real-time tasks with non-negligible
static and voltage-independent power consumptions and non-
negligible overhead for sleeping. For sets of periodic real-time
tasks, the analysis in [22] derives the worst-case approximation
factor for the Single Frequency Approximation (SFA) scheme,
in terms of energy consumption. The analysis is later extended
in [23] to also consider the task partitioning stage, presenting
the DLTF scheme for task partitioning.

The works mentioned above focus on the energy consump-
tion, and disregard the effects of the instantaneous power con-
sumption. In this aspect, there are many works in the literature
that focus on improving performance under a given power
budget [16], [18], [21]. However, these works do not address
the issue of energy consumption and do not provide any timing
guaranties, making them unsuited for real-time systems. To
the best of our knowledge, the only related work that focuses
on reducing the peak power consumption in real-time systems
was recently conducted by Lee et al. [17]. In [17], without
considering DVFS, authors propose a scheduling algorithm
that finds a set of concurrent executable tasks, such that the
design-time chip-level peak power consumption is minimized
and all timing requirements are satisfied. Nevertheless, energy
consumption is also not addressed in this work.

In conclusion, for real-time systems, due to the appearance
of the dark silicon problem, solutions that focus on energy
minimization without considering the peak power consumption
might exceed the available power budgets, and should therefore
be revisited considering additional constraints.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. Hardware Model
We focus in a single voltage island of a homogeneous

multi-core system with multiple voltage islands, where all
the M cores in the island have the same supply voltage at
any given time point, and the frequencies of the cores can
be chosen individually, e.g., one voltage island of SCC [12],
[14]. The island can change the shared supply voltage and
the frequencies of the cores by adopting DVFS. For a core to
stably support a frequency, the supply voltage of the island
has to be adjusted above a minimum value. This minimum
voltage value depends on the frequency, and higher frequencies
require higher minimum voltages. Particularly, in order to
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consume less power and to save energy, we adjust the supply
voltage of the island to the least available value such that
the highest frequency among all cores in the island achieves
stable execution, and thus, all cores in the island achieve stable
execution. We define the highest frequency among all cores in
the island as sM . For the analysis in Sections VI and VII
we consider continuous voltages and frequencies in the range
of [vmin, vmax] and [smin, smax], respectively. We then extend
these results in Section VIII, considering discrete voltage and
frequency pairs {(v1, f1) , (v2, f2) , . . . , (vF , fF )}.

Given that the voltage of the island is set to the minimum
value such that sM can be stably achieved, we denote the
power consumption of a core executing a certain task at
frequency s as Pcore (sM , s). Specifically, we use

Pcore (sM , s) = α·sMγ−1 ·s+ β ·sM + κ, (1)

where α > 0 is a constant dependent on the effective
switching capacitance, γ > 1 is related to the hardware,
α·sMγ−1 ·s ≥ 0 represents the dynamic power consumption,
β · sM ≥ 0 represents the static power consumption, and
κ ≥ 0 represents the independent power consumption. In
CMOS processors, γ is generally modeled equal to 3, e.g.,
[7], [22], [23], [29]. Because the voltage of the island depends
on sM , the dynamic power consumption of a core depends
on its frequency and the voltage of the island to the power
of γ − 1 (generally 2 in CMOS processors). Similarly, the
static power consumption is linearly related to the voltage of
the island. The independent power consumption is a constant
value for keeping the core in execution mode. Thus, running at
low voltages and frequencies reduces the power consumption.
This power consumption function has been widely used in the
literature, e.g., [1], [7], [28], and is more general than the
model used in [22], [23], [29]. Moreover, in case a core runs
at the frequency which decides the voltage of the island, the
power consumption becomes

Pcore (s) = α·sγ + β ·s+ κ. (2)

For example, Fig. 1 presents power consumption values for a
22 nm out-of-order Alpha 21264 core, based on simulations
conducted on gem5 [3] and McPAT [19] for an H.264 video
encoder from the Parsec benchmark suite [2]. As shown in
Fig. 1, these experimental power values can be modeled by
power parameters γ=3, α= 0.27 W

GHz3 , β= 0.52 W
GHz , and κ=

0.5 W, resulting in a goodness of fit of: Sum of Squares due to
Error (SSE) of 1.058, a Square of the correlation between the
response values and the predicted response values (R-square)
of 0.9992, an Adjusted R-square of 0.9992 and a Root Mean
Squared Error (RMSE) of 0.1626.

When a core finishes executing all its workload in the
ready queue, it has to wait until a new task instance arrives.
During this waiting interval, the core can stay idle, consuming
P idle

core (sM ) = β · sM + κ. Moreover, the core can also go to a
low-power mode, e.g., sleep mode, that consumes κsleep ≥ 0
power. As we can transfer the power consumption κsleep

to the system for being active, without loss of generality,
we can set Pcore (s) to Pcore (s) − κsleep, and P idle

core (sM ) to
P idle

core (sM ) − κsleep, such that we can disregard the effect of
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Fig. 1: Experimental results for a 22 nm out-of-order Alpha
21264 core, based on simulations conducted on gem5 [3] and
McPAT [19] for an H.264 video encoder from the Parsec
benchmark suite [2], and the derived power model Pcore (s)
when γ=3, α=0.27 W

GHz3 , β=0.52 W
GHz , and κ=0.5 W.

the power consumption of a core in sleep mode. In this way,
since not even the optimal solution can optimize for κsleep, we
only focus on the effective optimization region and we avoid
possible masking problems in systems with large κsleep values.

Energy is the integration of power through time, such that
when a core consumes constant power during interval ∆t, the
energy consumed by the core is Ecore (sM , s) = Pcore (sM , s) ·
∆t. During interval ∆t, a core running at frequency s executes
a certain amount ∆c of core cycles, such that ∆t = ∆c

s . Hence,

Ecore (sM , s) =
(
α·sMγ−1 ·s+ β ·sM + κ

) ∆c

s
. (3)

Furthermore, for the case in which a core runs at the frequency
which decides the voltage of the island, i.e., s=sM , the energy
consumption on the core becomes

Ecore (s) = (α·sγ + β ·s+ κ)
∆c

s
. (4)

Equation (4) is a convex function with respect to s. Thus, by
setting the first order derivative of Equation (4) with respect
to s to zero, the minimum value for Ecore (s) is found when
s is γ

√
κ

(γ−1)α
. In order to consider the case when such a

value is smaller than smin, the critical frequency is defined
as scrit = max

{
smin, γ

√
κ

(γ−1)α

}
. The critical frequency repre-

sents the frequency that minimizes the energy consumption
for execution, when the overhead for sleeping is considered
negligible, as shown in [5], [15]. This happens because running
at frequencies smaller than scrit consumes excessive indepen-
dent energy, which surpasses the saves in dynamic energy
consumption. However, in Equation (3) for a given sM and
∆c, the dynamic energy is constant with respect to s, and the
static and independent energy are decreasing with respect to
s. This implies that running at frequencies slower than sM
increases the energy for execution by increasing the execution
time, while reducing the energy consumption for idling. Fig. 2
shows examples of energy consumptions with respect to s for
different values of sM .

B. Task Model
This paper considers N periodic real-time tasks with im-

plicit deadlines, i.e., {τ1, τ2, . . . , τN}. We assume that there
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Fig. 2: Ecore (sM , s) when γ= 3, α= 0.27 W
GHz3 , β= 0.52 W

GHz ,
κ=0.5 W, and ∆c = 109 cycles.

is no data dependency among tasks, i.e., we consider in-
dependent tasks. Every task τj releases an infinite number
of task instances with period (and relative deadline) pj and
every instance has worst-case execution cycles ej . We consider
partitioned scheduling, in which each task is assigned onto a
core, that is, when a task instance arrives to the system it is
executed on the assigned core. Specifically, we use Earliest-
Deadline-First (EDF) scheduling [20], where the task instance
with the earliest absolute deadline on each core has the highest
priority. The least common multiple among all periods of all
tasks is called the hyper-period, denoted as L.

After the task partitioning is completed by using M cores,
all N tasks are grouped into M task sets (we assume that if the
partitioning strategy decides to group tasks into less than M
task sets, dummy empty task sets are included in order to have
M task sets). When talking about energy minimization, the
optimal task partitioning is defined as a partitioning solution
that results in the minimum energy consumption when using
the optimal DVFS schedule for energy minimization. Similarly,
when talking about peak power reduction, the optimal task
partitioning is defined as a partitioning solution that results
in the minimum peak power consumption when using the
optimal DVFS schedule for peak power reduction. Later, in
Section V-B, we show that both optimal task partitions are
equivalent for the lower bounds of energy and peak power
consumption. Therefore, for simplicity in presentation, we use
a single notation for both cases and the optimal task partition
is defined as {T∗1,T∗2, . . . ,T∗M}. Without loss of generality,
we assume that task set T∗i is assigned on core i, and we
define its cycle utilization as w∗i =

∑
τj∈T∗i

ej
pj

, with unit cycles
per second. By defining w∗0 = 0 for notational purposes
and without loss of generality, we order the cores such that
0 = w∗0 ≤ w∗1 ≤ w∗2 ≤ · · · ≤ w∗M .

In our proposed scheme, the tasks are partitioned by using
DLTF [23], which is based on the widely used Largest-
Task-First (LTF) strategy [29]. LTF is a Worst-Fit-Decreasing
heuristic algorithm, and is namely a reformulation of the
Longest-Processing-Time (LPT) algorithm from [9] for the
makespan problem. Task partitioning strategy DLTF considers
LTF as an initial solution, and then regroups the tasks into
less cores, such that as many cores as possible can be put to
sleep (saving energy for idling) without increasing the energy
consumption for execution. For completeness, the pseudo-code

Algorithm 1 Largest-Task-First (LTF) strategy
Input: Tasks {τ1, τ2, . . . , τN};
Output: Task sets

{
TLTF

1 ,TLTF
2 , . . . ,TLTF

M

}
;

1: Sort all tasks in a non-increasing order of their cycle utilizations;
2: for i = 1 to M do
3: TLTF

i ← ∅;
4: end for
5: for j = 1 to N do
6: Find the smallest wLTF

i ;
7: TLTF

i ← TLTF
i + {τj};

8: end for
9: Re-order TLTF

i by a non-decreasing order of their cycle utilization;
10: Return

{
TLTF

1 ,TLTF
2 , . . . ,TLTF

M

}
;

Algorithm 2 Double-Largest-Task-First (DLTF) strategy
Input: Tasks {τ1, τ2, . . . , τN};
Output: Task sets

{
TDLTF

1 ,TDLTF
2 , . . . ,TDLTF

M

}
;

1: Execute LTF for {τ1, τ2, . . . , τN};
2: wmax ← max

{
scrit, w

LTF
M

}
;

3:
{
TDLTF

1 ,TDLTF
2 , . . . ,TDLTF

M

}
←
{
TLTF

1 ,TLTF
2 , . . . ,TLTF

M

}
;

4: for i = 1 to M − 1 do
5: for all τk ∈ TDLTF

i do
6: for j =M to i+ 1 do
7: if ek

pk
+ wDLTF

j ≤ wmax then
8: TDLTF

j ← TDLTF
j + {τk};

9: Remove {τk} from TDLTF
i ;

10: break for loop j;
11: end if
12: end for
13: end for
14: end for
15: Return

{
TDLTF

1 ,TDLTF
2 , . . . ,TDLTF

M

}
;

for LTF and DLTF are presented in Algorithm 1 and Algo-
rithm 2, respectively, with a worst-case time complexity of
O (MN +N logN) and O

(
M2N +N logN

)
, respectively.

After partitioning tasks with DLTF, all N tasks are grouped
into M task sets

{
TDLTF

1 ,TDLTF
2 , . . . ,TDLTF

M

}
. Again, without

loss of generality, task set TDLTF
i is assigned on core i, and its

cycle utilization is wDLTF
i =

∑
τj∈TDLTF

i

ej
pj

. The workload to be
completed on core i during the hyper-period is L·wDLTF

i . The
resulting number of cores with cycle utilization larger than
0 is defined as M 6=0. Defining wDLTF

0 = 0, without loss of
generality, the cores are ordered such that 0=wDLTF

0 ≤wDLTF
1 ≤

wDLTF
2 ≤· · ·≤wDLTF

M . Furthermore,
∑N
j=1

ej
pj

=
∑M
i=1 w

DLTF
i =∑M

i=1 w
∗
i is denoted as the total cycle utilization, which does

not depend on the task partitioning strategy.
For the regrouping of tasks, DLTF considers auxiliary cycle

utilization wmax = max
{
scrit, w

LTF
M

}
, and the tasks are re-

grouped into less cores such that after regrouping the cycle
utilization among all cores in the island is no more than wmax.
When wDLTF

M > scrit, if after the task partitioning there is only
one task in TDLTF

M , then wDLTF
M ≤ w∗M , as the cycle utilization

of the task in TDLTF
M is the lower bound of the maximum

utilization in the optimal task partitioning. Moreover, when
wDLTF
M > scrit, if after the task partitioning there are at least

two tasks in TDLTF
M , according to [23], [29], it holds that

wLTF
1

wLTF
M

≥ 1

2
and

wDLTF
M

w∗M
≤ θLTF =

4

3
− 1

3M
, (5)
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where θLTF is the approximation factor of LTF, due to the
approximation factor of LPT for the makespan problem [9].

It has been well studied, e.g., [20], that executing core i
at frequencies higher than or equal to wDLTF

i with EDF guar-
anties that all tasks assigned to core i will meet their timing
constraints. Throughout the paper we implicitly consider that
wDLTF
M ≤ smax; otherwise, DLTF does not derive a feasible

solution. If there exist a feasible solution for the optimal task
partitioning under smax, i.e., w∗M ≤ smax, but there is no
feasible solution for DLTF, this infeasibility can be resolved
by a resource augmentation scheme to augment speed smax to(

4
3 −

1
3M

)
smax, derived from the relation between wDLTF

M and
w∗M in Equation (5).

C. Problem Definition
For N periodic tasks that are assigned into a voltage island,

the objective of this paper is to present and analyze a practical
solution, that assigns the N tasks onto the M cores in the
island and then applies a DVFS schedule, such that the energy
consumption in the voltage island is minimized and the peak
power consumption is reduced. Specifically, we consider that
the tasks are partitioned using the Double-Largest-Task-First
(DLTF) strategy, and the Single Voltage Approximation (SVA)
scheme is used as our DVFS schedule.

Most importantly, we analyze the approximation factor
(worst-case behavior) of such an approach both for energy
minimization and for peak power reduction, against the op-
timal task partitioning and optimal DVFS solution for each
case, defined AFenergy

DLTF-SVA and AFpeak power
DLTF-SVA , respectively. The

approximation factor for energy minimization is

AFenergy
DLTF-SVA = max

EDLTF
SVA

E∗OPT
≤ max

EDLTF
SVA

E∗↓
, (6)

where E∗OPT is the optimal energy consumption for the optimal
DVFS schedule and optimal task partitioning during a hyper-
period, EDLTF

SVA is the energy consumption for partitioning with
DLTF under SVA during a hyper-period, and E∗↓ is a lower
bound for the optimal energy consumption for the optimal task
partitioning and any feasible DVFS schedule during a hyper-
period. Similarly, for peak power reduction we have

AFpeak power
DLTF-SVA = max

P̂DLTF
SVA

P̂ ∗OPT

≤ max
P̂DLTF

SVA

P̂ ∗↓
, (7)

where P̂ ∗OPT is the optimal peak power consumption for the
optimal DVFS schedule and optimal task partitioning, P̂DLTF

SVA
is the peak power consumption for partitioning with DLTF
under SVA, and P̂ ∗↓ is a lower bound for the optimal peak
power consumption for the optimal task partitioning and any
feasible DVFS schedule. Since, E∗OPT and P̂ ∗OPT are not easily
obtained, in the analysis we use lower bounds E∗↓ and P̂ ∗↓ .

Note that SVA does not require any DVFS or DPM capabil-
ities at run time. However, to explore the approximation factor
we need E∗↓ and P̂ ∗↓ , in which changing the supply voltage of
the island and the frequencies of the cores is with negligible
overhead and the available frequencies are continuous between

(0, smax]. This approach results in a safe lower bound for the
optimal energy and peak power consumptions.

Furthermore, we would like to compare the results of DLTF-
SVA against those for combining DLTF and SFA (referred to
as DLTF-SFA). For such a purpose, we extend the analysis
in [22], [23] by considering a more general power model,
and derive a tighter approximation factor for DLTF-SFA for
energy minimization than in [23]. Moreover, we analyze the
approximation factor of DLTF-SFA in terms of peak power
reduction, which is not considered in [22], [23].

IV. SINGLE VOLTAGE APPROXIMATION (SVA) SCHEME

After the task partitioning, every core i has been assigned
with the corresponding task set TDLTF

i , with cycle utilization
wDLTF
i . Thus, under SVA, to just meet the timing constraints

using EDF [20], we set the frequency of core i to wDLTF
i for

all i = 1, 2, . . . ,M . In this way, the highest frequency among
all cores is sM = wDLTF

M . In order to consume less power
and to save energy, the voltage of the island is set to the
minimum available voltage such that frequency wDLTF

M can be
stably achieved. The time complexity of SVA is O (M) to
ensure the feasibility, where M is the number of cores in the
island and this complexity comes from evaluating the highest
cycle utilization and choosing the frequency of each core.

Under SVA, the voltage of the island and the frequencies
of the cores do not change at run time. Furthermore, unlike
in SFA, as shown in the example in Fig. 3b, under SVA cores
do not need to be put to sleep, because si = wDLTF

i for all
i = 1, 2, . . . ,M , and thus all cores are always busy such
that they just meet their timing constraints. This means that
the power consumption on every core, and thus the power
consumption in the entire voltage island, is constant through
the entire hyper-period, resulting in a peak power consumption
which is equivalent to the average power consumption. Hence,
the peak power consumption in a voltage island of DLTF-SVA,
which we define as P̂DLTF

SVA , is expressed as

P̂DLTF
SVA = α·wDLTF

M
γ−1∑M

i=1 w
DLTF
i +M 6=0

(
β ·wDLTF

M + κ
)
.

To consider the worst case, when wDLTF
M ≤ scrit we have

to assume that after the regrouping with DLTF the voltage
of the island can be set according up to scrit. Moreover, if∑M
i=1 w

DLTF
i ≤ scrit DLTF will partition all tasks into a single

core, and this becomes a single core DVFS problem. For such
a case, from Equation (4) and Fig. 2, we know that running at
slow frequencies might consume excessive energy due to the
static and independent power consumption. Therefore, unless
running a single core at scrit already exceeds the power budget
(case in which we simply run at the maximum frequency
allowed by the power budget), when

∑M
i=1 w

DLTF
i ≤ scrit the

core is executed at frequency scrit. Finally, P̂DLTF
SVA becomes

P̂DLTF
SVA ≤



α·scrit
γ + β ·scrit+κ if

∑M
i=1 w

DLTF
i ≤scrit

α·scrit
γ−1

M∑
i=1

wDLTF
i +M 6=0 (β ·scrit+κ) if wDLTF

M ≤scrit

α·wDLTF
M

γ−1
M∑
i=1

wDLTF
i +M 6=0

(
β ·wDLTF

M +κ
)

otherwise.

(8)
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(a) SFA: Single frequency su is set to 0.8GHz,
and the voltage is set according to su.
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(b) SVA: The frequency on each core is
set according to the cycle utilizations, and

the voltage is set according to 0.8GHz.
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(c) A schedule satisfying
the deep sleeping property.

Fig. 3: Examples for 4 cores for SFA, SVA, and a schedule satisfying the deep sleeping property. The hyper-period is 10 seconds,
and the cycle utilizations of the cores are 0.2 GHz, 0.4 GHz, 0.6 GHz, and 0.8 GHz. Under (a) SFA, cores go to sleep when they
have no more workload on their ready queue. Under (b) SVA, cores just meet their timing constraints, and hence they are always
busy. A speeding-up schedule like case (c) can result in the optimal solution when the voltage and frequencies are chosen such
that there total power consumption is constant and the core with the highest cycle utilization is always busy.

Furthermore, considering that the workload to be completed
on core i during the hyper-period is L ·wDLTF

i , the total energy
consumption on the island of DLTF-SVA, defined as EDLTF

SVA ,
is

EDLTF
SVA ≤



L (α·scrit
γ + β ·scrit+κ)

∑M
i=1 w

DLTF
i

scrit
if
∑M
i=1 w

DLTF
i ≤scrit

L

[
α·scrit

γ−1
M∑
i=1

wDLTF
i +M 6=0 (β ·scrit+κ)

]
if wDLTF

M ≤scrit

L

[
α·wDLTF

M
γ−1

M∑
i=1

wDLTF
i +M 6=0

(
β ·wDLTF

M +κ
)]

otherwise.

(9)

V. LOWER BOUNDS

This section provides a lower bound for the energy con-
sumption and for the peak power consumption for periodic
real-time tasks, needed to obtain the approximation factors in
Equation (6) and Equation (7). To obtain such lower bounds,
we start by unrolling the periodic tasks in the hyper-period
into frame-based real-time tasks, such that all tasks arrive at
time 0 and have period and deadline equal to the hyper-period
L. This is also a special case of periodic tasks, which implies
that this approach is not necessarily pessimistic, as later shown
in the evaluations in Section IX. Furthermore, as mentioned in
Section III-C, we consider negligible overhead for changing
the voltage and the frequencies, and continuous values for
voltages and frequencies, which results in safe lower bounds.

A. Lower Bound for the Energy Consumption
For the special case of frame-based tasks, tasks can be

scheduled according to the deep sleeping property [29] (every
core is put to sleep after executing its workload), as shown
in the example in Fig. 3c. For such a schedule, the period
(also hyper-period in our case) is divided into M fragments.

During fragment i, there are M− i+1 active cores (the rest of
the cores are sleeping), all running at speed si during time ti,
with the minimum voltage such that si can be stably achieved.
Moreover, each active core executes ci = L

(
w∗i − w∗i−1

)
core

cycles during ti, such that ti = ci
si

. For a less flexible power
model, the work in [22] proposes a lower bound for the energy
consumption based on a schedule satisfying the deep sleeping
property, by applying the Kuhn-Tucker conditions [25] under
constraints

∑M
i=1 ti ≤ L and ti ≥ 0 for i = 1, 2, . . . ,M .

Considering our more general power model, the lower bound
for the energy consumption in the voltage island during the
hyper-period is

E∗↓ =
∑M
i=1 (M − i+ 1)

(
α· ci

γ

tiγ
+ β · citi + κ

)
ti. (10)

Similar to [22], we apply the Kuhn-Tucker conditions [25]
to Equation (10) under constraints

∑M
i=1 ti ≤ L and ti ≥

0 for i = 1, 2, . . . ,M . Due to space constraints, the details
are omitted. Once the Lagrangian is solved, the set of ti that
minimizes the energy consumption for the lower bound is

ti = γ

√
α(γ−1)(M−i+1)

(M−i+1)κ+λ ci, (11)

which coincides with Equation (7) in [22], and thus the same
conclusions apply. Namely, when

∑M
i=1 ti < L, then λ is

0, and all the active cores run at frequency scrit, which is
a feasible solution when w∗M ≤ scrit. Furthermore, when∑M
i=1 ti = L, then λ > 0, and is no longer feasible to meet

the timing constraints by running all cores at scrit. Hence, from
Equation (11), it holds that∑M

i=1 ti =
∑M
i=1

γ

√
α(γ−1)(M−i+1)

(M−i+1)κ+λ ci = L, (12)

in which for a specific case study, since the only unknown
variable is λ and Equation (12) is strictly decreasing with
respect to λ, one possibility to derive λ is to apply New-
ton’s method. However, there is no explicit form to solve
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· · ·w∗1
w∗2

w∗M -1

w∗M

· · ·
w′1 w′2 w′M -1

w′M=wDLTF
M

Fig. 4: Example of cycle utilization adjustment from
w∗1 , w

∗
2 , . . . , w

∗
M to w′1, w

′
2, . . . , w

′
M , when w∗M ≥ wDLTF

M .

Equation (12) arithmetically. Therefore, we approximate E∗↓
by defining an auxiliary frequency denoted as sdyn, such that
scrit<sdyn<smax. When w∗M ≤sdyn, then E∗↓ is approximated
by considering that all cores run at scrit. When w∗M > sdyn,
then E∗↓ is approximated by considering that κ=0, such that
Equation (12) can be solved arithmetically, resulting in

ti=
L(w∗i−w

∗
i−1)

γ√M−i+1∑M
j=1(w∗j−w∗j−1)γ

√
M−j+1

and si=
∑M
j=1(w

∗
j−w

∗
j−1)γ
√
M−j+1

γ√M−i+1
.

(13)
Moreover, it holds that

∑M
i=1

(
w∗i − w∗i−1

)
(M − i+ 1) is

equal to
∑M
i=1 w

∗
i . Thus, extending the results from [22] with

our more general power model, the lower bound for the energy
consumption is

E∗↓=


L (α·scrit

γ + β ·scrit + κ)
∑M
i=1 w

∗
i

scrit
if w∗M≤sdyn

Lα

[
M∑
i=1

(
w∗i − w∗i−1

)
γ
√
M − i+ 1

]γ
+Lβ

M∑
i=1

w∗i otherwise.

(14)
Furthermore, for a given total cycle utilization,

it was proven in [23] that the energy consumption
Lα[

∑M
i=1(w

∗
i−w

∗
i−1)

γ√M−i+1]
γ can be reduced by an adjustment

in the cycle utilizations of the optimal task partitioning.
Specifically, starting from w∗1 , w

∗
2 , . . . , w

∗
M , the energy

consumption is further reduced by using w′1, w
′
2, . . . , w

′
M ,

defined in Equation (15). Fig. 4 shows an example of this
adjustment.

w′1 =w′2 = · · ·=w′M−1 =
∑M
i=1 w

∗
i−w

′
M

M−1

w′M =

{
wDLTF
M if w∗M ≥ w

DLTF
M

max
{
wDLTF
M

θLTF
,
∑M
i=1 w

∗
i

M

}
if w∗M < wDLTF

M

(15)

For our lower bound in Equation (14), when w∗M ≤ sdyn
using this adjustment does not change the energy consump-
tion because the total cycle utilization is constant, that is,∑M
i=1 w

∗
i =
∑M
i=1 w

′
i. Moreover, when w∗M > sdyn, given that

in our lower bound in Equation (14) we have the same energy
consumption expression that in [23] plus a factor depending
on
∑M
i=1 w

∗
i , this cycle utilization adjustment also reduces the

lower bound of the energy consumption for the more general
power model. Hence, E∗↓ becomes

E∗↓=


L (α·scrit

γ + β ·scrit + κ)
∑M
i=1 w

′
i

scrit
if w∗M≤sdyn

L·α·w′M
γ
[
1 +

w′1
w′M

(
γ
√
M − 1

)]γ
+Lβ

M∑
i=1

w′i otherwise,

(16)
and Fig. 5 presents an example for E∗↓ .

1 2 3 4
0

5

10

15

20

25

scrit sdyn

w′M [GHz]

E
∗ ↓

[J
ou

le
]

E∗↓ by Newton’s Method
E∗↓ from Equation (16)

Fig. 5: E∗↓ from Equation (16), and by using Newton’s Method
for Equation (12), with γ=3, α=0.27 W

GHz3 , β=0.52 W
GHz , κ=

0.5 W, M = 16, L= 1 sec., constant
∑M
i=1 w

′
i = 5 · 109 cycles

second ,

and w′1 =w′2 = · · ·=w′M−1 =
∑M
i=1 w

∗
i−w

′
M

M−1 .

We can derive an important conclusion from Fig. 5. That
is, given that E∗↓ is in the denominator of Equation (6), in
order to derive an approximation factor without unnecessary
pessimism, the value of sdyn in Equation (16) should be
chosen such that E∗↓ becomes a continuous function. Hence,
in Lemma 1 we choose sdyn for this to hold.

Lemma 1: Equation (16) is a continuous function when

sdyn = scrit ·[γ ·h (δ)]
1

γ−1 ,

where δ =
∑M−1
i=1 w′i

w′M (M−1) , δmax = γ−1+M−γ γ
√
M

(γ−1)(M γ√
M−M− γ√

M+1)
, and

h (δ) =
1− δ + δM(

1− δ + δ γ
√
M
)γ ≤ h (δmax) .

Proof: For Equation (16) to be continuous, we match both
parts and find the w′M for which the equality holds. That is,

α·w′M
γ [1−δ(γ

√
M−1)]

γ
+β
∑M
i=1 w

′
i=(α·γ·scrit

γ−1+β)
∑M
i=1 w

′
i

and then, since
∑M
i=1 w

′
i=w′M [1 + δ (M − 1)], we have

w′M
γ−1

= γ·scrit
γ−1(1−δ+δM)

[1−δ(γ
√
M−1)]

γ =scrit
γ−1 ·γ ·h (δ) ,

where this w′M is sdyn. Finally, since h (δ) is a convex function
of δ when γ > 1, by taking the first order derivative of h (δ)
with respect to δ, its maximum value happens when δ is δmax.
Thus, the lemma is proven.

B. Lower Bound for the Peak Power Consumption
Given that energy is the integration of power through time,

when wDLTF
M ≥ scrit, minimizing the energy consumption while

satisfying the timing constraints is equivalent to minimizing the
average power consumption while also satisfying the timing
constraints. This means that the lower bound for the peak
power consumption is found when the power consumption
is constant for the entire hyper-period, and equivalent to
the minimum average power consumption. Namely, when
wDLTF
M ≥ scrit, we have that E∗↓ = P̂ ∗↓ ·L.
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Nevertheless, the critical frequency is not involved when
talking about power consumption, and running at slower
voltages and frequencies (as long as the timing constraints
allow it) always results in smaller power consumption values.
Therefore, we only consider the part of Equation (16) that does
not involve scrit. Moreover, given that at least one core will be
active, there is at least κ power consumption. Thus, P̂ ∗↓ is

P̂ ∗↓ = α ·w′M
γ
[
1 +

w′1
w′M

(
γ
√
M − 1

)]γ
+β

∑M
i=1 w

′
i+κ. (17)

VI. APPROXIMATION FACTOR ANALYSIS: DLTF-SVA
A. Energy Minimization Analysis for DLTF-SVA

This subsection presents the approximation factor analysis
of DLTF-SVA in terms of energy consumption. That is, the
worst-case behavior of such an approach for energy minimiza-
tion, against the optimal task partitioning and optimal DVFS
solution, defined as AFenergy

DLTF-SVA. For such a purpose, we first
derive Lemma 2, in which we find an upper bound of M 6=0

when using DLTF with respect to the total cycle utilization.
Lemma 2: For a given wDLTF

M and total cycle utilization∑M
i=1 w

DLTF
i , an upper bound of M 6=0 with DLTF is

M 6=0 ≤

min
{
M, 2

∑M
i=1 w

DLTF
i

scrit

}
if wDLTF

M ≤ scrit

min
{
M, 2

∑M
i=1 w

DLTF
i

wDLTF
M

− 1
}

if wDLTF
M > scrit.

Proof: Algorithm DLTF is mainly a first-fit bin packing
algorithm, in which, from the initial solution of LTF, we
try to pack the tasks into the minimum amount of bins of
size wmax = max

{
scrit, w

LTF
M

}
. This implies that after the

regrouping, if in the initial solution of LTF wLTF
M > scrit,

then task set M is unchanged, such that TDLTF
M = TLTF

M and
wDLTF
M = wLTF

M > scrit. Moreover, if wLTF
M ≤ scrit, then most

likely TDLTF
M 6=TLTF

M , but it will hold that wDLTF
M ≤ scrit. From

the properties of the first-fit bin packing algorithm [27], it
holds that M 6=0 ≤ min

{
M, 2

∑M
i=1 w

DLTF
i

scrit

}
if wDLTF

M ≤ scrit,

and M 6=0≤min
{
M, 1 + 2

∑M
i=1 w

DLTF
i −wDLTF

M

wDLTF
M

}
if wDLTF

M >scrit.
Thus, the lemma is proven

From Equation (6), Equation (9), and Equation (16), we can
express AFenergy

DLTF-SVA as

AFenergy
DLTF-SVA ≤

max





1 if
∑M
i=1 w

DLTF
i ≤ scrit

α·scrit
γ−1·

∑M
i=1 w

DLTF
i +M 6=0(β·scrit+κ)

(α·γ·scritγ−1+β)
∑M
i=1 w

′
i

if wDLTF
M ≤ scrit

and w∗M ≤ sdyn

α·wDLTF
M

γ−1·
∑M
i=1 w

DLTF
i +M 6=0(β·wDLTF

M +κ)
(α·γ·scritγ−1+β)

∑M
i=1 w

′
i

if wDLTF
M > scrit

and w∗M ≤ sdyn

α·wDLTF
M

γ−1·
∑M
i=1 w

DLTF
i +M 6=0(β·wDLTF

M +κ)

α·w′M
γ

[
1+

w′1
w′
M

(γ
√
M−1)

]γ
+β
∑M
i=1 w

′
i

otherwise.


.

(18)
Considering Lemma 1, and Lemma 2, the following lemmas

present the worst-cases of Equation (18) for the different
conditions. Theorem 1 then summarizes these lemmas to
present the final approximation factor.

Lemma 3: The approximation factor for energy minimiza-
tion of DLTF-SVA, when wDLTF

M ≤ scrit, w∗M ≤ sdyn, and∑M
i=1 w

DLTF
i >scrit, is expressed as

AFenergy?1

DLTF-SVA ≤
α·scrit

γ−1 + min {M, 2}
(
β + κ

scrit

)
α·γ ·scrit

γ−1 + β

Proof: For this case, replacing M 6=0 from Lemma 2 in
Equation (18), we have

AFenergy?1

DLTF-SVA ≤
α·scrit

γ−1 + min
{

M∑M
i=1 w

DLTF
i

, 2
scrit

}
(β ·scrit + κ)

α·γ ·scrit
γ−1 + β

,

which given that α, β, κ, γ, and scrit are constants, it is
maximized if and only if the min function is maximized.
Clearly, this happens when

∑M
i=1 w

DLTF
i →scrit, reaching the

expression in the statement of the lemma.
Lemma 4: The approximation factor for energy minimiza-

tion of DLTF-SVA, when wDLTF
M > scrit, w∗M ≤ sdyn, and

w∗M ≥wDLTF
M , is expressed as

AFenergy?2

DLTF-SVA ≤

α·γ ·h (δ)·scrit
γ−1 + min{M,1+2(M−1)δ}

1−δ+δM

(
β + κ

scrit·[γ·h(δ)]
1

γ−1

)
α·γ ·scrit

γ−1 + β
.

For every M , we compute the maximum AFenergy?2

DLTF-SVA among
all δ, such that 0≤δ≤ 1.

Proof: For this case, inside Equation (18), we re-
place M 6=0 by min

{
M, 2

∑M
i=1 w

DLTF
i

wDLTF
M

− 1
}

from Lemma 2,

wDLTF
M by w′M from Equation (15), and

∑M
i=1 w

DLTF
i by

w′M (1− δ + δM). Moreover, we replace w′M by sdyn from
Lemma 1, such that E∗↓ becomes a continuous function. Thus,
we reach the expression in the statement of the lemma.

Lemma 5: The approximation factor for energy minimiza-
tion of DLTF-SVA, when wDLTF

M > scrit, w∗M ≤ sdyn, and
w∗M <wDLTF

M , is expressed as

AFenergy?3

DLTF-SVA≤
α·γ ·h (δ)·(θLTF ·scrit)

γ−1
+

M ·β·θLTF+ M·κ

scrit[γ·h(δ)]
1

γ−1

1−δ+δM
α·γ ·scrit

γ−1 + β
,

For every M , we compute the maximum AFenergy?3

DLTF-SVA among
all δ, such that 4M+1

6M ≤δ≤ 1.
Proof: Similar to the proof of Lemma 4, inside Equa-

tion (18), we replace
∑M
i=1 w

DLTF
i by w′M (1− δ + δM), and

we replace w′M by sdyn from Lemma 1 such that E∗↓ be-
comes a continuous function. From Equation (5) we have
that M · wDLTF

M ≥
∑M
i=1 w

DLTF
i ≥ M+1

2 · wDLTF
M . Hence, it

holds that M ≤ 2
∑M
i=1 w

DLTF
i

wDLTF
M

− 1 for all M ≥ 1, and M 6=0

is set to M . Furthermore, from Equation (15) we have that
w′M = max

{
wDLTF
M

θLTF
,
∑M
i=1 w

∗
i

M

}
, in which case

∑M
i=1 w

∗
i

M is only
considered if the cycle utilization adjustment in from Equa-
tion (15) does not reach wDLTF

M

θLTF
without reducing w′M below the
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Fig. 6: Example of AFenergy
DLTF-SVA when γ = 3, α = 0.27 W

GHz3 ,
β=0.52 W

GHz , and κ=0.5 W.

average cycle utilization. This means that w′M =
wDLTF
M

θLTF
is the

worst case for the relation between w′M and wDLTF
M , and the

other case is not considered. Finally, from Lemma 5 in [23], it
holds that δ=

∑M−1
i=1 w′i

w′M (M−1) ≥
4M+1

6M . Thus, the lemma is proven.

Theorem 1: The approximation factor for energy minimiza-
tion of DLTF-SVA, against the optimal task partitioning and
optimal DVFS solution, is expressed as

AFenergy
DLTF-SVA ≤ max

{
AFenergy?1

DLTF-SVA,AFenergy?2

DLTF-SVA,AFenergy?3

DLTF-SVA

}
,

according to the definitions in Lemma 3, 4, and 5.
Proof: This comes just from taking the maximum among

all cases from Lemma 3, Lemma 4, and Lemma 5.
Fig. 6 shows an example of AFenergy

DLTF-SVA, for a power
function modeled from simulations conducted on gem5 [3]
and McPAT [19] for a 22 nm out-of-order Alpha 21264 core,
which results in power parameters γ = 3, α = 0.27 W

GHz3 ,
β = 0.52 W

GHz , and κ = 0.5 W (details in Section III-A).
For the given hardware parameters, Fig. 6 shows that the
approximation factor in terms of energy consumption of DLTF-
SVA is at most 1.95 (2.21, 2.42, 2.59, respectively), when the
voltage island has up to 4 (8, 16, 32, respectively) cores.

B. Peak Power Reduction Analysis for DLTF-SVA
This subsection presents the approximation factor analysis

for DLTF-SVA in terms of peak power reduction. That is, the
worst-case behavior of such an approach for peak power reduc-
tion, against the optimal task partitioning and optimal DVFS
solution. From Equation (7), Equation (8), and Equation (17),
this is

AFpeak power
DLTF-SVA ≤

max





α·scrit
γ+β·scrit+κ

α·w′M
γ

[
1+

w′1
w′
M

(γ
√
M−1)

]γ
+β
∑M
i=1 w

′
i+κ

if
M∑
i=1

wDLTF
i ≤scrit

α·scrit
γ−1∑M

i=1 w
DLTF
i +M 6=0(β·scrit+κ)

α·w′M
γ

[
1+

w′1
w′
M

(γ
√
M−1)

]γ
+β
∑M
i=1 w

′
i+κ

if wDLTF
M ≤scrit

α·wDLTF
M

γ−1∑M
i=1 w

DLTF
i +M 6=0(β·wDLTF

M +κ)

α·w′M
γ

[
1+

w′1
w′
M

(γ
√
M−1)

]γ
+β
∑M
i=1 w

′
i+κ

otherwise.


.

(19)

The following lemmas present the worst cases of Equation (19)
for the different conditions. Theorem 2 then summarizes these
lemmas to present the final approximation factor.

Lemma 6: The approximation factor for peak power reduc-
tion of DLTF-SVA, when

∑M
i=1 w

DLTF
i ≤scrit, is expressed as

AFpeak power?1

DLTF-SVA ≤ α·scrit
γ + β ·scrit + κ

κ
.

Proof: For this case, since in Equation (19) α ·scrit
γ +

β · scrit + κ is constant, the worst case happens when∑M
i=1 w

DLTF
i → 0, such that there is only independent power

consumption in the lower bound, and the lemma is proven.
Lemma 7: The approximation factor for peak power reduc-

tion of DLTF-SVA, when
∑M
i=1 w

DLTF
i >scrit and wDLTF

M ≤scrit,
is expressed as

AFpeak power?2

DLTF-SVA ≤
α·scrit

γ−1 + min
{
M
w′M

, 2(1−δ+δM)
scrit

}
β·scrit+κ
1−δ+δM

α·w′M
γ−1 · 1

h(δ) + β + κ
w′M (1−δ+δM)

.

For every M , we compute the maximum AFpeak power?2

DLTF-SVA among
all δ and all w′M , such that 0≤δ≤ 1 and scrit

1−δ+δM <w′M ≤scrit.
Proof: For this case, inside Equation (19), we replace∑M

i=1 w
DLTF
i with w′M (1− δ + δM), M 6=0 from Lemma 2,

and δ and h (δ) from Lemma 1. Thus, we reach the expression
in the statement of the lemma and the lemma is proven.

Lemma 8: The approximation factor for peak power reduc-
tion of DLTF-SVA, when wDLTF

M > scrit and w∗M ≥ wDLTF
M , is

expressed as

AFpeak power?3

DLTF-SVA ≤
α·w′M

γ
+ min {M, 1 + 2 (M − 1) δ} β·w

′
M+κ

1−δ+δM

α·w′M
γ · 1
h(δ) + β ·w′M + κ

1−δ+δM
.

For every M , we compute the maximum AFpeak power?3

DLTF-SVA among
all δ and all w′M , such that 0≤δ≤ 1 and scrit<w

′
M ≤smax.

Proof: For this case, inside Equation (19), we replace∑M
i=1 w

DLTF
i with w′M (1− δ + δM), M 6=0 from Lemma 2,

and δ and h (δ) from Lemma 1. Furthermore, from Equa-
tion (15) we have that w′M = wDLTF

M . Thus, we reach the
expression in the statement of the lemma.

Lemma 9: The approximation factor for peak power reduc-
tion of DLTF-SVA, when wDLTF

M > scrit and w∗M < wDLTF
M , is

expressed as

AFpeak power?4

DLTF-SVA ≤
α·θLTF

γ−1 ·w′M
γ

+M · β·θLTF·w′M+κ
1−δ+δM

α·w′M
γ · 1
h(δ) + β ·w′M + κ

1−δ+δM
.

For every M , we compute the maximum AFpeak power?4

DLTF-SVA among
all δ and w′M , such that 4M+1

6M ≤δ≤ 1 and scrit
θLTF

<w′M ≤smax.
Proof: For this case, inside Equation (19), we replace∑M

i=1 w
DLTF
i with w′M (1− δ + δM), M 6=0 from Lemma 2,

and δ and h (δ) from Lemma 1. Moreover, from Equa-
tion (15) and Lemma 5 in [23], we have that w′M =

max
{
wDLTF
M

θLTF
,
∑M
i=1 w

∗
i

M

}
, and δ=

∑M−1
i=1 w′i

w′M (M−1) ≥
4M+1

6M . As shown

in Lemma 5, for this case it holds that M≤2
∑M
i=1 w

DLTF
i

wDLTF
M

−1 for
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all M ≥1, and w′M =
wDLTF
M

θLTF
is the worst case for the relation

between w′M and wDLTF
M . Thus, the lemma is proven.

Theorem 2: The approximation factor for peak power re-
duction of DLTF-SVA, against the optimal task partitioning
and optimal DVFS solution, is expressed as

AFpeak power
DLTF-SVA ≤ max

{
AFpeak power?1

DLTF-SVA , AFpeak power?2

DLTF-SVA ,

AFpeak power?3

DLTF-SVA , AFpeak power?4

DLTF-SVA

}
,

according to the definitions in Lemma 6, 7, 8, and 9.
Proof: This comes from taking the maximum among all

cases from Lemma 6, Lemma 7, Lemma 8, and Lemma 9.

VII. COMPARING DLTF-SVA AGAINST DLTF-SFA
This section compares the worst-case efficiency of DLTF-

SVA against the worst-case efficiency of DLTF-SFA. Given
that in this paper we use a more general power model than the
one used in [22], [23], in order to have a fair comparison we
must first extend the analysis from [22], [23]. Without such
an extension, it would be possible to draw wrong conclusions,
due to comparing approximation factors for different power
models. Furthermore, [22], [23] do not include the analysis of
peak power reduction for SFA.

The frequencies used by SFA are (1) scrit if wDLTF
M ≤ scrit,

and (2) wDLTF
M otherwise. Thus, the energy consumption in the

island for combining DLTF and SFA during a hyper-period is

EDLTF
SFA =

L (α·scrit
γ + β ·scrit + κ)

∑M
i=1w

DLTF
i

scrit
if wDLTF

M ≤scrit

L
(
α·wDLTF

M
γ

+ β ·wDLTF
M + κ

)∑M
i=1w

DLTF
i

wDLTF
M

otherwise.

The peak power consumption in the island occurs when all
cores execute tasks simultaneously, e.g., at the beginning of
every hyper-period when at least one task in each core has
arrival time zero, as shown in Fig. 3a. Thus, the peak power
consumption in the island for combining DLTF and SFA is

P̂DLTF
SFA =


α·scrit

γ + β ·scrit + κ if
∑M
i=1 w

DLTF
i ≤scrit

M 6=0 (α·scrit
γ + β ·scrit + κ) if wDLTF

M ≤scrit

M 6=0
(
α·wDLTF

M
γ

+ β ·wDLTF
M + κ

)
otherwise.

A. Energy Minimization Analysis for DLTF-SFA
The approximation factor for combining DLTF and SFA is

presented in Theorem 3 and Theorem 4.
Theorem 3: The approximation factor for energy minimiza-

tion of DLTF-SFA, when there is negligible overhead for
sleeping, against the optimal task partitioning and optimal
DVFS solution, is expressed as

AFenergy
DLTF-SFA

(no overheads)
≤ max

{
α·γ·h(δmax)·scrit

γ−1+β+ κ

scrit[γ·h(δmax)]
1

γ−1

α·γ·scritγ−1+β ,

α·γ·h( 4M+1
6M )·(θLTF·scrit)

γ−1+β+ κ

θLTF·scrit[γ·h( 4M+1
6M )]

1
γ−1

α·γ·scritγ−1+β

}
.

Proof: We divide EDLTF
SFA by E∗↓ from Equation (16) to

express the energy consumption ratio. Then, similar to SVA,
we replace wDLTF

M according to the corresponding relation
with w′M from Equation (15), and we replace w′M by sdyn

from Lemma 1. Given that
(
α·γ ·scrit

γ−1 + β
)∑M

i=1 w
′
i in

Equation (16) is constant for a given
∑M
i=1 w

′
i, then the

worst case for the approximation factor happens when sdyn
is maximized. For the case that w∗M <wDLTF

M , from Lemma 5
in [23] it holds that δ=

∑M−1
i=1 w′i

w′M (M−1)≥
4M+1

6M . Thus, the theorem
is proven.

Theorem 4: The approximation factor for energy minimiza-
tion of DLTF-SFA, when there is non-negligible overhead
for sleeping, against the optimal task partitioning and optimal
DVFS solution, is expressed as

AFenergy
DLTF-SFA ≤ AFenergy

DLTF-SFA
(no overheads)

+
γ − 1

γ
.

Proof: When there is negligible overhead for sleeping,
if β = 0, the result from Theorem 3 coincides with that of
Theorem 4 in [23]. This happens because β=0 is actually the
worst case. Hence, when β>0 Theorem 5 of [23] still holds,
proving the theorem.

B. Peak Power Reduction Analysis for DLTF-SFA

The analysis is similar to that for SVA. We first divide
P̂DLTF

SFA by P̂ ∗↓ from Equation (17), and then consider all cases.
The following lemmas present the worst cases for the different
conditions. Theorem 5 then summarizes these lemmas.

Lemma 10: The approximation factor AFpeak power
DLTF-SFA , when∑M

i=1 w
DLTF
i ≤scrit, is expressed as

AFpeak power?1

DLTF-SFA ≤ α·scrit
γ + β ·scrit + κ

κ
.

Proof: This comes from the proof of Lemma 6.
Lemma 11: The approximation factor AFpeak power

DLTF-SFA , when∑M
i=1 w

DLTF
i >scrit and wDLTF

M ≤scrit, is expressed as

AFpeak power?2

DLTF-SFA ≤
min

{
M
w′M

, 2(1−δ+δM)
scrit

}
α·scrit

γ+β·scrit+κ
1−δ+δM

α·w′M
γ−1 · 1

h(δ) + β + κ
w′M (1−δ+δM)

.

For every M , we compute the maximum AFpeak power?2

DLTF-SFA among
all δ and all w′M , such that 0≤δ≤ 1 and scrit

1−δ+δM <w′M ≤scrit.
Proof: The proof is similar to the proof of Lemma 7.

Lemma 12: The approximation factor AFpeak power
DLTF-SFA , when

wDLTF
M >scrit and w∗M ≥wDLTF

M , is expressed as

AFpeak power?3

DLTF-SFA ≤
min {M, 1 + 2 (M − 1) δ} α·w

′
M
γ+β·w′M+κ

1−δ+δM

α·w′M
γ · 1
h(δ) + β ·w′M + κ

1−δ+δM
.

For every M , we compute the maximum AFpeak power?3

DLTF-SVA among
all δ and all w′M , such that 0≤δ≤ 1 and scrit<w

′
M ≤smax.

Proof: The proof is similar to the proof of Lemma 8.
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Lemma 13: The approximation factor AFpeak power
DLTF-SFA , when

wDLTF
M >scrit and w∗M <wDLTF

M , is expressed as

AFpeak power?4

DLTF-SFA ≤ M ·α·(θLTF · w′M )
γ

+M ·β ·θLTF ·w′M +M ·κ
α·w′M

γ · 1−δ+δMh(δ) + β ·w′M (1− δ + δM) + κ
.

For every M , we compute the maximum AFpeak power?4

DLTF-SVA among
all δ and w′M , such that 4M+1

6M ≤δ≤ 1 and scrit
θLTF

<w′M ≤smax.
Proof: The proof is similar to the proof of Lemma 9.

Theorem 5: The approximation factor for peak power re-
duction of DLTF-SVA, against the optimal task partitioning
and optimal DVFS solution, is expressed as

AFpeak power
DLTF-SFA ≤ max

{
AFpeak power?1

DLTF-SFA , AFpeak power?2

DLTF-SFA ,

AFpeak power?3

DLTF-SFA , AFpeak power?4

DLTF-SFA

}
,

according to the definitions in Lemma 10, 11, 12, and 13.
Proof: The proof is similar to the proof of Lemma 9.

C. Numerical Results: DLTF-SVA against DLTF-SFA

Now that we have closed-form expressions for all approx-
imation factors, we can compare the worst-case efficiency of
DLTF-SVA, against the worst-case efficiency of DLTF-SFA,
for an example power function modeled from simulations
conducted on gem5 [3] and McPAT [19] for a 22 nm out-of-
order Alpha 21264 core running an H.264 video encoder from
the Parsec benchmark suite [2].

The comparison is presented in Fig. 7 and Fig. 8. With
respect to peak power reduction, Fig. 8 shows that SVA always
outperforms SFA, as expected. Furthermore, Fig. 7 shows that
in the worst-cases for energy minimization SVA outperforms
SFA when there is non-negligible overhead for sleeping, and
the opposite happens when there is negligible overhead for
sleeping. In practical terms, this means that if SFA manages to
sleep efficiently, it will save more energy than SVA at the cost
of having a higher peak power consumption. Nevertheless, if
SFA fails to sleep efficiently (that is, cores mostly remain idle
because there is not enough time for them to enter the sleep
mode and return to execution mode), then SVA will save more
energy than SFA.
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Fig. 8: AFpeak power
DLTF-SVA and AFpeak power

DLTF-SFA example for several M
values, when γ=3, α=0.27 W

GHz3 , β=0.52 W
GHz , and κ=0.5 W.

VIII. DISCRETE VOLTAGE AND FREQUENCY PAIRS

When the system has discrete voltage and frequency pairs
{(v1, f1) , (v2, f2) , . . . , (vF , fF )}, the voltage of the island
is set according to fm such that fm−1 < wDLTF

M ≤ fm,
and the frequency of core i is set to fj such that fj−1 <
wDLTF
i ≤ fj . Because now we consider that the cores execute

at frequencies slightly higher than their cycle utilization, it
no longer holds that all cores are always busy, an thus some
cores will be kept idle during a short time. Therefore, by
keeping the cores idle when they finish all their workload
in the ready queue, the worst-case energy consumption and
peak power consumption ratio for considering discrete voltage
and frequency pairs against the continuous cases is ρmax

SVA =

max

{
α·fmγ−1·

∑M
i=1 w

DLTF
i +M 6=0(β·fm+κ)

α·wDLTF
M

γ−1·
∑M
i=1 w

DLTF
i +M 6=0(β·wDLTF

M +κ)

}
.

There are two extreme cases for ρmax
SVA: (1) the total cy-

cle utilization is really small, such that the static and in-
dependent energy/power consumptions dominate; or (2) the
total cycle utilization is high, for which the highest total
cycle utilization is M 6=0 ·wDLTF

M . Moreover, the worst case
for ρmax

SVA happens when wDLTF
M → fm−1 and wDLTF

i →
fj−1 for all i = 1, 2, . . . ,M − 1. Therefore, we have that
ρmax

SVA = max
1<i≤F

{
max

{
β·fi+κ
β·fi−1+κ ,

α·fiγ−1·fi−1+β·fi+κ
α·fi−1

γ+β·fi−1+κ

}}
. Fi-

nally, the approximation factors become ρmax
SVA ·AFenergy

DLTF-SVA and
ρmax

SVA ·AFpeak power
DLTF-SVA . For example, for a system with γ = 3,

α = 0.27 W
GHz3 , β = 0.52 W

GHz , κ = 0.5 W, and frequencies
{0.1 GHz, 0.2 GHz, . . . , 4.0 GHz}, the value of ρmax

SVA is 1.096.

IX. EXPERIMENTAL EVALUATIONS

This section presents experimental evaluations conducted
with gem5 [3] and McPAT [19]. We compare the power and
energy efficiency of DLTF-SVA and DLTF-SFA against the
peak power and energy lower bounds.

A. Setup
We run our simulations for a single voltage island, for

which we consider two different cases for the number of
cores in the island: 8 cores and 16 cores. We consider 22 nm
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out-of-order Alpha 21264 cores, with available frequencies
{0.1 GHz, 0.2 GHz, . . . , 4.0 GHz}. The minimum voltage for
each frequency is taken from the work in [10]. The cores are
composed by several units: an instruction fetch unit (IFU), an
execution unit (EXU), a load and store unit (LSU), an out-of-
order (OOO) issue/dispatch, and a private L1 cache.

For benchmarks, we consider two applications from the
Parsec benchmark suite [2]: an H.264 video encoder, and a
body track application. Each application is executed as a single
independent thread in gem5 [3] (for all different frequencies)
to obtain performance statistics, and then in McPAT [19]
(for all different voltages for each frequency) to obtain the
corresponding power consumptions. Thus, a task is an instance
of one of these two types of applications, and by selecting
different deadlines/periods we can consider different cycle
utilizations. Furthermore, we test 5·106 different combinations
of tasks, with a random number of tasks, random periods and
random cycle utilizations, as well as tasks that result in cycle
utilization distributions according to the analyzed worst cases.

We partition the tasks with DLTF, and we schedule them
in each individual core according to EDF. For each core in
SVA and for the island in SFA, the execution frequency is
chosen as the closest available frequency that is higher than
or equal to the required cycle utilization. The voltage for the
island is chosen as the minimum voltage for stable execution
for the core running at the highest frequency. As mentioned
in Section VIII, since cores execute at frequencies higher than
their cycle utilization, cores will be idle during short intervals
for SVA, and during longer intervals for SFA. We assume that
the time overhead of a core for entering the sleep mode and
returning to execution mode is 100 ms. Under SVA, when a
core has no more workload on its ready queue, the core can
be simply kept idle1. Under SFA, if the idle time in a core is
less than 100 ms, then the core is kept idle (consuming idle
power); and if it is larger, then the core is put to sleep (taking
it 100 ms to enter the sleep mode and returning to execution
mode), consuming idle power only during 100 ms.

To evaluate our previous analysis, we need to also compare
against the peak power and energy lower bounds, for which
the power values from McPAT can be modeled by power
parameters γ= 3, α= 0.27 W

GHz3 , β= 0.52 W
GHz , and κ= 0.5 W

(details in Section III-A). Furthermore, we use Newton’s
Method to solve Equation (12) with 200 iterations, since this
is possible for concrete cases and it reduces the pessimism.

B. Results
Fig. 9 and Fig. 10 present the results for energy minimiza-

tion and peak power reduction, respectively, for DLTF-SVA
and DLTF-SFA against the lower bounds, for M = 8 and
M = 16. The horizontal axis represents the cycle utilization
of the highest loaded core after partitioning with DLTF, i.e.,
wDLTF
M . Among all the tested cases for each frequency, we

show the maximum experimental ratio between DLTF-SVA
or DLTF-SFA and the corresponding lower bound. The saw-
tooth shapes observed in the figures are due to the regrouping

1There is no restriction to further combine SVA with a DPM technique. We
only assume that cores are kept idle in order to account for the worst cases.
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Fig. 9: Experimental results of energy minimization for DLTF-
SVA and DLTF-SFA, against the energy lower bound.
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Fig. 10: Experimental results of peak power for DLTF-SVA
and DLTF-SFA, against the peak power lower bound.

done by DLTF, which changes the resulting number of cores
with cycle utilizations larger than 0 when possible, i.e., M 6=0.
Moreover, Fig. 11 and Fig. 12 directly compare DLTF-SVA
to DLTF-SFA. The figures show the maximum and average
experimental ratios between DLTF-SVA and DLTF-SFA, and
vice-versa.

In Fig. 9, for the same number of cores, we can observe
that DLTF-SFA generally behaves better than DLTF-SVA for
the worst-cases with respect to energy minimization. However,
there are several cases in which DLTF-SVA is more efficient.
As explained in Section VII-C, this depends on how efficiently
DLTF-SFA manages to bring cores into sleep mode. When
DLTF-SFA fails to sleep efficiently, DLTF-SVA will save more
energy. This can also be observed in Fig. 11. Contrarily, Fig. 10
and Fig. 12 show that DLTF-SVA always consumes less peak
power than DLTF-SFA, both in average and for the worst-
cases.

X. SYSTEMS WITH MULTIPLE VOLTAGE ISLANDS

For systems with multiple voltage islands that use SFA as
DVFS schedule in individual islands, the work in [24] presents
the Dynamic Voltage Island Assignment (DYVIA) algorithm
for mapping tasks sets to islands. After the task partitioning,
DYVIA results in the optimal task set mapping under SFA.
Due to the similarities between SFA and SVA, the proofs from
[24] can be trivially extended to show that DYVIA also results
in the optimal task set mapping for SVA under our power
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Fig. 11: Experimental results of energy minimization compar-
ing maximum and average ratios for DLTF-SVA against DLTF-
SFA, for an island with M=16 cores.
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Fig. 12: Experimental results of peak power reduction com-
paring maximum and average ratios for DLTF-SVA against
DLTF-SFA, for an island with M=16 cores.

model (details are omitted due to space constraints). Moreover,
[24] extends the analysis of SFA for energy minimization in
a single voltage island, to consider combining DYVIA and
SFA in multiple voltage islands. Such an analysis can also
be trivially extended to derive the approximation factor for
combining DYVIA and SVA in multiple voltage islands under
a given task partition, resulting in the same approximation
factors as those for a single voltage island.

XI. CONCLUSIONS

In this paper we have presented the Single Voltage Approx-
imation (SVA) scheme and we have provided comprehensive
analysis for the worst-case behavior of DLTF-SVA, both in
terms of energy minimization and peak power reduction. The
analysis and the experimental evaluations show that the effi-
ciency for energy minimization of DLTF-SVA outperforms
that of DLTF-SFA when the latter fails to efficiently bring
cores to low-power modes. Nevertheless, when DLTF-SFA
manages to sleep efficiently, DLTF-SVA results in higher
energy consumptions. With respect to peak power reduction,
DLTF-SVA always consumes less peak power than DLTF-
SFA. This happens because the static and independent power
consumption are equivalent for DLTF-SVA and DLTF-SFA in
most cases (the peak power consumption of DLTF-SFA is
bigger with low cycle utilizations), but the dynamic power
consumption of DLTF-SFA can be much bigger than that

of DLTF-SVA, due to running cores at higher frequencies.
Therefore, DLTF-SVA is much more efficient than DLTF-SFA
for peak power reduction in all cases, both average and corner
cases. Because of this reason, DLTF-SVA can potentially
satisfy the chip’s power budget for many more cases than
DLTF-SFA would. Furthermore, this can be achieved without
unnecessary sacrifices in terms of energy consumption.
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