
Copyright c©2016 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained
from the IEEE by sending an email to pubs-permissions@ieee.org. Available in the IEEE Xplore Digital Library.

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 1

Thermal Safe Power (TSP): Efficient Power Budgeting for
Heterogeneous Manycore Systems in Dark Silicon

Santiago Pagani, Student Member, IEEE, Heba Khdr, Jian-Jia Chen, Member, IEEE, Muhammad
Shafique, Member, IEEE, Minming Li, Member, IEEE, and Jörg Henkel, Fellow, IEEE

Abstract—Chip manufacturers provide the Thermal Design Power (TDP) for a specific chip. The cooling solution is designed to
dissipate this power level. But because TDP is not necessarily the maximum power that can be applied, chips are operated with
Dynamic Thermal Management (DTM) techniques. To avoid excessive triggers of DTM, usually, system designers also use TDP as
power constraint. However, using a single and constant value as power constraint, e.g., TDP, can result in significant performance
losses in homogeneous and heterogeneous manycore systems. Having better power budgeting techniques is a major step towards
dealing with the dark silicon problem. This paper presents a new power budget concept, called Thermal Safe Power (TSP), which is an
abstraction that provides safe power and power density constraints as a function of the number of simultaneously active cores.
Executing cores at any power consumption below TSP ensures that DTM is not triggered. TSP can be computed offline for the worst
cases, or online for a particular mapping of cores. TSP can also serve as a fundamental tool for guiding task partitioning and core
mapping decisions, specially when core heterogeneity or timing guarantees are involved. Moreover, TSP results in dark silicon
estimations which are less pessimistic than estimations using constant power budgets.

Index Terms—Thermal Safe Power (TSP), Thermal Design Power (TDP), Power Management, Dark Silicon, Heterogeneity

F

1 INTRODUCTION

FOR a specific chip, the common industry practice is to
provide the system designers with the Thermal De-

sign Power (TDP). According to [15], TDP “is the highest
expected sustainable power while running known power
intensive real applications” and it should be a safe power
level in which to run the system. Hence, the cooling solution
should be designed to dissipate TDP, such that running at
this target power level does not cause any thermal prob-
lems. However, TDP is not the maximum achievable power.
To avoid the system from possible overheating (and the
associated reduction of reliability [1]), chips are provided
with Dynamic Thermal Management (DTM) techniques.
DTM can power-down cores, gate their clocks, reduce their
supply voltage and frequency, boost-up the fan speed, etc.
By directly measuring the temperature, if the system heats
up above a certain threshold, DTM is triggered such that the
temperature is reduced [15].

Usually, system designers also use TDP as a power
constraint in order to avoid excessive triggers of DTM.
However, on manycore systems, using a single and constant
value as a power constraint for each core or for the entire
chip (e.g., TDP), can result in significant performance losses,
or in frequent triggers of DTM and thus a total performance
much smaller than expected by the task partitioning and
core mapping algorithms. Furthermore, given that the con-
tinuous increasing performance demands and power con-
sumption issues have led to the emergence of heterogeneous
architectures [29], power budgeting techniques should be
developed to natively handle core heterogeneity. Moreover,

This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Centre Invasive Computing
[SFB/TR 89] and Resource-Constrained Data Analysis [SFB 876].

• Santiago Pagani, Heba Khdr, Muhammad Shafique, and Jörg Henkel
are with the Chair for Embedded Systems (CES), Karlsruhe Insti-
tute of Technology (KIT), Karlsruhe, Germany. E-mail: pagani@kit.edu,
heba.khdr@kit.edu, shafique@kit.edu, henkel@kit.edu

• Jian-Jia Chen is with the Department of Informatics, TU Dortmund,
Dortmund, Germany. E-mail: jian-jia.chen@cs.uni-dortmund.de

• Minming Li is with the Department of Computer Science, City Uni-
versity of Hong Kong (CityU), Hong Kong, China. E-mail: min-
ming.li@cityu.edu.hk

(52.4) (52.9) (53.2) (53.0)

(53.2) (54.1) (55.3) (54.3)

(54.2) (57.0) (77.3) (57.2)

(55.4) (77.8) (80.0) (78.5)

14.67

14.67 14.67 14.67

(a) 4 active cores

(78.9) (79.5) (77.8) (59.5)

(79.5) (80.0) (77.6) (59.4)

(77.8) (77.6) (60.9) (58.1)

(59.5) (59.4) (58.1) (57.0)

11.27 11.27 11.27

11.27 11.27 11.27

11.27 11.27

(b) 8 active cores

(77.6) (78.7) (78.7) (77.6)

(78.7) (80.0) (80.0) (78.7)

(78.7) (80.0) (80.0) (78.7)

(77.6) (78.7) (78.7) (77.6)

8.06 8.06 8.06 8.06

8.06 8.06 8.06 8.06

8.06 8.06 8.06 8.06

8.06 8.06 8.06 8.06

(c) 16 active cores
50

60

70

80

[◦C]

Fig. 1: Example for a maximum temperature of 80◦C. Top
numbers are the power consumptions (in Watts) of each
active core (boxed in black). Bottom numbers in parenthesis
are the temperatures in the center of each core (in ◦C).
Detailed temperatures are shown according to the color bar.

different applications consume different amounts of power
depending on the number of executing threads, selected fre-
quency levels, and types of cores. This makes task partition-
ing and core mapping a very challenging process, specially
when involving core heterogeneity or timing guarantees.

Motivational Example: This example provides some
insight on the drawbacks of using single and constant power
constraints. For simplicity of presentation, consider a hy-
pothetical manycore system with 16 homogeneous cores of
size 2.31 × 2.31mm (simple in-order Alpha 21264 cores in
45 nm, simulated with McPAT [20]), arranged in 4 rows and
4 columns. Assume a threshold temperature that triggers
DTM of 80◦C, and a cooling solution taken from the default
configuration of HotSpot [14] (detailed in Section 7.1). To
account for several constant power budgets, we consider
four cases. Specifically, 58.7W per-chip, 90.2W per-chip,
129.0W per-chip, and 8.06W per-core.

Running simulations with HotSpot, Fig. 1a shows the
resulting steady-state temperatures on the chip when 4 cores
consume 14.67W each (58.7W in total). Similarly, Fig. 1b
and Fig. 1c show the resulting steady-state temperatures on
the chip when 8 cores consume 11.27W each (90.2W in
total) and when 16 cores consume 8.06W each (129.0W in
total), respectively. For all cases, although different power
budgets are considered, at least one core reaches 80◦C in
the steady-state. Furthermore, Fig. 2 presents the maximum

mailto:pubs-permissions@ieee.org
http://dx.doi.org/10.1109/TC.2016.2564969
http://invasic.de
http://sfb876.tu-dortmund.de/index.html
mailto:pagani@kit.edu
mailto:heba.khdr@kit.edu
mailto:shafique@kit.edu
mailto:henkel@kit.edu
mailto:jian-jia.chen@cs.uni-dortmund.de
mailto:minming.li@cityu.edu.hk
mailto:minming.li@cityu.edu.hk

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 2

2 4 6 8 10 12 14 16
60

80

100

120

140

Number of Simultaneously Active CoresM
ax

.T
em

pe
ra

tu
re

[◦
C

]
129.0 W per-chip
90.2 W per-chip
58.7 W per-chip
8.06 W per-core

Fig. 2: Maximum steady-state temperature (DTM deacti-
vated) among all cores as a function of the number of active
cores, for different per-chip and per-core power budgets.

temperature among all cores (in the steady-state, with DTM
is deactivated) as a function of the number of active cores.

From Fig. 1 and Fig. 2, it becomes clear that using a
single and constant power budget can either be a pessimistic
approach, or it can result in frequent triggers of DTM.
For example, as seen in Fig. 1c, when activating 16 cores
each core could safely consume up to 8.06W (129.0W in
total), which means that using a smaller power budget is
pessimistic for such a case. On the other hand, for a power
budget of 129.0W, if the system consumes 129.0W among
any number of cores smaller than 16 the temperature on at
least one core will exceed 80◦C, triggering DTM and thus
resulting in a smaller performance than originally expected.
Moreover, Fig. 2 shows that for this case using a power bud-
get of 8.06W per-core can be a good compromise, because
the temperature never exceeds 80◦C, but without being too
far from it. However, there is still room for improvement,
e.g., using different power budgets per-core depending on
the number of active cores, such that the maximum steady-
state temperature among all cores is 80◦C for all cases. That
is, according to Fig. 1, a per-core power budget of 14.67W
when activating 4 cores, 11.27W when activating 8 cores,
8.06W when activating 16 cores, etc. Such is the power budget
concept which is presented in this paper.

Objective: The objective of this paper is to present a
new power budget concept, called Thermal Safe Power
(TSP). TSP is an abstraction that provides safe (but effi-
cient) power constraint values as a function of the number
of simultaneously active cores. Executing cores at power
consumptions below TSP results in maximum temperatures
below the threshold level that triggers DTM. Based on the
RC thermal network [14] of a specific chip, we focus on
deriving a formal method to compute TSP in an offline
manner for the worst cases, as a function of the number of
active cores. Moreover, the method should have polynomial-
time complexity, such that TSP can also be computed online
for a particular mapping of cores and ambient temperature.
Thus, TSP can serve as a fundamental tool for guiding task
partitioning, core mapping, and voltage/frequency selec-
tion algorithms in their attempt to achieve a high predictable
performance under thermal constraints.

Our Contributions: Based on the above discussions,
our main contributions are polynomial-time algorithms to
compute TSP for both homogeneous and heterogeneous sys-
tems. For simplicity of presentation and introduction of the
TSP concept, we first present the special case for handling
homogeneous cores. We then present the algorithms for the
general case, which are suitable for heterogeneous systems.
Specifically, Section 5.1 and Section 6.1 present the algo-

rithms that compute TSP for a particular mapping of active
cores, which can be used online, thus accounting both for
changes in the mapping decisions and ambient tempera-
ture. Section 5.2 and Section 6.2 present the computation
of TSP for the worst-case mappings of active cores. That
is, a mapping of active cores, for every possible number
of simultaneously active cores, that results in the lowest
TSP values. Such worst-case core mappings are the most
pessimistic cases, which result in TSP values that are safe
for any other mapping scenario. Therefore, this allows the
system designers to abstract from core mapping decisions.

Open-Source Contributions: The algorithms to compute
TSP are implemented as an open-source tool available for
download at http://ces.itec.kit.edu/download.

Evaluations: We run simulations with gem5, McPAT, and
HotSpot, to compare the total performance for using seven
different power constraints: TSP for given mappings, worst-
case TSP, three constant power budgets per-chip, a constant
power budget per-core, and a boosting technique [4], [6],
[16], [26]. We also show how to use TSP to estimate the
amount of dark silicon [11], [28], resulting in estimations are
less pessimistic than those for constant power budgets.

2 RELATED WORK

There are many works that focus on improving performance
under a given (constant) per-chip power budget [9], [24],
[25], including several that specifically use TDP as power
constraint [19], [21]. There is also work on reliability [18]
under TDP, on power budgeting based on reinforcement
learning [8], and on power budget matching with per-core
power budget adaptation and thermal evaluations [5].

In [21], authors propose a control-based framework to
obtain optimal trade-off between power and performance
for homogeneous multicore systems under a TDP budget.
The controllers throttle down the power if TDP is exceeded,
and assign tasks to cores to optimize the performance. The
work in [25] exploits process variations between cores in
a homogeneous system to pick the more suitable cores for
an application to improve its performance. Their results
show that the performance efficiency can be increased along
with the increase in the dark silicon area. The work in [19]
presents throughput analysis for the impact of applying
per-core power gating and Dynamic Voltage and Frequency
Scaling (DVFS) to thermal and power constrained multicore
processors, using TDP as power budget. The authors also
exploit power and thermal headroom resulting from power-
gated idle cores, allowing active cores to increase their fre-
quency. The work in [9] presents a distributed agent-based
power management approach that aims at balancing the
power consumption on a heterogeneous multicore, under
a fixed per-chip power budget. The agent negotiation is
based on trading power units, compared to the classical
supply/demand model of computational economics.

All of the above mentioned work uses a single and con-
stant value as the power constraint to abstract from thermal
problems. However, the motivational example in Section 1
shows that, depending on the amount of simultaneously
active cores, different power consumptions result in the
same maximum temperatures. This means that using a
single value as the power constraint, e.g., TDP, can result
in performance losses for multicore and manycore systems.

A few other technologies, like Intel’s Turbo Boost [4], [6],
[16], [26] and AMD’s Turbo CORE [22], leverage this temper-
ature headroom allowing power consumptions above the

http://ces.itec.kit.edu/download

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 3

3.2 mm

3
.0

m
m

EXU

L1

OOO

IFU LSU

28.72 mm

2
4
.0

m
m

L2 L2

L2 L2

L2 L2

L2 L2

L2 L2

L2 L2

L2 L2

L2 L2

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Fig. 3: Floorplan for a 64 core system based on simulations
in McPAT [20]. In McPAT, cores are composed by several
units: an instruction fetch unit (IFU), an execution unit
(EXU), a load and store unit (LSU), an out-of-order (OOO)
issue/dispatch, and a private L1 cache.

TDP constraint during short time intervals by increasing the
voltage and frequency of the cores in an online manner.
Due to the increases in power consumption, boosting nor-
mally results in an increment of the temperature through
time. Once the highest temperature among all cores reaches
a predefined threshold, the system must either return to
nominal operation (needing some cool-down time before
another boosting interval), or use some closed-loop control
to oscillate around the threshold (prolonging the boosting
time). Unlike these techniques, in TSP the increases in power
consumption are constrained (according to the number of
cores) such that DTM is not activated, allowing the system
to remain indefinitely in such power states.

The introduction of TSP as a new power budget concept
may motivate researchers to revisit the related work, pos-
sibly resulting in extensions of the existing literature, that
achieve a better system performance.

3 SYSTEM MODEL

This section reviews the system model. A table summarizing
all the symbols in the paper is included in Appendix A.

3.1 Hardware Model
The computation of TSP is based on an RC thermal network
modeled from the floorplan of any given architecture. The
detail of the blocks that conform the floorplan can be freely
chosen. For example, consider the 64 cores system presented
in Fig. 3, which is based on simulations conducted with
gem5 [3] and McPAT [20] for out-of-order (OOO) Alpha 21264
cores in 22 nm technology. Each core has an area of 9.6mm2,
and there is a shared L2 cache and a memory controller
every 4 cores. The area of the L2 blocks together with the
memory controllers is 4.7mm2, which is comparable to the
area of the cores. Therefore, it is reasonable to have indepen-
dent blocks for the L2 cache and the memory controllers.
For the rest of the chip, a practical approach is to consider
blocks at a core level, and compute the TSP values for such
a granularity, specifically, because the power consumptions
of the internal blocks of the cores are tightly related with the
execution frequency on each core.

For simplicity of presentation, throughout this paper we
focus on a manycore system with M cores. However, we
consider that there are Z blocks in the floorplan, such that
Z−M is the amount of blocks that correspond to other types
of components, e.g., L2 caches and memory controllers.

When computing TSP, we consider that each one of these
Z −M blocks always consumes its highest power.

We refer to a core being active, whenever the core is in its
execution mode. To maintain a core active at its lowest speed
a minimum power consumption is needed, which we define
as P core

min . Contrarily, a core is inactive when it is in some low-
power mode, e.g., sleep or turned off (power-gated). We
define the power consumption of an inactive core as P core

inact,
and it holds that P core

min ≥ P core
inact. Furthermore, with respect to

power consumption of active cores, it should be noted that
cores consume different amounts of power depending on
the type of core, the executing application, the current (data
dependent) workload, the number of running threads, and
the selected DVFS levels. As a general rule, when cores exe-
cute at high voltage and frequency levels they can achieve a
high performance at the cost of high power consumptions,
as shown in Fig. 18 and Fig. 19 in Appendix D. Along the
paper we talk about executing cores at power consumptions
below TSP (or some other power budget). In practice, if cores are
equipped with power meters, this can be simply achieved
by measuring the actual power consumption on each core
and acting accordingly, e.g., by applying DVFS such that the
measured power is as close to the power budget as possible
(for performance optimization) but without exceeding it. In
case power meters are not available in the hardware, offline
application profiling or runtime power estimation through
performance counters (e.g., [17], [23], [30]) are a reasonable
alternatives as an intermediate step to associate core settings
to power consumption values. Finally, when simultaneously
activating m cores, there are

(M
m

)
combinations of which

specific cores in the floorplan to activate. Throughout the
paper, we refer to a specific decision of which cores to
activate as core mapping or mapping of cores.

Aside of having a power constraint as an abstraction
from thermal problems, there can also exist a maximum
chip power consumption that cannot be exceeded, which we
denote Pmax. This maximum power is not an abstraction, but
an actual electrical constraint, e.g., from the power supply.

The power consumption in a CMOS core is the summa-
tion of its dynamic power consumption (mainly generated
by switching activities) and its static power consumption
(mainly generated by leakage currents). Part of the static
power consumption depends on the temperature of the core,
which means that higher temperatures cause higher power
consumptions. In order to consider safe margins for offline
power profiles of tasks and their scheduling decisions for
safe operation, we assume that the power consumptions
of cores are modeled at temperatures near the threshold
level that triggers DTM, which we define as TDTM. That is,
when experimentally measuring the power consumption of
a core executing a task at a specific voltage and frequency,
this is done at temperatures near TDTM. If not, we may
have underestimated power models of tasks. When making
online decisions, if cores are equipped with power meters,
then no over- or underestimation occurs, because the system
can measure the actual power consumption of each task
(including leakage effects), and act accordingly.

3.2 Thermal Model
For our thermal model, we consider the well-known duality
between thermal and electrical circuits, i.e., we use an RC
thermal network [14]. Such a network is composed by N
thermal nodes, where N ≥ Z. In an RC thermal net-
work, thermal nodes are interconnected between each other
through thermal conductances. Each thermal node also has a

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 4

thermal capacitance associated to it, which accounts for the
transient temperatures. The ambient temperature, denoted
as Tamb, is considered to be constant, and thus there is no
capacitance associated with it. The power consumptions of
cores and other blocks correspond to heat sources. With
these considerations, the temperature of every thermal node
is a function of its power consumption, the temperatures
of the neighboring nodes, and the ambient temperature.
Hence, for any RC thermal network with N thermal nodes,
we can build a system of N differential equations associated
with it, which can be expressed as

AT′ +BT = P+ TambG,

where matrix A = [ai,j]N×N contains the thermal capac-
itance values, matrix B = [bi,j]N×N contains the thermal
conductance values in

[Watt
Kelvin

]
, column vector T = [Ti]N×1

represents the temperature on each node, column vector
T′ = [T ′i]N×1 accounts for the first order derivative of the
temperature on each node with respect to time, column
vector P = [pi]N×1 contains the power consumption on
each node, and column vector G = [gi]N×1 contains the
thermal conductance between each node and the ambient.
If node i is not in contact with the ambient temperature, e.g.,
the temperature of a core or an internal node, the value of
gi is set to zero. The thermal conductance values in matrix
B include the thermal conductances between vertical and
lateral neighboring nodes. Matrix A is generally a diagonal
matrix, since thermal capacitances are modeled to ground.

For specific floorplans, the values for matrices and vector
A, B, and G can be computed at design-time through
HotSpot [14], and these are the same matrices used inter-
nally by HotSpot. A more practical alternative is to use some
thermal modeling method that relies on real measurements
on a specific chip and cooling solution, e.g., [10]. Such an
option is well suited to deal with process variability and
heat sink imperfections. Similarly, since having different fan
speeds changes the thermal conductivity of the heat sink,
a method like the one in [10] can also help to adapt the
thermal model at runtime, or to consider multiple thermal
models from which to choose (one for each fan speed).

When only considering the steady-state, we have that

BT = P+ TambG or T = B−1P+ TambB
−1G,

where from B−1 we have that b-1
i,j · pj represents the

amount of heat contributed by node j into the steady-state
temperature of node i, i.e., Ti.

Regarding vector P, we can divide it into three sub-
vectors: Pcores for the power consumption on the cores;
Pblocks for the power consumption on blocks of a different
type, which we consider to be always active at their high-
est power consumption values, e.g., the L2 caches for the
manycore system in Fig. 3 as explained in Section 3.1; and
Pint for internal nodes in which pint

i =0 for all i. It holds that
P = Pcores +Pblocks +Pint. Decomposing P, we have that

T = B−1Pcores +B−1Pblocks + TambB
−1G, (1)

where by only focusing on one equation from the system of
equations, the steady-state temperature on node i is

Ti =
∑N

j=1 b
-1

i,j ·pcores
j +

∑N
j=1 b

-1
i,j

(
pblocks
j + Tamb ·gj

)
. (2)

For notational brevity, we define set L = {`1, `2, . . . , `Z},
such that the elements in L include all indexes of the thermal
nodes that correspond to blocks of the floorplan; as opposed
to thermal nodes that represent the heat sink, internal nodes

of the heat spreader, the thermal interface material, etc.
Similarly, we define set K = {k1, k2, . . . , kM}, such that
K contains all indexes of nodes that correspond to cores.

Furthermore, we also define column vector Q = [qi]M×1
for a particular mapping of active cores. Vector Q is a binary
vector: qi=1 means that core i corresponds to an active core;
qi=0 means that core i corresponds to an inactive core.

4 PROBLEM DEFINITION

This paper presents a new power budget concept, called
Thermal Safe Power (TSP). TSP is an abstraction that pro-
vides power constraint values as a function of the number
of simultaneously active cores, according to the definition of
active/inactive from Section 3.1. The values of TSP vary ac-
cording to the floorplan and which cores are simultaneously
active. Some specific core mappings result in the lowest TSP
values, and we define such core mappings as the worst-case
mappings. Executing cores at power consumptions below
TSP, for the corresponding mapping and number of active
cores, results in maximum temperatures below TDTM.

For a specific chip and its corresponding RC thermal
network, the first objective of this paper is to provide a
numerical method to compute TSP for a given mapping of
cores. The mapping of cores is typically determined by an
operating/run-time system or by an offline system software.
This method should have polynomial-time complexity, such
that TSP can be computed online for a particular mapping
of cores and ambient temperatures. Formally, for a given
core mapping Q, this means obtaining a uniform power
constraint for the active cores, defined as PTSP (Q), such that
Ti ≤ TDTM for all i ∈ L.

The second objective is to derive an algorithm to compute
the most pessimistic TSP values for a given number of si-
multaneously active cores, i.e., for the worst-case mappings.
Such TSP values can be used as safe power constraints for
any possible mapping of cores, thus allowing the system de-
signers to abstract from core mapping decisions. Formally,
this means obtaining the most pessimistic uniform power
constraint for any m active cores, defined as Pworst

TSP (m), such
that Ti ≤ TDTM for all i ∈ L.

The algorithms presented in Section 5 and Section 6 are de-
rived considering the steady-state. Appendix C explains a method
to further consider the transient temperatures.

5 TSP FOR HOMOGENEOUS MULTICORES

5.1 TSP for a Given Core Mapping (Homogeneous)
This subsection presents a polynomial-time algorithm to
compute TSP in an online manner for a particular core map-
ping and ambient temperature, which results in a uniform
value of TSP per-core, for all active cores in Q. That is, one
power constraint value for each active core in the specified
mapping, that results in a maximum temperature (in the
steady-state) among all cores which does not exceed TDTM.
We define such a power constraint as PTSP (Q). Note that this
does not mean that all active cores consume the same power, as
this would be an unrealistic assumption. In fact, this means that
each active core can consume any amount of power, which can be
different for each core, as long as the power consumption of each
core is no more than PTSP (Q). For completeness, a solution to
compute TSP that constrains cores to different power values,
depending on their location and the adjacent active cores, is
presented in Appendix B.

Here, we summarize the derivation procedure and the
properties of the lemmas and theorems in this subsection.

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 5

The algorithm that computes PTSP (Q) is presented in The-
orem 1, which is based on Lemma 1. Lemma 1 derives a
uniform power constraint for all active cores in mapping
Q such that the maximum temperature in the steady-state
among all blocks does not exceed TDTM, by taking into ac-
count the floorplan, the power consumption on other blocks,
the ambient temperature, and the power consumption of
inactive cores. This power constraint is defined as P ?

TSP (Q)
and it does not take into consideration the maximum chip
power Pmax. Theorem 1 verifies that the maximum power
Pmax is not violated. We define auxiliary function R (m) as

R (m) = P core
inact +

Pmax −
∑N

i=1 p
blocks
i − P core

inact ·M
m

, (3)

where m represents the number of active cores. If consum-
ing P ?

TSP (Q) in all active cores violates Pmax, then Theorem 1
sets PTSP (Q) to a smaller value, specifically, to R

(∑M
i=1 qi

)
,

such that Pmax is satisfied. Moreover, the pseudo-code for
computing PTSP (Q) is presented in Algorithm 1.
Lemma 1. For a given Q, Pblocks, Tamb, TDTM, P core

inact, and
floorplan, the value of power constraint P ?

TSP (Q) for
each active core in the given mapping is computed as

P ?
TSP(Q)=min

∀i∈L

{
TDTM − P core

inact ·
∑M

j=1 b
-1

i,kj
(1−qj)∑M

j=1 b
-1

i,kj · qj

+
−
∑N

j=1 b
-1

i,j

(
pblocks
j + Tamb · gj

)
∑M

j=1 b
-1

i,kj · qj

.

(4)

Proof: Considering vector Q, and set K, if all inactive
cores consume P core

inact and all active cores consume equal
power Pequal at a given time, we have that for this time
instant, Equation (2) can be rewritten as

Ti = Pequal ·
∑M

j=1 b
-1

i,kj
· qj + P core

inact ·
∑M

j=1 b
-1

i,kj
(1−qj)

+
∑N

j=1 b
-1

i,j

(
pblocks
j + Tamb · gj

)
.

(5)

For a given Q, Pblocks, Tamb, and floorplan, the only
variables in Equation (5) are Ti and Pequal. By setting Ti to
TDTM, we can then compute, for every i that belongs in L,
what value of Pequal would make Ti reach TDTM. The most
pessimistic value of Pequal is a safe power constraint for all
cores in mapping Q, and is therefore the resulting P ?

TSP (Q)
for the given Pblocks, Tamb, and floorplan, which is expressed
in Equation (4). The value of i that results in P ?

TSP (Q)
corresponds to the block with the highest temperature for
such a case. Thus, the lemma is proven.
Theorem 1. For a given Q, Pblocks, Tamb, TDTM, P core

inact, Pmax,
and floorplan, the value of power constraint PTSP (Q) for
each active core in the specified mapping is computed as

PTSP(Q)=

P ?
TSP(Q) if P ?

TSP(Q) ≤ R
(∑M

i=1 qi
)

R
(∑M

i=1 qi
)

otherwise.
(6)

Proof: The first case is based on Lemma 1. As for
the second case, the summation of the elements in Q is
equal to the number of active cores in the mapping. Thus, it
should hold that PTSP (Q)·

∑M
i=1 qi+P core

inact

(
M −

∑M
i=1 qi

)
+∑N

i=1 p
blocks
i ≤ Pmax. If P ?

TSP (Q) is larger than R
(∑M

i=1 qi
)

,

then we simply set PTSP (Q) to R
(∑M

i=1 qi
)

, such that Pmax

is not violated. Thus, the theorem is proven.

Algorithm 1 TSP for a given mapping

Input: Q, Pblocks, Tamb, TDTM, P core
inact, Pmax, and floorplan;

Output: Uniform TSP power constraint for mapping Q;
{First compute P?

TSP (Q) according to Equation (4)}
1: P?

TSP (Q)←∞;
2: for all i ∈ L do
3: auxP ← TDTM − P core

inact ·
∑M

j=1 b-1
i,kj

(1− qj);

4: auxP ← auxP −
∑N

j=1 b-1
i,j

(
pblocks
j + Tamb · gj

)
;

5: auxP ← auxP∑M
j=1

b-1
i,kj

·qj
;

6: if auxP < P?
TSP (Q) then

7: P?
TSP (Q)← auxP ;

8: end if
9: end for
{Then compute PTSP (Q) according to Equation (6)}

10: if P?
TSP (Q) ≤ R

(∑M
i=1 qi

)
then

11: PTSP (Q)← P?
TSP (Q);

12: else
13: PTSP (Q)← R

(∑M
i=1 qi

)
;

14: end if
15: return PTSP (Q);

The total time complexity for computing PTSP (Q) for a
given Pblocks, Tamb, TDTM, Pmax, and floorplan, is O (ZN).

5.2 TSP for Worst-Case Mappings (Homogeneous)
This subsection presents a polynomial-time algorithm to
compute TSP for the worst-case core mappings, for m active
cores. The algorithm results in a uniform value of TSP per-
core for all active cores. That is, one power constraint value
for each active core in any possible core mapping with
m simultaneously active cores, that results in a maximum
temperature (in the steady-state) among all cores which
does not exceed TDTM. We define such a power constraint
as Pworst

TSP (m). As in Section 5.1, note that this does not mean
that all active cores consume the same power, as this would be an
unrealistic assumption. It means that each active core, for any
given mapping of m active cores, can consume any amount
of power, which can be different for each core, as long as the
power consumption of each core is no more than Pworst

TSP (m).
The purpose for doing this is to allow system designers to
abstract themselves from mapping decisions, as opposed to
the TSP computations from Section 5.1.

Due to the heat transfer among cores, the mapping of
cores, i.e., which cores are active and which cores are inactive,
plays a major role in the computation of the maximum
temperatures. This can be seen in the following example.
Consider a manycore system of 16 cores with the same
settings as in the motivational example from Section 1.
Fig. 4 shows two possible mappings when simultaneously
activating 6 cores. For Fig. 4a, the maximum temperature
among all cores reaches 80◦C when each core consumes
12.74W. However for Fig. 4b, this happens when each core
consumes 14.64W. We have a total of 11.4W difference
between these two core mappings, but with the same maxi-
mum temperature.

According to Equation (5), if all the active cores in the
system run at the same power consumption, one or more of
the active cores will heat up the most with respect to the rest
of the cores. For the same value of Pequal, different Q map-
pings result in different maximum temperatures. Dually, for
the same maximum temperature among all cores, different
mappings will result in different power consumption values
to produce such a temperature.

Generally, as shown in Fig. 4, for the same maximum
temperature values with pblocks

i = 0 for all i, activating cores
together in a corner of the chip results in lower Pequal values,
compared to dispersing them throughout the chip. This

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 6

(55.8) (55.9) (55.6) (54.9)

(58.1) (58.5) (57.9) (56.1)

(78.5) (79.2) (77.7) (57.8)

(79.2) (80.0) (78.5) (58.0)

12.74 12.74 12.74

12.74 12.74 12.74

(a) Worst-case for 6 cores

(79.9) (60.6) (80.0) (60.1)

(59.7) (60.4) (61.2) (80.0)

(60.5) (79.8) (60.4) (60.6)

(80.0) (60.5) (59.7) (79.9)

14.64 14.64

14.64

14.64

14.64 14.64

(b) Best-case for 6 cores
50

60

70

80

[◦C]

Fig. 4: Example of worst-case and best-case mappings. Top
numbers are the power consumptions (in Watts) of each
active core (boxed in black). Bottom numbers in parenthesis
are the temperatures in the center of each core (in ◦C).
Detailed temperatures are shown according to the color bar.

happens because active cores have higher chances of transferring
heat to inactive cores when they are dispersed. The worst-case
mappings for TSP are those that produce the lowest power
constraints, while no block in the floorplan exceeds (in the
steady-state) the threshold temperature that triggers DTM,
i.e., Ti ≤ TDTM for all i ∈ L.

By computing TSP for such cases, system designers can
abstract themselves from core mapping decisions. This happens
because such worst-case core mappings are the most pes-
simistic cases. When having m active cores, executing cores
at power consumptions below Pworst

TSP (m) will result in maxi-
mum temperatures (in the steady-state), among all blocks in
the floorplan, below the threshold level that triggers DTM,
for any possible mapping of m active cores.

Here, we summarize the derivation procedure and the
properties of the lemmas and theorems in this subsection.
For a given m, our algorithm is presented in Theorem 2,
which is based on auxiliary matrix H and Lemmas 2, 3, and
4. Lemma 4 derives the worst-case uniform power constraint
for m active cores such that the maximum temperature in
the steady-state among all blocks does not exceed TDTM, by
taking into account the floorplan, the power consumption
on other blocks, the ambient temperature, and the power
consumption of inactive cores. This power constraint is
defined as P ?worst

TSP (m) and it does not take into consider-
ation the maximum power Pmax. Theorem 2 verifies that
the maximum power Pmax is not violated. If consuming
P ?worst

TSP (m) in m cores violates Pmax, then we set Pworst
TSP (m)

to a smaller value such that Pmax is satisfied. Auxiliary
matrix H = [hi,j]Z×M is used in Lemma 4 to compute the
maximum amount of heat that any m cores can contribute
to the temperature on node i. Matrix H is built by making
a partial copy of matrix B−1, such that hi,j = b-1

`i,kj for
all i = 1, 2, . . . ,Z and for all j = 1, 2, . . . ,M , and then
reordering each row of H in a decreasing manner. Matrix
H needs to be built and ordered only one time, which
has a time complexity O (ZM logM) (the pseudo-code for
building matrix H is later included inside Algorithm 2).
Lemmas 2 and 3 prove that using matrix H = [hi,j]Z×M
results in the most pessimistic power constraints.
Lemma 2. If all active cores consume equal power Pequal, the

m highest values for Pequal · b-1
i,j such that j ∈ K, corre-

spond to the amount of heat contributed to temperature
Ti by the m cores that contribute more heat into Ti.

Proof: From the definition of matrix B−1, we know
that b-1

i,j · pj represents the heat contributed by node j into
the steady-state temperature of node i, i.e., Ti. Particularly, if
we focus on j ∈ K, we are referring to the heat contributed
by each core j into the steady-state temperature Ti.

From Equation (5), we know that there is one or more
mappings Q that result in the maximum Ti for a given
Pequal. Given that B−1, G, Pblocks, and Tamb are constant,
it is clear that, for a given Pequal, Ti is maximized when∑M

j=1 b
-1

i,kj · qj is also maximized. Moreover, it holds that
Pequal ≥P core

min ≥P core
inact, and the summation of the elements in

Q is equal to the number of active cores in the mapping, i.e.,∑M
j=1 qj=m. Hence, for row i, we have that

∑M
j=1 b

-1
i,kj ·qj

is maximized when mapping Q activates the m cores with
the highest b-1

i,kj , for row i. Thus, the lemma is proven.
Lemma 3. If all active cores consume equal power Pequal,

multiplying the power consumption on each core with
the summation of the first m elements in row i of
auxiliary matrix H, that is, computing Pequal ·

∑m
j=1 hi,j ,

results in the maximum amount of heat that any m cores
can contribute to the steady-state temperature on node
`i, that is, T`i .

Proof: Based on the definition of auxiliary matrix H
and Lemma 2, the first m elements in row i of matrix H
correspond to the m highest b-1

`i,j values, for node `i, such
that j ∈ K. In turn, multiplied by Pequal, this is the amount
of heat contributed to temperature T`i by the m cores that
contribute more heat into T`i . Thus, the lemma is proven.
Lemma 4. For a given Pblocks, Tamb, TDTM, P core

inact, and floor-
plan, the value of power constraint P ?worst

TSP (m) for each
active core in any possible core mapping with m simul-
taneously active cores is computed as

P ?worst
TSP (m)= min

1≤i≤Z

{
TDTM − P core

inact ·
∑M

j=m+1 hi,j∑m
j=1 hi,j

+
−
∑N

j=1 b
-1

`i,j

(
pblocks
j + Tamb · gj

)
∑m

j=1 hi,j

.

(7)

Proof: Considering matrix H and Lemma 3, Equa-
tion (5) becomes

T`i ≤ Pequal ·
∑m

j=1 hi,j + P core
inact ·

∑M
j=m+1 hi,j

+
∑N

j=1 b
-1

`i,j

(
pblocks
j + Tamb · gj

)
.

Similar to Lemma 1, by setting T`i to TDTM, we can
compute, for every i = 1, 2, . . . ,Z, what value of Pequal
would make T`i reach TDTM. The most pessimistic value of
Pequal is a safe power constraint for the m active cores, and is
therefore the resulting P ?worst

TSP (m) for the given Pblocks, Tamb,
and floorplan, which is expressed in Equation (7). The value
of i that results in P ?worst

TSP (m) corresponds to the block with
the highest temperature in the worst-case mapping. Thus,
the lemma is proven.
Theorem 2. For a given Pblocks, Tamb, TDTM, P core

inact, Pmax, and
floorplan, the value of power constraint Pworst

TSP (m) for
each active core in any possible core mapping with m
simultaneously active cores is computed as

Pworst
TSP (m)=

{
P ?worst

TSP (m) if P ?worst
TSP (m) ≤ R (m)

R (m) otherwise.
(8)

Proof: The first case is based on Lemma 4, and the
second case is based on the proof of Theorem 1.

Given that matrix H only needs to be build once for
a given chip, the total time complexity for computing
Pworst

TSP (m) for a given m is O (ZN), and for computing
Pworst

TSP (m) for all m = 1, 2, . . . ,M is O (MZN). The cor-
responding pseudo-code is presented in Algorithm 2.

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 7

Algorithm 2 TSP for all worst-case mappings

Input: Pblocks, Tamb, TDTM, P core
inact, Pmax, and floorplan;

Output: Uniform TSP for all worst-case mappings;
{First build auxiliary matrix H = [hi,j]Z×M}

1: for i = 1 to Z do
2: for j = 1 to M do
3: hi,j ← b-1

`i,kj
;

4: end for
5: Re-order row i of matrix H in a decreasing manner;
6: end for
7: for m = 1 to M do

{Then compute P?worst
TSP (m) from Equation (7)}

8: P?worst
TSP (m)←∞;

9: for i = 1 to Z do
10: auxP ← TDTM − P core

inact ·
∑M

j=m+1 hi,j ;

11: auxP ← auxP −
∑N

j=1 b-1
`i,j

(
pblocks
j + Tamb · gj

)
;

12: auxP ← auxP∑m
j=1

hi,j
;

13: if auxP < P?worst
TSP (m) then

14: P?worst
TSP (m)← auxP ;

15: end if
16: end for

{Finally compute Pworst
TSP (m) according to Equation (8)}

17: if P?worst
TSP (m) ≤ R (m) then

18: Pworst
TSP (m)← P?worst

TSP (m);
19: else
20: Pworst

TSP (m)← R (m);
21: end if
22: end for
23: return Pworst

TSP (m) for all m = 1, 2, . . . ,M ;

6 TSP FOR HETEROGENEOUS MULTICORES

Given that in heterogeneous systems cores have different
areas and consume different amounts of power, an efficient
power budgeting technique would not use the same power
constraint for different types of cores. The two algorithms in
Section 5 provide the foundations of TSP for homogeneous
cores. In this section, we explain how to use these concepts
for the general case of heterogeneous systems.

6.1 TSP for a Given Core Mapping (Heterogeneous)
In this subsection we revise Algorithm 1 (Section 5.1) in
order to consider heterogeneous systems. An example of
such a heterogeneous system is shown in Fig. 5, consisting
of 24 out-of-order (OOO) Alpha 21264 cores and 16 simple in-
order Alpha 21264 cores, based on simulations conducted
on gem5 [3] and McPAT [20] for 22nm, and 16 in-order
Cortex-A7 cores and 16 OOO Cortex-A15 cores, based on
an Odroid-XU3 [13] mobile platform with an Exynos 5 Octa
(5422) [27] chip with ARM’s “big.LITTLE” architecture. It is
important to note that the temperature on a chip is directly
related to the power density, not to the power consumption.
That is, for two cores with different areas, if both cores
consume the same power, the core with smaller area will
have a higher temperature than the other core. Therefore,
we should handle core heterogeneity by focusing on power
density instead of power consumption, thus deriving a
power density constraint. In order to better understand
this concept, we present Fig. 6a, which divides the cores
of the floorplan presented in Fig. 5 (after rounding their
areas to multiples of 0.25mm2 for presentation purposes)
into smaller sub-blocks of 0.25mm2. Assume now that we
activate some cores of different types as shown in Fig. 6b
(active cores boxed in thick black lines), such that the power
density on all active cores is 1.06W/mm2, which is equiv-
alent to having each 0.25mm2 sub-block consume 0.265W.
Fig. 6b shows that for such a case the maximum temperature
among all cores does not exceed TDTM (in this example
80◦C). Conceptually, this is also equivalent to computing
TSP through Algorithm 1 for the smaller homogeneous sub-
blocks. However, using Algorithm 1 to derive the power

24.33 mm

1
9
.5

m
m

Alpha OOO
cluster

Alpha simple
cluster Cores

A7
cluster

Routers & other
hardware

A15
cluster

Shared
L2 caches

Fig. 5: Floorplan of a heterogeneous 72 core system. For a
given cluster type, each cluster is identified as a, b, c, and d,
from left to right and from top to bottom.

(a) Floorplan in sub-blocks (b) Detailed temperatures
50

60

70

80

[◦C]

Fig. 6: Example of power density constraint for given map-
pings. In (a), the cores are divided in homogeneous sub-
blocks. In (b), active cores are boxed in thick black and
detailed temperatures are shown according to the color bar.

density constraint is not efficient, specially considering the
required size of the sub-blocks (and corresponding RC ther-
mal network) to perfectly fit in all types of cores.

Namely, we derive a uniform power density constraint
for each active core in the specified mapping (independent
of the type of core) that results in a maximum tempera-
ture (in the steady-state) among all cores which does not
exceed TDTM. We define such a power density constraint as
P ρ

TSP (Q). Moreover, the area of core j is defined as areacore
j ,

for j = 1, 2, . . . ,M . To compute the corresponding TSP
value for core j, we simply multiply the power density
constraint P ρ

TSP (Q) with the area of core j. Note that for
heterogeneous systems, the power consumption of inactive
cores varies among different types of cores. Hence, we
define the power consumption of core j when the core is
inactive as pcore

inactj , for j = 1, 2, . . . ,M .
The derivation procedure and properties in this subsec-

tion are very similar to those in Section 5.1. Namely, the al-
gorithm that computes P ρ

TSP (Q) is presented in Theorem 3,
which is based on Lemma 5. Lemma 5 ignores the maximum
chip power and derives a uniform power density constraint
for all active cores in mapping Q, defined as P ρ?

TSP (Q) and
independent of the types of cores. Theorem 3 verifies that
the maximum power Pmax is satisfied. We define auxiliary
function Rρ (Q) as

Rρ(Q)=
Pmax −

∑N
i=1 p

blocks
i −

∑M
j=1 p

core
inactj (1−qj)∑M

j=1 areacore
j · qj

. (9)

If having power density P ρ?
TSP (Q) in all active cores violates

Pmax, then Theorem 3 sets P ρ
TSP (Q) to Rρ (Q), such that

Pmax is satisfied. The pseudo-code for computing P ρ
TSP (Q)

is presented in Algorithm 3.
Lemma 5. For a given Q, Pblocks, Tamb, TDTM, pcore

inactj for j =
1, 2, . . . ,M , and floorplan, the value of power density

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 8

Algorithm 3 TSP (density) for a given mapping

Input: Q, Pblocks, Tamb, TDTM, pcore
inactj for j = 1, 2, . . . ,M , Pmax, and floorplan;

Output: Uniform power density constraint for mapping Q;
{First compute Pρ?

TSP (Q) according to Equation (10)}
1: Pρ?

TSP (Q)←∞;
2: for all i ∈ L do
3: auxP ← TDTM −

∑M
j=1 b-1

i,kj
· pcore

inactj (1− qj);

4: auxP ← auxP −
∑N

j=1 b-1
i,j

(
pblocks
j + Tamb · gj

)
;

5: auxP ← auxP∑M
j=1

b-1
i,kj

·areacore
j

·qj
;

6: if auxP < Pρ?
TSP (Q) then

7: Pρ?
TSP (Q)← auxP ;

8: end if
9: end for
{Then compute Pρ

TSP (Q) according to Equation (12)}
10: if Pρ?

TSP (Q) ≤ Rρ (Q) then
11: Pρ

TSP (Q)← Pρ?
TSP (Q);

12: else
13: Pρ

TSP (Q)← Rρ (Q);
14: end if
15: return Pρ

TSP (Q);

constraint P ρ?
TSP (Q) for each active core in the specified

mapping (independent of the core types) is computed as

P ρ?
TSP (Q)=min

∀i∈L

{
TDTM−

∑M
j=1 b

-1
i,kj · pcore

inactj (1−qj)∑M
j=1 b

-1
i,kj

· areacore
j · qj

+
−
∑N

j=1 b
-1

i,j

(
pblocks
j + Tamb · gj

)
∑M

j=1 b
-1

i,kj
· areacore

j · qj

.

(10)

Proof: Considering vector Q, and set K, if each inac-
tive core j consumes pcore

inactj and all active cores have equal
power density P ρ

equal at a given time, we have that for this
time instant, Equation (2) can be rewritten as

Ti=P ρ
equal ·

∑M
j=1 b

-1
i,kj ·areacore

j ·qj+
∑M

j=1 b
-1
i,kj ·pcore

inactj(1−qj)

+
∑N

j=1 b
-1
i,j

(
pblocks
j + Tamb · gj

)
.

(11)

The rest of the proof is equivalent to the proof of
Lemma 1 simply by using Equation (11) instead of Equa-
tion (5) and P ρ

equal instead of Pequal.

Theorem 3. For a given Q, Pblocks, Tamb, TDTM, pcore
inactj for

j = 1, 2, . . . ,M , Pmax, and floorplan, the value of power
density constraint P ρ

TSP (Q) for each active core in the
specified mapping (independent of the types of cores) is
computed as

P ρ
TSP (Q)=

{
P ρ?

TSP (Q) if P ρ?
TSP (Q) ≤ Rρ (Q)

Rρ (Q) otherwise.
(12)

Proof: The first case is based on Lemma 5. For the
second case, it should hold that P ρ

TSP (Q) ·
∑M

i=1 areacore
i ·

qi +
∑M

i=1 p
core
inacti (1−qi) +

∑N
i=1 p

blocks
i ≤ Pmax. If P ρ?

TSP (Q) is
larger than Rρ (Q) we simply set P ρ

TSP (Q) to Rρ (Q), such
that Pmax is not violated. Thus, the theorem is proven.

The total time complexity for computing P ρ
TSP (Q) for a

given Pblocks, Tamb, TDTM, Pmax, and floorplan, is O (ZN). To
compute the corresponding TSP value for core j, we simply
multiply P ρ

TSP (Q) with the area of core j.

6.2 TSP for Worst-Case Mappings (Heterogeneous)
This subsection revises Algorithm 2 presented in Section 5.2
in order to consider heterogeneous systems. Similar to Sec-
tion 6.1, we will focus on deriving a safe power density

constraint, rather than focus on power consumption. More-
over, in Section 5.2 the value of the power constraint for
the worst-case core mappings depends on the number of
active cores. Nevertheless, for the heterogeneous case, since
different core types have different areas, the value of the
power density constraint will depend on the number of active
cores for each type of core. That is, assume that there are W core
types (arbitrarily ordered) and that for every type of core w
there are a total of Mw cores, such that M =

∑W
w=1 Mw.

We define sets Kw =
{
kw1 , k

w
2 , . . . , k

w
Mw

}
for all core types

w = 1, 2, . . . ,W , such that Kw contains the indexes of
the thermal nodes that correspond to cores of type w.
Furthermore, set m = {m1,m2, . . . ,mW } represents the
number of active cores for core types {1, 2, . . . ,W}. Hence,
in this section we derive a safe power density constraint for
the worst-case core mappings with m = {m1,m2, . . . ,mW }
active cores, and we define such a power density constraint
as P ρ worst

TSP (m). For example, if we have a system with
three types of cores and we would like to activate 4 cores
of type 1 and 7 cores of type 3, the safe power density
constraint for such a case is defined as P ρ worst

TSP ({4, 0, 7}).
We then simply multiply the power density constraint by
the area of each core, thus obtaining a safe power constraint
value for each type of core for any possible core mapping
with m = {m1,m2, . . . ,mW } simultaneously active cores,
that results in a maximum temperature (in the steady-state)
among all cores which does not exceed TDTM.

We assume that all cores of the same type have equal
area and inactive power, and we denote the area and
inactive power of core type w as areatype

w and p
type
inactw, re-

spectively. Similar to Section 5.2, we define auxiliary matrix
Hρ =

[
hρ
w,i,j

]
W×Z×Mw

which is used in Lemma 8 to
compute the maximum amount of heat that any mw cores
of type w can contribute to the temperature on node i, for
all core types w = 1, 2, . . . ,W . Matrix Hρ is built by making
a partial copy of matrix B−1, considering the type and the
area of the cores, such that hρ

w,i,j = b-1
`i,kw

j
· areatype

w for
all w = 1, 2, . . . ,W , for all i = 1, 2, . . . ,Z , and for all
j = 1, 2, . . . ,Mw, and then, for every w and every i, re-
ordering each row of Hρ in a decreasing manner. Matrix Hρ

needs to be built and ordered only one time, which requires
a time complexity of O (ZMw logMw) for every core type
w (the pseudo-code for building matrix Hρ is later included
in Algorithm 4). Furthermore, we also define column vector
Qw = [qwi]Mw×1 for all core types w = 1, 2, . . .W , which
represents a particular mapping of active cores of type w.
Vector Qw is a binary vector: qwi = 1 means that core i
corresponds to an active core of type w; qwi = 0 means that
core i corresponds to an inactive core of type w.

The derivation procedure and properties in this sub-
section are very similar to those in Section 5.2. Namely,
for a given m = {m1,m2, . . . ,mW }, our algorithm is
presented in Theorem 4, based on the auxiliary matrix Hρ

and the properties in Lemmas 6, 7, and 8. Lemma 6 and
Lemma 7 prove that using matrix Hρ =

[
hρ
w,i,j

]
W×Z×Mw

results in the most pessimistic power density constraints.
Lemma 8 ignores the maximum chip power and derives the
worst-case uniform power density constraint for m active
cores, defined as P ρ?worst

TSP (m). Theorem 4 verifies that the
maximum power Pmax is not violated. We define auxiliary
function Rρ (m) as

Rρ(m)=
Pmax−

∑N
i=1 p

blocks
i −

∑W
w=1 p

type
inactw(Mw−mw)∑W

w=1 areatype
w ·mw

. (13)

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 9

If having a power density of P ρ?worst
TSP (m) in m =

{m1,m2, . . . ,mW } cores violates Pmax, then Theorem 4 sets
P ρ worst

TSP (m) to Rρ (m), such that Pmax is satisfied.
Lemma 6. If all active cores have equal power density

P ρ
equal, the mw highest values for P ρ

equal · b-1
i,j · areatype

w

such that j ∈ Kw for all w = 1, 2, . . . ,W , corre-
spond to the amount of heat contributed to Ti by the
m = {m1,m2, . . . ,mW } cores of type {1, 2, . . . ,W} that
contribute more heat into Ti.

Proof: From the definition of matrix B−1, we know
that b-1

i,kj ·
pkj

areacore
j

· areacore
j represents the heat contributed

by core j into the steady-state temperature of node i, i.e.,
Ti. By grouping the mappings of different types of cores
together, Equation (11) becomes

Ti = P ρ
equal ·

∑W
w=1

∑Mw

j=1 b
-1
i,kw

j
· areatype

w · qwj

+
∑W

w=1

∑Mw

j=1 b
-1
i,kw

j
· ptype

inactw

(
1− qwj

)
+

∑N
j=1 b

-1
i,j

(
pblocks
j + Tamb · gj

)
,

(14)

from which we know that there is one or more mappings
that result in the maximum Ti for a given P ρ

equal. Given
that B−1, G, Pblocks, and Tamb are constant, and p

type
inactw is

smaller than the minimum active power consumption of
a core of type w, it is clear that, for a given P ρ

equal, Ti is
maximized when

∑W
w=1

∑Mw

j=1 b
-1

i,kw
j
· areatype

w · qwj is also
maximized. Moreover, it holds that the summation of the
elements in Qw is equal to the number of active cores of
type w, i.e.,

∑Mw

j=1 q
w
j = mw. Hence, for row i, we have that∑W

w=1

∑Mw

j=1 b
-1

i,kw
j
· areatype

w · qwj is maximized when, for all
w = 1, 2, . . . ,W , mapping Qw activates the mw cores with
the highest b-1

i,kw
j
· areatype

w . Thus, the lemma is proven.

Lemma 7. If all active cores have equal power density P ρ
equal,

multiplying the power density on each core with the
summation of the first mw elements that correspond to
cores of type w in row i of matrix Hρ, that is, computing
P ρ

equal ·
∑mw

j=1 h
ρ
w,i,j , results in the maximum amount of

heat that any mw cores of type w can contribute to the
steady-state temperature on node `i, that is, T`i .

Proof: Based on the definition of auxiliary matrix Hρ

and Lemma 6, the first mw elements that correspond to
cores of type w in row i of matrix Hρ are the mw highest
b-1

`i,j ·areatype
w values, for node `i, such that j ∈ Kw. In turn,

multiplied by P ρ
equal, this is the amount of heat contributed

to temperature T`i by the mw cores of type w that contribute
more heat to T`i . Thus, the lemma is proven.

Lemma 8. For a given Pblocks, Tamb, TDTM, ptype
inactw for w =

1, 2, . . . ,W , and floorplan, the value of power density
constraint P ρ?worst

TSP (m) (independent of the types of
cores) for each active core in any possible core mapping
with m = {m1,m2, . . . ,mW } simultaneously active
cores is computed as

P ρ?worst
TSP (m)= min

1≤i≤Z

TDTM −

∑W
w=1

p
type
inactw

areatype
w

∑Mw

j=mw+1 h
ρ
w,i,j∑W

w=1

∑mw

j=1 h
ρ
w,i,j

+
−
∑N

j=1 b
-1

`i,j

(
pblocks
j + Tamb · gj

)
∑W

w=1

∑mw

j=1 h
ρ
w,i,j

 .

(15)

Algorithm 4 TSP (density) for all worst-case mappings

Input: Pblocks, Tamb, TDTM, ptype
inactw for w = 1, 2, . . . ,W , Pmax, and floorplan;

Output: Uniform power density for all worst-case mappings;
{First build auxiliary matrix Hρ =

[
hρ
w,i,j

]
W×Z×Mw

}
1: for w = 1 to W do
2: for i = 1 to Z do
3: for j = 1 to Mw do
4: hρ

w,i,j ← b-1
`i,k

w
j
· areatype

w ;
5: end for
6: For these w and i, re-order Hρ (with respect to j) decreasingly;
7: end for
8: end for
9: for m1 = 1 to M1 do

10: for m2 = 1 to M2 do

11:
...

12: for mW = 1 to MW do
{Compute Pρ?worst

TSP (m) from Equation (15)}
13: Pρ?worst

TSP (m)←∞;
14: for i = 1 to Z do
15: auxP ← TDTM −

∑W
w=1

p
type
inactw

areatype
w
·
∑Mw

j=mw+1 hρ
w,i,j ;

16: auxP ← auxP −
∑N

j=1 b-1
`i,j

(
pblocks
j + Tamb · gj

)
;

17: auxP ← auxP∑W
w=1

∑mw
j=1

h
ρ
w,i,j

;

18: if auxP < Pρ?worst
TSP (m) then

19: Pρ?worst
TSP (m)← auxP ;

20: end if
21: end for

{Compute Pρ worst
TSP (m) according to Equation (16)}

22: if Pρ?worst
TSP (m) ≤ Rρ (m) then

23: Pρ worst
TSP (m)← Pρ?worst

TSP (m);
24: else
25: Pρ worst

TSP (m)← Rρ (m);
26: end if
27: end for

28:
...

29: end for
30: end for
31: return Pρ worst

TSP (m) for all combinations of active cores of different types;

Proof: Considering matrix Hρ and Lemma 7, Equa-
tion (14) becomes

T`i =P ρ
equal

∑W
w=1

∑mw

j=1 h
ρ
w,i,j +

∑W
w=1

p
type
inactw

areatype
w

∑Mw

j=mw+1 h
ρ
w,i,j

+
∑N

j=1 b
-1
`i,j

(
pblocks
j + Tamb · gj

)
.

Similar to Lemma 5, by setting T`i to TDTM, we can com-
pute, for every i = 1, 2, . . . ,Z , what value of P ρ

equal would
make T`i reach TDTM. The most pessimistic value of P ρ

equal is
a safe power density constraint for the m active cores, and
is therefore the resulting P ρ?worst

TSP (m) for the given Pblocks,
Tamb, ptype

inactw for w = 1, 2, . . . ,W , and floorplan, which is
expressed in Equation (15). Thus, the lemma is proven.
Theorem 4. For a given Pblocks, Tamb, TDTM, p

type
inactw for

w=1, 2, . . . ,W , Pmax, and floorplan, the value of power
density constraint P ρ worst

TSP (m) (independent of the types
of cores) for each active core in any possible core map-
ping with m = {m1,m2, . . . ,mW } simultaneously ac-
tive cores is computed as

P ρ worst
TSP (m)=

{
P ρ?worst

TSP (m) if P ρ?worst
TSP (m) ≤ Rρ(m)

Rρ(m) otherwise.
(16)

Proof: The first case is based on Lemma 8. For the
second case, it should hold that P ρ worst

TSP (m) ·
∑W

w=1 areatype
w ·

mw +
∑W

w=1 p
type
inactw (Mw −mw) +

∑N
i=1 p

blocks
i ≤ Pmax. If

P ρ?worst
TSP (m) is larger than Rρ (m), then we simply set it to

Rρ (m), such that Pmax is not violated. Thus, the theorem is
proven.

Given that matrix Hρ only needs to be built once for
a given chip, the total time complexity for computing

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 10

P ρ worst
TSP (m) for a given m = {m1,m2, . . . ,mW } is O (ZN),

and for computing P ρ worst
TSP (m) for all possible combinations

of active cores of different types is O
(
ZN

∏W
w=1 Mw

)
. The

corresponding pseudo-code is presented in Algorithm 4.

7 EVALUATIONS FOR HOMOGENEOUS SYSTEMS

This section presents evaluations conducted with gem5 [3],
McPAT [20], and HotSpot [14], for homogeneous systems.
We compare the total system performance of seven different
power budget techniques: TSP for given mappings, worst-
case TSP, three constant power budgets per-chip, a constant
power budget per-core, and an online boosting technique,
specifically, Intel’s Turbo Boost [15], [26].

7.1 Setup
For our hardware platform, we consider the 64 cores system
presented in Fig. 3, based on simulations conducted on
gem5 [3] and McPAT [20] for out-of-order Alpha 21264 cores
in 22 nm technology. The cores are composed by several
units: an instruction fetch unit (IFU), an execution unit
(EXU), a load and store unit (LSU), an out-of-order (OOO)
issue/dispatch, and a private L1 cache. According to our
simulations, each core has an area of 9.6mm2. There is a
shared L2 cache of 2MB and a memory controller every 4
cores, with a combined area of 4.7mm2. We assume avail-
able frequencies {0.2, 0.4, . . . , 4.0} GHz, and the voltage
settings for each frequency are taken from [12].

For such a floorplan, we consider one thermal block
for each core and independent thermal blocks for the L2
caches and other hardware. We then obtain the values for
B, B−1, and G, by using HotSpot [14] v5.02 with its default
configuration in the block model mode. We consider that the
ambient temperature is 45◦C, Pmax is 250W (common value
in the literature [15]), and the threshold temperature that
triggers DTM, TDTM, is 80◦C. For all the evaluated power
constraints, except when a boosting technique is applied,
we consider a standard reactive control-based closed-loop
DTM technique [15] that, when the threshold temperature is
exceeded anywhere in the chip, it reduces the voltage/fre-
quency levels of all active cores, one step at a time, by using
a control period of 1ms. When the maximum temperature
in the chip is below TDTM, the voltage/frequency on the
cores is increased one step at a time, by using the same 1ms
control period, until all cores reach their nominal operation
according to the established power constraint.

For benchmarks, we use applications from the PARSEC
benchmark suite [2]. Specifically, an x264 application (H.264
video encoder), a body track application, an option pricing
application with Black-Scholes Partial Differential Equation,
and a pricing application of a portfolio of swaptions. All
applications can run 1, 2, . . . , 8 parallel dependent threads.
For each experiment, we conduct closed-loop evaluations
involving simulations with gem5 [3], McPAT [20], and
HotSpot [14]. We consider that every time an application
instance finishes, another instance is immediately executed.
Further details about our simulation framework are in-
cluded in Appendix D.

7.2 Power Constraints
In this subsection we compute the power constraints used
in our simulations. Using Algorithm 2, we compute TSP
for the worst-case mappings, i.e., Pworst

TSP (m) for all m =

8 16 24 32 40 48 56 64
0

10

20

30

Number of Active CoresPo
w

er
C

on
st

ra
in

tp
er

co
re

[W
]

TSPworst
TSPbest
80 W per-chip
150 W per-chip
225 W per-chip
3.52 W per-core

Fig. 7: Worst- and best-case TSP for the floorplan in Fig. 3,
compared to a constant per-core budget, and estimations of
constant per-chip budgets equally distributed among active
cores.

8 16 24 32 40 48 56 64
0

50

100

150

200

250

Number of Active CoresPo
w

er
C

on
st

ra
in

tp
er

ch
ip

[W
]

TSPworst
TSPbest
80 W per-chip
150 W per-chip
225 W per-chip
3.52 W per-core

Fig. 8: Constant per-chip budgets, compared to multiplying
the number of active cores by a constant per-core budget,
and the worst- and best-case TSP for the floorplan from
Fig. 3.

1, 2, . . . ,M . Fig. 7 presents the computed TSP values per-
core as TSPworst, resulting in a decreasing function with
respect to the number of active cores. For presentation
purposes, Fig. 8 shows TSP estimations at a chip level, by
multiplying the TSPworst values from Fig. 7 with the number
of active cores for each case (table representations of these
figures are included in Appendix E). In Fig. 8, TSP results
in a non-decreasing function with respect to the number of
active cores. Moreover, to compare TSP for different core
mappings, we consider 64 · 105 random mappings (105 for
each number of active cores), compute TSP using Algo-
rithm 1 for every given mapping, and present the highest
resulting TSP values as TSPbest in Fig. 7 and Fig. 8. On a
desktop computer with a 64-bit quad-core Intel Sandybridge
i5-2400 CPU running at 3.10GHz, we measure the execution
time required by Algorithm 1 to compute TSP for every
random mapping, resulting in an execution time of at most
5.47ms among all measurements, suitable for online usage.

For the constant per-chip power constraints, since this
is a simulated platform, we cannot simply consider TDP
because we have no datasheet with that information. Thus,
we consider three different per-chip power budgets, which
coincide with m ·Pworst

TSP (m) for m=4, m=16, and m=64.
Specifically, these power budgets (shown as horizontal lines
in Fig. 8) are 80W per-chip, 150W per-chip, and 225W per-
chip, which are also representative TDP values for current
technologies [15]. In Fig. 7, we estimate the maximum power
per core when these constraints are equally distributed
among the active cores. For the constant per-core power

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 11

8 16 24 32 40 48 56 64
50

75

100

125

150

Number of Active Cores

M
ax

im
um

Te
m

pe
ra

tu
re

[◦
C

]
TSPworst
TSPbest
80 W per-chip
150 W per-chip
225 W per-chip
3.52 W per-core

Fig. 9: Maximum steady-state temperatures among all
blocks (DTM deactivated), when using TSP, a constant per-
core budget, and equally distributed constant per-chip bud-
gets.

constraint, we consider it to be equal to TSP when simul-
taneously activating all cores, i.e., Pworst

TSP (m) for m = 64.
This results in a constant power budget of 3.52W per-
core, represented by a horizontal line in Fig. 7 and by an
increasing linear function in Fig. 8. Note that representing TSP
and the constant per-core power budget in Fig. 8 does not mean
that either constraint should be considered at a per-chip level.
Both budgets should be strictly considered at a per-core level. We
include them in Fig. 8 only to compare their resulting total system
power to the per-chip budgets. Similarly, the opposite applies when
representing the constant per-chip budgets in Fig. 7.

With regards to temperature, Fig. 9 presents simulations
conducted in HotSpot that show the maximum tempera-
ture (in the steady-state) among all blocks as a function
of the number of simultaneously active cores, for the dis-
cussed power budgets, in case that DTM is deactivated.
As expected, when consuming TSP in all active cores, the
maximum temperature among all blocks is 80◦C. Moreover,
from Fig. 9 we can conclude that whenever TSP is greater
than any constant power budget, if such a power budget is
used as the power constraint, the system could actually con-
sume more power without reaching TDTM, which accounts
for performance losses. Contrarily, when a constant power
budget exceeds TSP, this means that if the cores consume
more power than TSP, most likely DTM will be triggered
almost the entire time. Note that for some cases in Fig. 9,
particularly when executing just a few cores, the cores never
consume the entire power budget even when executing at
maximum voltage/frequency (e.g., in our experiments no
individual core ever consumes more than 20W). Therefore,
the dashed lines in the figure show the potential maximum
temperature if each power budget would have been entirely
consumed, while the solid lines show the maximum tem-
peratures that can be practically achieved.

7.3 Dark Silicon Estimations

Through Fig. 7, we can easily estimate the amount of dark
silicon. For example, we assume that the minimum power
consumption for activating a core at its lowest speed is 4W
(not a real practical setting, but chosen for presentation purposes).
Then, considering the values of TSP, no more than 54 cores
could be active simultaneously, which results in 15.63%
of the chip being dark at all times. If a constant per-chip
power budget is used for the same example estimations,
e.g., 150W per-chip, then only 37 cores could be activated

simultaneously, resulting in 42.19% of the chip being dark,
which is much higher than the estimations for TSP.

7.4 Performance Simulations
Fig. 10 presents the average total IPS count, for considering
different numbers of active cores and the different power
budgets described in Section 7.2. We assume that at nominal
operation every active core runs at the highest possible
frequency and performance such that the power budget
under consideration is not exceeded.

Furthermore, in order to also compare with an online
boosting technique, in Fig. 10 we also consider Intel’s Turbo
Boost [15], [26]. When the temperature on all blocks is below
TDTM the cores boost their voltage and frequency levels
in single steps (within a control period of 1ms). Similarly,
if some temperature exceeds TDTM the cores reduce their
voltage and frequency levels in single steps (within a control
period of 1ms) until the thermal constraints are satisfied.

In Fig. 10, we can see that when we activate all 64 cores,
the per-core budget and the 225W per-chip budget achieve
the same performance that TSPworst. This is expected, as in
both cases these power budgets coincide with TSP. How-
ever, there are many cases in which the fixed power budgets
are pessimistic and thus the chip remains underutilized, as
explained in Section 7.2. Specifically, this happens with all
other cases for the per-core power budget, and with the
80W and 150W per-chip budgets when activating more
than 4 and 16 cores, respectively. Contrarily, there are many
other cases in which the fixed power budgets constantly
trigger DTM, specifically, when activating less than 16 or 64
cores with the 150W or 225W per-chip budget, respectively.
Here, since DTM is constantly triggered, thermal violations
are avoided at the cost of reducing the frequency of the
cores for long periods of time. Therefore, the resulting
performance of the per-chip budgets is in general much
worse than originally expected by the task partitioning and
mapping algorithms. Furthermore, for such cases there is no
simple way of predicting such performance losses, making
it almost impossible for the system to provide performance
and timing guarantees. Contrarily, TSP never triggers DTM
and can thus achieve the expected performance of the task
partitioning and mapping decisions. The average percentage
increase in performance (among all number of active cores and
applications) for using TSPworst results in a 12% higher aver-
age total IPS compared to all constant power budgets. There
are just a few cases in which the resulting performance of
the per-chip budgets is higher than that of TSP. This happens
mostly because a per-chip power budget can potentially
execute different cores at different frequencies, reducing the
thermal headroom for these few cases, while under TSP all
cores share the same power budget and sometimes a certain
frequency setting slightly exceeds this budget and a lower
one results in large thermal headroom.

Intel’s Turbo Boost is a simple but very efficient online
technique, achieving a higher performance than TSPworst for
several cases. Namely, while under TSP the voltage/fre-
quency of the cores remains constant (as does the per-
formance), under Turbo Boost the voltage/frequency lev-
els are constantly changing, thus exploiting the thermal
capacitances of the thermal model by knowing that the
associated temperature changes require some time to fol-
low the changes in power. In this way, the instantaneous
performance of Turbo Boost can sometimes be much higher
than TSP for some time intervals (when there is thermal
headroom and the voltage/frequency is increased), and

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 12

TSPworst TSPbest 80W per-chip 150W per-chip 225W per-chip 3.52W per-core Turbo Boost

8 16 24 32 40 48 56 64
0

50

100

150

200 (a) x264

Number of Active Cores

IP
S
×
1
0
9

8 16 24 32 40 48 56 64
0

50

100

150

200
(b) Body Track

Number of Active Cores
8 16 24 32 40 48 56 64

0

50

100

150

200
(c) Black-Scholes

Number of Active Cores
8 16 24 32 40 48 56 64

0

50

100

150

200
(d) Swaptions

Number of Active Cores

Fig. 10: Evaluation results: average total system performance for homogeneous systems when using different power budgets.

much lower for other time intervals (when the critical tem-
perature is reached and the voltage/frequency is reduced).
After computing the average performance of Turbo Boost,
we observe that TSPworst results in the same average total
IPS (among all number of active cores and all applications).
However, similar to having frequent triggers of DTM, there
are no simple offline performance predictions suitable for
such boosting techniques, and thus no timing guarantees
can be provided in advance. Hence, Turbo Boost cannot
guide the task partitioning and mapping algorithms to make
intelligent decisions. Contrarily, this can be done with TSP,
helping to simplify task partitioning and mapping algo-
rithms to achieve a high predictable performance without
thermal violations.

Finally, there are no restrictions prohibiting the combi-
nation of Turbo Boost and TSP, and in this can potentially
result in a higher performance than applying each technique
by itself. Namely, TSP can be used to guide the task parti-
tioning, mapping, and DVFS selection algorithms to make
intelligent decisions that optimize the performance without
incurring in thermal violations at nominal operation. Then,
Turbo Boost can be applied on top of such a solution in
order to exploit any thermal headroom available at runtime
by boosting the cores to execute at power levels higher
than TSP. Opposed to standard Turbo Boost, in which once
the threshold temperature is reached the voltage/frequency
levels are decreased until the temperature is again below
the threshold, in this case Turbo Boost can stop decreasing
the voltage/frequency of the cores at the nominal operation
levels that satisfy TSP, as we know that this is thermally
safe. Therefore, by combining TSP and Turbo Boost, the system
can achieve a high predictable performance while also exploiting
the thermal headroom available at runtime.

8 EVALUATIONS FOR HETEROGENEOUS SYSTEMS

8.1 Setup

For our hardware platform, we consider the 72 cores system
presented in Fig. 5, consisting of 24 out-of-order (OOO) Alpha
21264 cores and 16 simple in-order Alpha 21264 cores, based
on simulations conducted on gem5 [3] and McPAT [20]
for 22 nm, and 16 in-order Cortex-A7 cores and 16 OOO
Cortex-A15 cores, based on an Odroid-XU3 [13] mobile
platform with an Exynos 5 Octa (5422) [27] chip with ARM’s
“big.LITTLE” architecture. According to our simulations,
each OOO Alpha core has an area of 9.6mm2 with a
shared 2MB L2 cache every eight cores, and each simple
Alpha core has an area of 1.6mm2 with a shared 2MB L2
cache every four cores, all connected to a 512MB RAM
(executing at 1GHz, with 73GB/s memory bandwidth).
The areas of the A7 and A15 cores are estimated from die

Scenario Alpha OOO Alpha simple A15 A7

S1

a: 8 threads
b: 8 threads
c: 2 threads

6 threads

a: -
b: -
c: 3 threads
d: 2 threads

a: 4 threads
b: 2 threads
c: 2 threads
d: -

a: -
b: 2 threads
c: 2 threads
d: 4 threads

S2

a: 5 threads
3 threads

b: -
c: 7 threads

1 threads

a: 4 threads
b: 1 threads
c: 2 threads
d: -

a: 2 threads
b: -
c: 1 threads
d: 4 threads

a: 4 threads
b: -
c: -
d: 2 threads

S3

a: 4 threads
b: 4 threads

4 threads
c: -

a: 2 threads
b: -
c: 3 threads
d: -

a: 4 threads
b: 1 threads
c: -
d: -

a: 2 threads
b: 2 threads
c: -
d: -

S4

a: 4 threads
4 threads

b: 4 threads
4 threads

c: 4 threads
4 threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

TABLE 1: Details of the application mapping scenarios for
our experiments. Indexes a, b, c, and d represent the cluster
ID as explained in Fig. 5. Every line corresponds to an
application instance executed in the corresponding cluster
with the indicated number of threads, where “-” means that
a cluster is not executing any application.

figures of the Exynos 5 Octa (5422) [27] chip as 0.8mm2

and 5.0mm2, respectively. There is a shared 512KB L2
cache every four A7 cores, and a shared 2MB L2 cache
every four A15 cores, connected through two low-power
multi-layer 32 bit buses to a 2GB LPDDR3 RAM PoP (ex-
ecuting at 933MHz, with 14.9GB/s memory bandwidth).
For the OOO and simple Alpha cores, we assume avail-
able frequencies {0.2, 0.4, . . . , 4.0} GHz, and the voltage
settings for each frequency are taken from the work in
[12]. For the A7 and A15 cores, the available frequencies
in the Odroid-XU3 platform are {0.2, 0.3, . . . , 1.4} GHz and
{1.2, 1.3, . . . , 2.0} GHz, respectively, and the voltage values
are automatically selected by the platform.

The RC thermal network for such a floorplan is obtained
as detailed in Section 7.1. We also use the same ambient tem-
perature, Pmax, TDTM, DTM technique, and benchmarks de-
scribed in Section 7.1. Furthermore, as different applications
have different power consumptions depending on the type
of cores and number of threads in which they are executed,
we run the applications from the PARSEC benchmark suite
under different scenarios. Particularly, we focus on different
applications individually, considering multiple instances of
the same application, with different number of threads per
instance and also different thread-to-core mappings. Details
can be found in Table 1. For each scenario in Table 1,
we conduct closed-loop evaluations involving simulations
with gem5 [3] and McPAT [20] for the Alpha cores, power
and performance traces from real measurements in the

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 13

TSP 70W per-chip 140W per-chip 205W per-chip 0.586W/mm2 per-core Turbo Boost

S1 S2 S3 S4
0

50

100

150 (a) x264

Scenario (from Table 1)

Th
ro

ug
hp

ut
[ap

ps s
]

S1 S2 S3 S4
0

50

100

150 (b) Body Track

Scenario (from Table 1)
S1 S2 S3 S4

0

50

100

150 (c) Black-Scholes

Scenario (from Table 1)
S1 S2 S3 S4

0

50

100

150 (d) Swaptions

Scenario (from Table 1)

Fig. 11: Evaluation results: average total system performance on heterogeneous systems when using different power budgets.

Odroid-XU3 platform for the A7 and A15 cores, and thermal
simulations with HotSpot [14]. Given that the Odroid-XU3
platform has no performance counters to measure the total
number executed instructions, we use throughput as our
performance metric, where throughput is defined as the
total number of application instances finished every second.

8.2 Power Constraints
We use similar power constraints as those described in
Section 7.2, but extended for heterogeneous systems. Using
Algorithm 3 we compute TSP for the given mappings in Ta-
ble 1. For the per-chip power constraints, we choose 205W
per-chip (total active power of using TSP when all cores
active), and 140W and 70W per-chip (to have a similar re-
lation with the per-chip constraints from Section 7.2). In the
evaluations in Section 7, the total per-chip power budgets
were equally divided among the number of active cores for
each experiment. For the heterogeneous case, the per-chip
power constraints are proportionally divided according to
the area of the active cores. For example, when activating two
OOO Alpha cores and three A7 cores under the 140W per-
chip power constraint, the total active area for these cores is
2 · 9.6mm2 + 3 · 0.8mm2 = 21.6mm2, such that each OOO
Alpha core can consume up to 9.6 mm2

21.6 mm2 · 140W = 62.2W
and each A7 core can consume up to 5.2W. Finally, we
use 0.586W/mm2 as the per-core power constraints, by
simply dividing 205W by the total core area in the chip,
i.e., 350.36mm2.

8.3 Performance Simulations
Fig. 11 presents the average total throughput for considering
the different mappings from Table 1 and the different power
budgets described in Section 8.2. Similar to Section 7.4,
we also compare with Intel’s Turbo Boost [15], [26]. The
observations of the results are similar to those in Section 7.4.
Additionally, developing intelligent and efficient task parti-
tioning and mapping algorithms is much more challenging
for heterogeneous systems. Therefore, TSP can dearly help
reduce the complexity of such decisions, achieving a high
predictable performance without thermal violations.

9 CONCLUSIONS

Using a single and constant power constraint, e.g., TDP, is a
pessimistic approach for homogeneous and heterogeneous
manycore systems. This paper presents a new power budget
concept, called Thermal Safe Power (TSP), which results
in a high total system performance, while the maximum
temperature among all cores remains below the threshold
level that triggers DTM. TSP is a fundamental new step and

advancement towards dealing with the dark silicon problem
as it alleviates the pessimistic bounds of TDP and enables
system designers and architects to explore new avenues for
performance improvements in the dark silicon era.

For a specific floorplan and ambient temperature, TSP
can be computed offline to obtain safe power and power
density constraints for the worst cases, allowing the system
designers to abstract from mapping decisions. Moreover,
TSP can also be computed online, for a particular mapping
of active cores and ambient temperature. The simulations
show the validity of our arguments, comparing the total per-
formance of using TSP, several constant power constraints,
and a boosting technique. TSP can also be used to estimate
the amount of dark silicon, which results in less pessimistic
estimations than those using constant power budgets.

REFERENCES

[1] H. Amrouch, B. Khaleghi, A. Gerstlauer, , and J. Henkel,
“Reliability-aware design to suppress aging,” in the 53rd
IEEE/ACM Design Automation Conference (DAC), June 2016.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
PACT, 2008, pp. 72–81.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 2, pp. 1–7, May 2011.

[4] J. Casazza, “First the tick, now the tock: Intel microarchitecture
(nehalem),” Intel Corporation, White Paper, 2009.

[5] J. M. Cebrián, “Effcient power and thermal management using
fine-grain architectural approaches in multicores,” Ph.D. disserta-
tion, University of Murcia, June 2011.

[6] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova,
“Evaluation of the intel core i7 turbo boost feature,” in IISWC,
2009, pp. 188–197.

[7] G. Dantzig and M. Thapa, Linear Programming 2: Theory and Exten-
sions. Springer-Verlag, 2003.

[8] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic learning for
thermal-aware power budgeting in many-core architectures,” in
CODES+ISSS, 2011, pp. 189–196.

[9] T. Ebi, M. A. Al Faruque, and J. Henkel, “TAPE: Thermal-aware
agent-based power economy for multi/many-core architectures,”
in the International Conference on Computer-Aided Design (ICCAD),
2009, pp. 302–309.

[10] T. J. A. Eguia, S. X.-D. Tan, R. Shen, E. H. Pacheco, and M. Tiru-
mala, “General behavioral thermal modeling and characterization
for multi-core microprocessor design,” in Proceedings of the 18th
Design, Automation and Test in Europe (DATE), 2010, pp. 1136–1141.

[11] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA,
2011, pp. 365–376.

[12] A. Grenat, S. Pant, R. Rachala, and S. Naffziger, “5.6 adaptive
clocking system for improved power efficiency in a 28nm x86-64
microprocessor,” in ISSCC, 2014, pp. 106–107.

[13] Hardkernel Co., Ltd., “Odroid-XU3,” www.hardkernel.com.
[14] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan,

K. Skadron, and M. R. Stan, “HotSpot: A compact thermal mod-
eling methodology for early-stage VLSI design,” IEEE Transactions
on VLSI Systems, vol. 14, no. 5, pp. 501–513, May 2006.

www.hardkernel.com

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 14

[15] Intel Corporation, “Dual-core intel xeon processor 5100 series
datasheet, revision 003,” August 2007.

[16] ——, “Intel turbo boost technology in intel CoreTM microarchitec-
ture (nehalem) based processors,” White Paper, November 2008.

[17] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: Methodology and empirical data,” in MICRO, 2003,
pp. 93–104.

[18] F. Kriebel, S. Rehman, D. Sun, M. Shafique, and J. Henkel, “ASER:
Adaptive soft error resilience for reliability-heterogeneous proces-
sors in the dark silicon era,” in DAC, 2014, pp. 12:1–12:6.

[19] J. Lee and N. S. Kim, “Optimizing throughput of power- and
thermal-constrained multicore processors using DVFS and per-
core power-gating,” in DAC, 2009, pp. 47–50.

[20] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in MICRO, 2009,
pp. 469–480.

[21] T. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical power management for asymmetric multi-
core in dark silicon era,” in DAC, 2013, pp. 174:1–174:9.

[22] S. Nussbaum, “AMD trinity APU,” in Hot Chips, 2012.
[23] M. Powell, A. Biswas, J. Emer, S. Mukherjee, B. Sheikh, and

S. Yardi, “CAMP: A technique to estimate per-structure power
at run-time using a few simple parameters,” in HPCA, 2009, pp.
289–300.

[24] B. Raghunathan and S. Garg, “Job arrival rate aware scheduling
for asymmetric multi-core servers in the dark silicon era,” in
CODES+ISSS, 2014.

[25] B. Raghunathan, Y. Turakhia, S. Garg, and D. Marculescu, “Cherry-
picking: Exploiting process variations in dark-silicon homoge-
neous chip multi-processors,” in DATE, 2013, pp. 39–44.

[26] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann, “Power-management architecture of the intel mi-
croarchitecture code-named sandy bridge,” IEEE Micro, vol. 32,
no. 2, pp. 20–27, March 2012.

[27] Samsung Electronics Co., Ltd., “Exynos 5 Octa (5422),” www.
samsung.com/exynos.

[28] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA
challenges in the dark silicon era: Temperature, reliability, and
variability perspectives,” in DAC, 2014, pp. 185:1–185:6.

[29] C. Tan, T. Muthukaruppan, T. Mitra, and L. Ju, “Approximation-
aware scheduling on heterogeneous multi-core architectures,” in
ASP-DAC, Jan 2015, pp. 618–623.

[30] W. Wu, L. Jin, J. Yang, P. Liu, and S. X.-D. Tan, “Efficient power
modeling and software thermal sensing for runtime temperature
monitoring,” TODAES, vol. 12, no. 3, pp. 25:1–25:29, May 2008.

Santiago Pagani is a Ph.D. student and part
of the research staff at the Chair for Embedded
Systems (CES) in Karlsruhe Institute of Technol-
ogy (KIT) in Germany. He received his Diploma
in Electronics Engineering from the Department
of Electronics, National Technological University
(UTN), Argentina in 2010. From 2003 until 2012,
he worked as a hardware and software devel-
oper in the industry sector for several companies
in Argentina. He joined KIT and started his doc-
toral research in March 2012. His research in-

terests include embedded systems, real-time systems, energy-efficient
scheduling, power-aware designs and temperature-aware scheduling.
He received Best Paper Awards from IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA) in 2013, and from IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS) in
2014.

Heba Khdr is a Ph.D. student at the Chair for
embedded Systems (CES) in Karlsruhe Institute
of Technology (KIT) in Germany. She received
her B.Sc in Informatics Engineering from Univer-
sity of Aleppo, Syria in 2005 with excellent grade
and the first rank. From 2005 until 2007 worked
as a software engineer in software company in
Syria. From 2008 until 2010 she worked as an
assistant in Aleppo university. In 2011 she did
an equivalent master thesis at KIT and started
her PhD in July 2011 at the Chair for Embedded

System (CES). Her research interests are thermal management and
resource management in many core systems. In 2012 she received
Research Student Award from KIT. She received Best Paper Award from
IEEE/ACM International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS) in 2014.

Jian-Jia Chen is a Professor in the Depart-
ment of Informatics in TU Dortmund University
in Germany. He was a Juniorprofessor in the
Department of Informatics in Karlsruhe Institute
of Technology (KIT) in Germany from May 2010
to March 2014. He received his Ph.D. degree
from Department of Computer Science and In-
formation Engineering, National Taiwan Univer-
sity, Taiwan in 2006. He received his B.S. degree
from the Department of Chemistry at National
Taiwan University 2001. Between Jan. 2008 and

April 2010, he was a postdoc researcher at Computer Engineering and
Networks Laboratory (TIK) in ETH Zurich, Switzerland. His research in-
terests include real-time systems, embedded systems, energy-efficient
scheduling, power-aware designs, temperature-aware scheduling, and
distributed computing. He received Best Paper Awards from ACM
Symposium on Applied Computing (SAC) in 2009, IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA) in 2005 and 2013, and IEEE/ACM International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) in 2014.

Muhammad Shafique (M’11) received the
Ph.D. degree in computer science from the Karl-
sruhe Institute of Technology (KIT), Germany, in
2011. He is currently a Research Group Leader
at the Chair for Embedded Systems, KIT. He
has over ten years of research and develop-
ment experience in power-/performance-efficient
embedded systems in leading industrial and re-
search organizations. He holds one U.S. patent.
His current research interests include design
and architectures for embedded systems with

focus on low power and reliability. Dr. Shafique was the recipient of
2015 ACM/SIGDA Outstanding New Faculty Award, six gold medals,
the CODES+ISSS 2011 and 2014 Best Paper Awards, AHS 2011 Best
Paper Award, DATE 2008 Best Paper Award, DAC 2014 Designer Track
Poster Award, ICCAD 2010 Best Paper Nomination, several HiPEAC
Paper Awards, and the Best Master Thesis Award. He is the TPC
co-Chair of ESTIMedia 2015 and has served on the TPC of several
IEEE/ACM conferences like ICCAD and DATE.

Minming Li received the BE and PhD de-
grees from the Department of Computer Science
and Technology, Tsinghua University, Beijing,
China, in 2002 and 2006, respectively. He is cur-
rently an assistant professor in the Department
of Computer Science, City University of Hong
Kong. His research interests include wireless ad
hoc networks, algorithm design and analysis,
and combinatorial optimization.

www.samsung.com/exynos
www.samsung.com/exynos

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 15

Jörg Henkel is currently with Karlsruhe Insti-
tute of Technology (KIT), Germany, where he
is directing the Chair for Embedded Systems
CES. Before, he was a Senior Research Staff
Member at NEC Laboratories in Princeton, NJ.
He received his PhD from Braunschweig Uni-
versity with “Summa cum Laude”. Prof. Henkel
has/is organizing various embedded systems
and low power ACM/IEEE conferences/sym-
posia as General Chair and Program Chair and
was a Guest Editor on these topics in various

Journals like the IEEE Computer Magazine. He was Program Chair
of CODES’01, RSP’02, ISLPED’06, SIPS’08, CASES’09, Estimedia’11,
VLSI Design’12, ICCAD’12, PATMOS’13, NOCS’14 and served as Gen-
eral Chair for CODES’02, ISLPED’09, Estimedia’12, ICCAD’13 and
ESWeek’16. He is/has been a steering committee member of major
conferences in the embedded systems field like at ICCAD, ESWeek,
ISLPED, CODES+ISSS, CASES and is/has been an editorial board
member of various journals like the IEEE TVLSI, IEEE TCAD, IEEE
TMSCS, ACM TCPS, JOLPE etc. In recent years, Prof. Henkel has given
around ten keynotes at various international conferences primarily with
focus on embedded systems dependability. He has given full/half-day
tutorials at leading conferences like DAC, ICCAD, DATE etc. Prof. Henkel
received the 2008 DATE Best Paper Award, the 2009 IEEE/ACM William
J. Mc Calla ICCAD Best Paper Award, the CODES+ISSS 2015, 2014,
and 2011 Best Paper Awards, and the MaXentric Technologies AHS
2011 Best Paper Award as well as the DATE 2013 Best IP Award and
the DAC 2014 Designer Track Best Poster Award. He is the Chairman
of the IEEE Computer Society, Germany Section, and was the Editor-in-
Chief of the ACM Transactions on Embedded Computing Systems (ACM
TECS) for two consecutive terms. He is an initiator and the coordinator
of the German Research Foundation’s (DFG) program on ’Dependable
Embedded Systems’ (SPP 1500). He is the site coordinator (Karlsruhe
site) of the Three- University Collaborative Research Center on “Invasive
Computing” (DFG TR89). He is the Editor-in-Chief of the IEEE Design
& Test Magazine since January 2016. He holds ten US patent and is a
Fellow of the IEEE.

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 16

APPENDIX A
SUMMARY OF SYMBOLS

For simple reference, Table 2 and Table 3 summarize all the
symbols used in the paper.

APPENDIX B
TSP FOR A GIVEN MAPPING: HOMOGENEOUS
(DIFFERENT POWER CONSTRAINT PER CORE)
This section presents a solution to compute TSP for a
particular core mapping and ambient temperature, which
results in different TSP values per core. That is, cores are
constrained to different power values, depending on their
location and the adjacent active cores. The objective here is
to maximize the total power consumption.

For a given Q, Pblocks, Tamb, TDTM, P core
inact, Pmax, and floor-

plan, the TSP computation for this case can be formulated
as a linear programming. Note that this is not the main
contribution of our paper, and we only present this solution
for completeness. This formulation is expressed as

Maximize
∑
∀i∈K pcores

i

such that:

BT−Pcores = Pblocks + TambG∑N
i=1 p

cores
i ≤ Pmax −

∑N
i=1 p

blocks
i

Ti ≤ TDTM for all i ∈ L

Ti ≥ 0 for i=1, . . . ,N

pcores
i = P core

inact for i=1, . . . ,M if qi=0

pcores
i ≥ P core

min for i=1, . . . ,M if qi=1.

Any standard method, e.g., Simplex or an Interior-Point
method [7], can be used to solve this programming, result-
ing in a vector with a different power constraint for each
active core in vector Q, which we define as Pcores

TSP (Q).
Due to the heat transfer among cores, for the same

number of active cores different mappings result in different
power constraints. This can be seen in the following exam-
ple. Consider a manycore system of 16 cores with the same
settings as in the motivational example from Section 1, with
P core

inact of 0W and P core
min of 0.5W. For a Tamb of 45◦C and two

different mappings Q, both with 4 active cores, we compute
Pcores

TSP (Q) and present the results in Fig. 12a and Fig. 12b.
The maximum total power consumption for the mapping in
Fig. 12a and Fig. 12b is 62.2W and 67.4W, respectively.

APPENDIX C
TRANSIENT STATE CONSIDERATIONS

Depending on the executed applications and the task par-
titioning, mapping, and DVFS policies implemented in the
system, the power consumption and the number of active
cores throughout the chip could change very frequently (in
the order of milliseconds) or it could change rarely (in the
order of several seconds). The former will happen very often
in normal systems, e.g., when there are context switches
inside different cores due to task preemption, when some
cores become idle waiting for data from memory or waiting
for some other thread to finish its computation before being
able to continue, etc. The latter could occur in scenarios with
long running application that have no more running threads
than cores (such that preemption is not needed). In either
case, when drastic power changes occur and depending on
the adopted DVFS policy, the temperature of some cores

Symbol Description

M Total number of cores in the system

Z
Total number of blocks in the floorplan, such

that Z −M is the amount of blocks that
correspond to components that are not cores

N Total number of nodes in RC thermal network

Tamb Ambient temperature

TDTM Threshold temperature that triggers DTM

P core
min

In a homogeneous system, the minimum power
consumption to maintain a core in the active

state (at its lower speed)

P core
inact

In a homogeneous system, the power
consumption of an inactive core

Pmax
Maximum sustainable chip power consumption.

An electrical constraint and not an abstraction

A = [ai,j]N×N
Matrix containing the thermal capacitance

values of the RC thermal network

B = [bi,j]N×N
Matrix containing the thermal conductance

values of the RC thermal network
B−1 =

[
b-1

i,j

]
N×N Inverse of matrix B

T = [Ti]N×1
Column vector representing the temperature on

each node of the RC thermal network

T′ =
[
T ′
i

]
N×1

Column vector accounting for the first order
derivative of the temperature on each node of
the RC thermal network with respect to time

P = [pi]N×1

Column vector containing the power consump-
tion on each node of the RC thermal network.

It holds that P = Pcores +Pblocks +Pint

Pcores =
[
pcores
i

]
N×1

Sub-vector containing the power consumption
on the cores. Elements of other nodes are set to 0

Pblocks =
[
pblocks
i

]
N×1

Sub-vector containing the power consumption
on blocks of the floorplan that are not cores.
Elements of other thermal nodes are set to 0

Pint =
[
pint
i

]
N×1

Sub-vector containing the power consumption
on internal nodes, such that pint

i = 0 for all i

G = [gi]N×1

Column vector containing the thermal
conductance between each node of the RC

thermal network and Tamb. If node i is not in
contact with the ambient gi is set to zero

L = {`1, . . . , `Z} Set containing all indexes of thermal nodes
that correspond to blocks of the floorplan

K = {k1, . . . , kM} Set containing all indexes of thermal nodes
that correspond to cores

Q = [qi]M×1

Binary vector for a particular mapping of active
cores: qi=1 means that core i is active;

qi=0 means that core i is inactive

PTSP (Q)

For homogeneous systems, a power constraint
for each active core in mapping Q that results

in a maximum temperature (in the steady-state)
among all cores which does not exceed TDTM

P ?
TSP (Q)

Equivalent to PTSP (Q) but ignoring
the maximum chip power Pmax

Pworst
TSP (m)

For homogeneous systems, a power constraint
for each active core in any possible core mapping
with m simultaneously active cores that results
in a maximum temperature (in the steady-state)

among all cores which does not exceed TDTM

TABLE 2: Table listing all symbols.

may exceed the value of TDTM due to the effects of transient
temperatures. When this happens, DTM is triggered to
avoid damages to the chip, resulting in a lower performance
than expected. Unless care is taken, these transient effects can be
observed in any power budgeting technique derived for the steady-
state temperatures, e.g., for constant power constraints like TDP,
and also for some cases with TSP.

The following example uses HotSpot [14] with its default
configuration (detailed in Section 7.1) to show how this
effect could possibly occur for systems constrained both by

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 17

Symbol Description

P ?worst
TSP (m)

Equivalent to Pworst
TSP (m) but ignoring

the maximum chip power Pmax

H = [hi,j]Z×M

Auxiliary matrix used in Lemma 4 to compute
the maximum amount of heat that any m cores

can contribute to the temperature on node i

R (m)
Auxiliary function that helps guarantee that
PTSP (Q) and Pworst

TSP (m) do not exceed Pmax

W
For heterogeneous systems,

total number of types of cores

Mw
For heterogeneous systems,

total number of cores of type w

areacore
j

For heterogeneous systems, the area
of core j, for j = 1, 2, . . . ,M

areatype
w

For heterogeneous systems, the area
of cores of type w, for w = 1, 2, . . . ,W

pcore
inactj

For heterogeneous systems, the inactive power
consumption of core j, for j = 1, 2, . . . ,M

p
type
inactw

For heterogeneous systems, the inactive
power consumption of cores of type w,

for w = 1, 2 . . . ,W

Kw=
{
kw1 , . . . , kwMw

} For heterogeneous systems, set containing
all indexes of thermal nodes that correspond

to cores of type w

Qw =
[
qwi

]
Mw×1

Binary vector for a particular mapping of active
cores of type w: qwi =1 means that core i is an

active core of type w; qwi =0 means
that core i is an inactive core of type w

P ρ
TSP (Q)

For heterogeneous systems, a uniform power
density constraint for each active core in mappi-
ng Q (independent of the core types) that results
in a maximum temperature (in the steady-state)

among all cores which does not exceed TDTM

P ρ?
TSP (Q)

Equivalent to P ρ?
TSP (Q) but ignoring

the maximum chip power Pmax

Rρ(Q)
Auxiliary function that helps guarantee

that P ρ
TSP (Q) does not exceed Pmax

m = {m1, . . . ,mW } For heterogeneous systems, set representing the
number of active cores for core types {1, . . . ,W}

Hρ=
[
hρ
w,i,j

]
W×Z×Mw

Auxiliary matrix used in Lemma 8 to compute
the maximum amount of heat that any mw cores
of type w can contribute to the temperature on

node i, for all core types w = 1, 2, . . . ,W

P ρ worst
TSP (m)

For heterogeneous systems, a power density
constraint (independent of the core types) for
each active core in any possible core mapping

with m simultaneously active cores that results
in a maximum temperature (in the steady-state)

among all cores which does not exceed TDTM

P ρ?worst
TSP (m)

Equivalent to P ρ worst
TSP (m) but

ignoring the maximum chip power Pmax

Rρ(m)
Auxiliary function that helps guarantee
that P ρ worst

TSP (m) does not exceed Pmax

TABLE 3: Table listing all symbols (continued).

(1) TDP and (2) TSP. The same example applies for both
cases. Consider a manycore system of 16 cores with the
same settings as in the motivational example from Section 1,
with P core

inact of 0W, and (1) TDP of 90.2W per-chip, or (2)
Pworst

TSP (4) = 14.67W and Pworst
TSP (8) = 11.27W, i.e., TSP of

14.67W and 11.27W per-core when activating 4 and 8 cores,
respectively. Under these assumptions, Fig. 13 presents sim-
ulations in which during t = [0s, 0.5s] there are 8 active
cores according to Fig. 1b, consuming 11.27W each (90.2W
in total). During t = [0.5 s, 1 s], these cores are shut-down
and we activate 4 cores according to Fig. 1a, consuming
14.67W each (58.7W in total). That is, if constrained by
(1) TDP, the system consumes TDP during t = [0 s, 0.5 s],
and less than TDP during t = [0.5 s, 1 s]. Moreover, if con-
strained by (2) TSP, the system consumes the corresponding

(53.2) (53.8) (54.0) (53.7)

(54.2) (56.0) (56.3) (55.0)

(55.8) (80.0) (80.0) (58.0)

(55.0) (58.1) (80.0) (80.0)

16.49 15.45

14.86 15.40

(a) Total power
consumption of 62.2W

(80.0) (56.6) (56.3) (54.7)

(56.8) (57.0) (80.0) (56.3)

(56.7) (56.2) (57.0) (56.6)

(80.0) (56.7) (56.8) (80.0)

16.72

17.34

16.62 16.72

(b) Total power
consumption of 67.4W

50

60

70

80

[◦C]

Fig. 12: Example of TSP with different power constraints.
Top numbers are the power consumptions (in Watts) of each
active core (boxed in black). Bottom numbers in parenthesis
are the temperatures in the center of each core (in ◦C).
Detailed temperatures are shown according to the color bar.

55

65

75

85

95

0 0.2 0.4 0.6 0.8 1
78

80

82

84

86

90.2W=8·P worst
TSP (8)=TDP

58.7W=4·P worst
TSP (4)<TDP

To
ta

lp
ow

er
[W

]

Time [seconds]M
ax

.T
em

pe
ra

tu
re

[◦
C

]

Max. Temp.
Total Power

Fig. 13: Transient example for both TSP and TDP (the red
line shows the maximum temperature among all cores).
During t = [0 s, 0.5 s] there are 8 active cores according
to Fig. 1b, consuming 11.27W each. During t = [0.5 s, 1 s],
these cores are shut-down and we activate 4 cores according
to Fig. 1a, consuming 14.67W each.

TSP according to the number of active cores all the time.
Nevertheless, although for both cases the power budgets
are not violated, Fig. 13 shows that during t = [0.5 s, 1 s]
the temperature of at least one core would exceed the 80◦C
threshold for triggering DTM. This transient effect in which
we have transient temperature peaks that are higher than the
corresponding steady-state temperatures normally occurs when
the power density of the cores is increased during a change in
power. For example, for the opposite case in which we transition
from the mapping in Fig. 1a to that in Fig. 1b, since the power
density in the active cores decreases, the transient temperatures
would remain below both steady-states, as seen in Fig. 14.

If the frequency of the changes in power that produce
this effect is very high, then DTM could be triggered fre-
quently, and the associated performance losses would be
noticeable. There are several ways to deal with this issue in
regards to TSP, and here we detail two of them. Specifically,
we can adjust the temperature for which we compute TSP
such that the transient peak temperatures remain below
TDTM even if we always adjust the DVFS levels to consume
the entire TSP budget according to the number of active
cores (Appendix C.1), or the DVFS levels can be kept at
nominal operation for a given mapping by ignoring the
partial number of active cores due to cores being idle while
waiting for data from memory or waiting for other threads
to finish (Appendix C.2).

C.1 Adjusting the Temperature for Computing TSP
One strategy for dealing with transient peak temperatures
is to quantify the maximum values that these temperatures
can actually reach during the transient state. The difference

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 18

55

65

75

85

95

0 0.2 0.4 0.6 0.8 1
71

74

77

80

83

90.2W=8·P worst
TSP (8)=TDP

58.7W=4·P worst
TSP (4)<TDP

To
ta

lp
ow

er
[W

]

Time [seconds]M
ax

.T
em

pe
ra

tu
re

[◦
C

]

Max. Temp.
Total Power

Fig. 14: Transient example for both TSP and TDP (the red
line shows the maximum temperature among all cores).
During t = [0 s, 0.5 s] there are 4 active cores according
to Fig. 1a, consuming 14.67W each. During t = [0.5 s, 1 s],
these cores are shut-down and we activate 8 cores according
to Fig. 1b, consuming 11.27W each.

between such maximum transient temperatures and TDTM is
denoted as ∆Tmax

transient, with value 3.08◦C for the example in
Fig. 13. Therefore, by computing TSP for TDTM −∆Tmax

transient,
we can make sure that the transient temperatures never
reach TDTM. Nevertheless, depending on the floorplan and
the resulting thermal capacitances, it can happen that the
transient temperatures for this new TSP are too pessimistic
compared to TDTM. For such cases, with just a few iterations,
a near optimal value for which to compute TSP can be
achieved. This method should be applied offline, due to the
overheads for obtaining ∆Tmax

transient for each case. A similar
method should be adopted for systems that use constant power
budgets, e.g., TDP.

Procedure Example: Consider a hypothetical manycore
system of 16 cores with the same settings as in the motiva-
tional example from Section 1, and an ambient temperature
of 45◦C. For the power consumptions, consider a hypothet-
ical scenario in which the power of the cores changes every
0.1 seconds. The changes in power are for a random number
of active cores. The mapping and power values adopted
in all cases are those of TSP for the worst-case, computed
through Algorithm 2, according to the number of active
cores at each time instant. Under these assumptions, we run
simulations with HotSpot for such a case, and present what
the associated temperatures would look like in Fig. 15a. In
Fig. 15a, the temperature on each core is presented with
a different color, and the maximum temperature among all
cores at any given time is highlighted by the bold-red curve.
We can observe that for these assumptions and floorplan
the thermal capacitances are not negligible, which results in
long transient state periods. Therefore, for such a case, TSP
should be recomputed for some temperature below TDTM.

Looking at Fig. 15a, we can quantify ∆Tmax
transient, which we

set to 15◦C, and then recompute TSP for 65◦C. Given that
this results in a maximum transient temperature of 74◦C,
which is too pessimistic, we need a higher value. Thus, we
iterate computing TSP and running transient temperature
simulations. After just 5 iterations, specifically, computing
TSP for 80◦C, 65◦C, 71◦C, 69◦C, and 69.5◦C, we reach a
near optimal value for which to compute TSP, which for this
floorplan is 69.5◦C. Clearly, the new TSP values are smaller
than those for a TSP computed for 80◦C.

Finally, we run the transient simulations with the same
settings and assumptions, but with power states according
to the new TSP values. The results are presented in Fig. 15b,
which shows that when computing TSP for 69.5◦C, the
temperature would always be below TDTM. When comput-

0 0.2 0.4 0.6 0.8 1

60
70
80
90

100

Time [seconds]

Te
m

pe
ra

tu
re

[◦
C

]

Max. Temp.

(a) TSP for 80◦C

0 0.2 0.4 0.6 0.8 1

60

70

80

90

100

Time [seconds]

Max. Temp.

(b) TSP for 69.5◦C

Fig. 15: Transient example for 16 cores. The number of
active cores and their power consumption changes every 0.1
seconds. The mapping and power values adopted are those
of worst-case TSP computed for (a) 80◦C and (b) 69.5◦C.

ing TSP online for particular mapping scenarios, the target
temperature should also be 69.5◦C, and not the original
80◦C.

If, unlike Fig. 15, the changes in power are not too
frequent, such that DTM is triggered with low frequency
during short time intervals, then computing TSP for TDTM
could still a better approach that results in higher total
performance.

C.2 Nominal DVFS Operation for a Given Mapping
Another strategy for dealing with transient peak tempera-
tures is to keep the DVFS levels at nominal operation for
a given mapping by ignoring the partial number of active
cores due to cores being idle while waiting for data from
memory or waiting for other threads to finish. For example,
considering the experimental setup for the homogeneous
experiments in Section 7, assume a situation in which the
operating system partitions tasks and maps them to cores
such that 32 cores have threads assigned to them and the
other 32 cores are power gated. For such a case, the DVFS
levels of the 32 active cores can be set such that the power
consumption in each active core is below the TSP power
budget, which is 5.86W if we consider the worst-case TSP
value as reported in Fig. 7 and Table 4 (we could have also
computed TSP online for the specific mapping, but we use
the worst-case TSP values for simplicity of presentation).
Naturally, there will be time intervals (which could last
some milliseconds or entire seconds) during which some of
these 32 active cores will actually remain idle, e.g., when
a thread is locked waiting for data from another thread
to continue. When this happens, there are two possible
alternatives of how the system could operate: (1) change the
DVFS levels in order to satisfy TSP for the partial number of
active cores, or (2) keep the same DVFS levels that satisfy
TSP when there are 32 active cores (e.g., 5.86W for the
worst-case TSP).

It is important to remember at this point that TSP is a
decreasing function with respect to the number of active
cores, as shown in Fig. 7 and Table 4. Therefore, since
TSP for less than 32 active cores would be larger than
5.86W and thus cores can execute at faster frequencies while
satisfying TSP, this means that operating under alternative
(1) we can potentially achieve a higher system performance
by dynamically changing the DVFS levels. However, this
precisely the case in which we can many transient thermal
violations as explained above.

Contrarily, operating under alternative (2) is a conser-
vative approach which needs little further considerations.
Namely, since TSP for less than 32 active cores is larger than

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 19

0 0.2 0.4 0.6 0.8 1

60
70
80
90

100

Time [seconds]

Te
m

pe
ra

tu
re

[◦
C

]
Max. Temp.

(a) DVFS for
partial active cores

0 0.2 0.4 0.6 0.8 1

60

70

80

90

100

Time [seconds]

Max. Temp.

(b) Constant DVFS

Fig. 16: Transient example for 16 active cores when using
different DVFS policies for idling. The partial number of
active cores changes every 0.1 seconds, e.g., when threads
become idle waiting for other threads to finish. In (a), DVFS
is used to match the worst-case TSP for the partial number
of active cores in each time interval. In (b), DVFS levels are
kept constant to match the worst-case TSP when no core is
idle, i.e., for 16 active cores.

5.86W, if the DVFS levels are not changed then individual
cores will not consume more than 5.86W and this is safe
for any scenario with less than 32 active cores. Further-
more, since the power density of the active cores remains
constant under alternative (2), in this scenario the transient
temperatures will generally remain under TDTM and thus
DTM will not be triggered. This statement is supported by
Fig. 16. Fig. 16a shows the same simulations as in Fig. 15a,
in which the DVFS levels are constantly changing to match
the TSP values for the partial number of active cores in
each time interval. On other hand, Fig. 16b shows what the
resulting temperatures would be for the same assumptions
and scenario, but keeping the DVFS levels constant at nom-
inal operation, were it can be observed that all transient
temperatures would be below TDTM. Finally, note that under
alternative (2) the DVFS levels are not kept always constant, but
are rather set to nominal values. That is, when an application
finishes execution or a new application arrives, the mapping of
threads changes and new nominal DVFS levels to satisfy TSP
are computed for the new mapping. Alternative (2) simply keeps
the DVFS levels constant when the partial number of active cores
changes due to core idling or similar situations.

APPENDIX D
ADDITIONAL EXPERIMENTAL SETUP DETAILS

In this section we discuss additional details of our ex-
perimental setup and simulation framework, for which
Fig. 17 presents an overview. Our experimental evaluations
are conducted considering detailed transient temperatures,
such that we can conduct accurate full system simulations.
Specifically, our simulation framework integrates gem5,
McPAT, real measurements on the Odroid-XU3 platform,
and HotSpot in a closed-loop transient simulator. First, the
PARSEC applications are executed in gem5 for some spe-
cific frequency configuration. We parse the output statistics
from gem5 in order to generate the xml files required as
inputs by McPAT, adding at this point the voltage infor-
mation (not required before by gem5). The output results
from McPAT are then also parsed in order to obtain the
necessary power consumption data for every part of the
chip. For the Odroid-XU3 platform, we simply execute the
PARSEC applications for different frequency configurations
and measure the execution time and power consumption.

Thermal-Aware Loop

INPUTS:

- RC thermal network
 from HotSpot, using
 floorplan from Figure 6
- T

amb
 and T

DTM

- Worst-case mappings
 (or random for TSP

best
)

HotSpot

Compute
Temperatures

TSP

per-chip/core

Turbo Boost

OUTPUTS:

- Total Power Consumption
- Maximum Temperature
- Total Performance

or

or DTM

Thermal-Aware Loop

PARSEC gem5 McPAT

Exynos 5
Octa (5422)

Performance, Timing
and Power Traces

Fig. 17: Overview of our simulation framework.

For example, Fig. 18 and Fig. 19 show execution time
and average power consumption values for applications
from the PARSEC benchmark suite, where it can be clearly
observed that different applications have different power
consumptions, and the specific power values depend on the
application, the voltage/frequency, and the selected number
of threads (not shown in the figure). All of this power data is
then fed to HotSpot in order to conduct the transient thermal
simulations.

For each floorplan discussed in Section 7.1 and Sec-
tion 8.1, we consider one thermal block for each core and
independent thermal blocks for the L2 caches and other
hardware. We then obtain the values for B, B−1, and G,
by using HotSpot [14] v5.02 with its default configuration in
the block model mode. That is, chip thickness of 0.15mm,
silicon thermal conductivity of 100 W

m·K , silicon specific heat
of 1.75 · 106 J

m3·K , a heat sink of 6 × 6 cm and 6.9mm
thick, heat sink convection capacitance of 140.4 J

K , heat sink
convection resistance of 0.1 K

W , heat sink and heat spreader
thermal conductivity of 400 W

m·K , heat sink and heat spreader
specific heat of 3.55 · 106 J

m3·K , a heat spreader of 3 × 3 cm
and 1mm thick, interface material thickness of 20um, in-
terface material thermal conductivity of 4 W

m·K , and interface
material specific heat of 4 · 106 J

m3·K .
When evaluating TSP and the per-chip/per-core power

budgets, if the temperature anywhere in the chip exceeds
the predefined threshold, then DTM is triggered, operating
as described in Section 7.1. The voltage/frequency reduction
or increment is achieved by changing the voltage and fre-
quency in gem5 and McPAT or in the Odroid-XU3 platform.
These changes in the voltage and frequency translate to
different execution times for each application thread and
also on different power consumption values. Thanks to
our closed-loop simulations, these new power consumption
data is fed to HotSpot for the next simulation steps, thus
changing the resulting transient temperature.

When evaluating Turbo Boost, the transient simulations
are conducted in a similar fashion, only that now Turbo
Boost will always attempt to increase the voltage/frequency
whenever the temperature is below the threshold, as already
explained in Section 7.1. In our simulation framework, the
voltage/frequency reduction or increment is achieved in
the same way as done by the DTM technique. Finally, the
performance results presented in Fig. 10 and Fig. 11 show
average total IPS count and the average total throughput,
respectively.

As an additional comment with respect to the considered
DTM technique, note that although in Fig. 9 we are only
plotting the maximum temperature among all cores, there
are many cores that reach temperatures above the threshold
temperature that triggers DTM. This point is very rele-

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 20

x264 Bodytrack Blackscholes Swaptions

0 1 2 3 4
0

5

10

15

20

Frequency [GHz]

Ex
ec

ut
io

n
Ti

m
e

[s
]

(a) out-of-order Alpha 21264

0 1 2 3 4
0

40

80

120

Frequency [GHz]

Ex
ec

ut
io

n
Ti

m
e

[s
]

(b) simple Alpha 21264

1.2 1.4 1.6 1.8 2
2

4

6

8

10

Frequency [GHz]

Ex
ec

ut
io

n
Ti

m
e

[s
]

(c) Cortex A15

0.2 0.6 1 1.4
0

20

40

60

Frequency [GHz]

Ex
ec

ut
io

n
Ti

m
e

[s
]

(d) Cortex A7

Fig. 18: Execution time based on simulations in gem5 [3], and measured on the Exynos 5 Octa (5422) processor, for some
applications from the PARSEC benchmark suite [2].

x264 Bodytrack Blackscholes Swaptions

0 1 2 3 4
0

5

10

15

20

Frequency [GHz]

A
ve

ra
ge

Po
w

er
[W

]

(a) out-of-order Alpha 21264

0 1 2 3 4
0

1

2

Frequency [GHz]

A
ve

ra
ge

Po
w

er
[W

]

(b) simple Alpha 21264

1.2 1.4 1.6 1.8 2
0

1

2

3

4

Frequency [GHz]

A
ve

ra
ge

Po
w

er
[W

]

(c) Cortex A15

0.2 0.6 1 1.4
40

50

60

70

Frequency [GHz]

A
ve

ra
ge

Po
w

er
[m

W
]

(d) Cortex A7

Fig. 19: Average power values based on simulations in gem5 [3] and McPAT [20] (for 22 nm), and measured on the Exynos
5 Octa (5422) processor, for some applications from the PARSEC benchmark suite [2].

vant from the perspective of DTM. Namely, for particular
mappings, only a few cores might exceed the threshold
temperature and thus reducing the voltage/frequency of
all active cores is not the most efficient DTM approach.
This is most common in real systems executing applications
that consume different amounts of power, or when differ-
ent cores are configured to run at different DVFS levels.
However, conducting such experiments would make for
a very hard interpretation of the results. Because of this
reason, we choose to conduct more uniform evaluations,
with applications of the same type and all cores of the same
type running at similar frequencies. In this way, when there
is a thermal violation that triggers DTM, all (or almost all)
active cores have temperatures above the allowed threshold.
For example, Fig. 20 presents a thermal snapshot for the
worst-case mapping when activating 12 cores and equally
distributing the 225W per-chip power budget among the
active cores. As seen in the figure, for such a case the highest
temperature among all cores is 102.9◦C. Nevertheless, the
lowest temperature among the active cores is also much
higher than 80.0◦C, specifically, it reaches 97.0◦C. Therefore,
in our experiments we can conservatively assume that DTM
is triggered for all active cores without incurring in much
pessimism.

APPENDIX E
POWER CONSTRAINTS FOR HOMOGENEOUS EVAL-
UATIONS

In this section we include table representations of Fig. 7,
Fig. 8, and Fig. 9.

74.6◦C 77.0◦C 80.5◦C 97.5◦C 81.0◦C 77.9◦C 75.6◦C 73.7◦C

75.1◦C 78.9◦C 98.8◦C 101.6◦C 99.7◦C 80.9◦C 76.6◦C 73.8◦C

75.3◦C 79.5◦C 100.3◦C 102.9◦C 101.7◦C 97.0◦C 77.5◦C 73.9◦C

75.0◦C 78.8◦C 98.8◦C 101.6◦C 99.6◦C 80.7◦C 76.4◦C 73.6◦C

74.2◦C 76.8◦C 80.4◦C 97.1◦C 80.9◦C 77.6◦C 75.1◦C 73.0◦C

73.3◦C 74.8◦C 76.4◦C 77.7◦C 76.7◦C 75.3◦C 73.7◦C 72.3◦C

72.4◦C 73.1◦C 73.9◦C 74.3◦C 74.0◦C 73.2◦C 72.4◦C 71.6◦C

71.4◦C 71.5◦C 71.8◦C 72.0◦C 71.9◦C 71.6◦C 71.2◦C 70.9◦C

18.75 W

18.75 W 18.75 W 18.75 W

18.75 W 18.75 W 18.75 W 18.75 W

18.75 W 18.75 W 18.75 W

18.75 W

70

75

80

85

90

95

100

105

[◦C]

Fig. 20: Temperature snapshot for 12 active cores when
equally distributing the 225W per-chip power budget, with
a resulting highest temperature of 102.9◦C.

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTERS (TC), ON APRIL 2016 21

Power Constraint per core [W]
Active 3.52 W 80 W 150 W 225 W
Cores

TSPworst TSPbest per-core per-chip per-chip per-chip
4 19.95 24.79 3.52 20.00 37.50 56.25
8 14.09 18.24 3.52 10.00 18.75 28.13
12 11.16 14.47 3.52 6.67 12.50 18.75
16 9.34 11.88 3.52 5.00 9.38 14.06
20 8.06 10.11 3.52 4.00 7.50 11.25
24 7.13 8.81 3.52 3.33 6.25 9.38
28 6.42 7.81 3.52 2.86 5.36 8.04
32 5.86 6.97 3.52 2.50 4.69 7.03
36 5.39 6.31 3.52 2.22 4.17 6.25
40 5.00 5.74 3.52 2.00 3.75 5.63
44 4.67 5.25 3.52 1.82 3.41 5.11
48 4.39 4.85 3.52 1.67 3.13 4.69
52 4.14 4.50 3.52 1.54 2.88 4.33
56 3.93 4.16 3.52 1.43 2.68 4.02
60 3.73 3.87 3.52 1.33 2.50 3.75
64 3.52 3.52 3.52 1.25 2.34 3.52

TABLE 4: Worst- and best-case TSP for the floorplan in
Fig. 3, compared to a constant per-core budget, and esti-
mations of constant per-chip budgets equally distributed
among active cores.

Power Constraint per chip [W]
Active 3.52 W 80 W 150 W 225 W
Cores

TSPworst TSPbest per-core per-chip per-chip per-chip
4 79.80 99.17 14.08 80.00 150.00 225.00
8 112.76 145.94 28.16 80.00 150.00 225.00
12 133.91 173.63 42.24 80.00 150.00 225.00
16 149.45 190.06 56.32 80.00 150.00 225.00
20 161.14 202.10 70.40 80.00 150.00 225.00
24 171.18 211.35 84.48 80.00 150.00 225.00
28 179.86 218.80 98.56 80.00 150.00 225.00
32 187.43 223.00 112.64 80.00 150.00 225.00
36 194.02 227.04 126.72 80.00 150.00 225.00
40 199.96 229.57 140.80 80.00 150.00 225.00
44 205.36 231.21 154.88 80.00 150.00 225.00
48 210.51 232.91 168.96 80.00 150.00 225.00
52 215.33 233.80 183.04 80.00 150.00 225.00
56 219.82 233.13 197.12 80.00 150.00 225.00
60 224.08 232.10 211.20 80.00 150.00 225.00
64 225.28 225.28 225.28 80.00 150.00 225.00

TABLE 5: Constant per-chip budgets, compared to multi-
plying the number of active cores by a constant per-core
budget, and the worst- and best-case TSP for the floorplan
from Fig. 3.

Maximum Temperature [◦C]
Active 3.52 W 80 W 150 W 225 W
Cores

TSPworst TSPbest per-core per-chip per-chip per-chip
4 80.00 73.52 52.38 80.10 80.10 80.10
8 80.00 80.00 54.81 70.25 91.10 94.08
12 80.00 80.00 56.97 66.47 84.05 102.89
16 80.00 80.00 58.98 64.34 80.13 97.05
20 80.00 80.00 60.96 62.99 77.67 93.40
24 80.00 80.00 62.83 61.96 75.82 90.66
28 80.00 80.00 64.64 61.16 74.37 88.53
32 80.00 80.00 66.41 60.51 73.21 86.83
36 80.00 80.00 68.16 59.98 72.27 85.45
40 80.00 80.00 69.87 59.52 71.47 84.28
44 80.00 80.00 71.56 59.12 70.78 83.28
48 80.00 80.00 73.20 58.75 70.15 82.36
52 80.00 80.00 74.82 58.42 69.58 81.55
56 80.00 80.00 76.41 58.11 69.07 80.82
60 80.00 80.00 77.98 57.83 68.60 80.15
64 80.00 80.00 79.51 57.57 68.16 79.51

TABLE 6: Maximum steady-state temperatures among all
blocks (DTM deactivated), when using TSP, a constant per-
core budget, and equally distributed constant per-chip bud-
gets.

