
1052-8725/13 $26.00 c©2013 IEEE. Published in the 2013 IEEE 34th Real-Time Systems Symposium (RTSS), Vancouver, BC, Canada, December 2013.
Available in the IEEE Xplore Digital Library.

Energy Efficient Task Partitioning based on the
Single Frequency Approximation Scheme

Santiago Pagani and Jian-Jia Chen
Department of Informatics, Karlsruhe Institute of Technology (KIT), Germany

E-mail: santiago.pagani@kit.edu, jian-jia.chen@kit.edu

Abstract—Energy-efficiency is a major concern in modern
computing systems. For such systems, the presence of multiple
voltage islands, where the voltage of each island can change
independently and all cores in an island share the same supply
voltage at any given time, is an expected compromise between
global and per-core Dynamic Voltage and Frequency Scaling
(DVFS). This paper focuses on energy minimization for a set
of periodic tasks assigned on a voltage island. We present a
simple and practical solution, that assigns the tasks onto cores in
the island and then applies a DVFS schedule, particularly the
Single Frequency Approximation (SFA) scheme. Furthermore,
we provide thorough theoretical analysis of our solution, in
terms of energy efficiency, against the optimal task partitioning
and optimal DVFS schedule, especially for the state-of-the-art
designs, that have a few number of cores per voltage island.
The analysis shows that, our task partitioning scheme combined
with SFA is a good and practical solution for energy efficiency.
Particularly, when the number of cores in each voltage island is
limited, the approximation factor is at most 2.01 (2.29, 2.55, 2.80,
respectively) when the dynamic power consumption is a cubic
function of the frequency and the islands have up to 4 (8, 16, 32,
respectively) cores. Moreover, with non-negligible overhead for
sleeping, further combination with any uni-core procrastination
algorithm that consumes no more energy than keeping a core
idle when it has no workload in its ready queue, increases the
approximation factor by at most 1.

I. INTRODUCTION

Energy-efficient and low-power design is an important
issue in today’s and next generation computing systems, for
example to prolong the battery lifetime of embedded systems
or to reduce the power bills for servers. This is one of the
main motivations why single-core computing systems have
moved to multi-core platforms, mainly to balance the power
consumption and computation performance.

The dynamic power consumption (mainly generated by
switching activities) and the static power consumption (mainly
generated by the leakage current) are the two major sources
of power consumption in CMOS processors, as shown in the
literature, e.g. [11]. Executing at low frequencies, by using the
Dynamic Voltage and Frequency Scaling (DVFS) technique, is
in most cases the best solution for energy minimization when
the static power consumption is negligible, due to the convexity
of the power consumption function.

Nevertheless, executing tasks at frequencies lower than a
critical frequency might consume more energy for execution
in systems with non-negligible static power. This happens
because the static energy consumption grows with longer exe-
cution times when running at lower frequencies, and it might
dominate the energy consumption. This motivates the combi-
nation of DVFS and Dynamic Power Management (DPM), so

that cores can be slowdown and then shutdown after finishing
their workloads, e.g., [1], [10], [11].

Even though task scheduling and task partitioning have
been explored in the past decade for energy reduction, most
researches either assume per-core DVFS (each core can change
its own supply voltage and frequency independently from other
cores), e.g., [2], [3], [4], [13], [16], or consider global DVFS
(there is only one shared supply voltage and the maximum
frequency of all cores is limited by it), e.g., [5], [15], [17].
Next-generation many-core systems make a compromise be-
tween such extreme cases, adopting multi-core architectures
with several voltage islands, in which the cores on a voltage
island are consolidated as a cluster, sharing a supply voltage
(modifiable by DVFS at any time), but individual islands
can have different voltages [7]. For example, Intel’s Single-
chip Cloud Computer (SCC) [8], [9], is a research multi-core
platform with such a feature.

Motivation: For multi-core systems with a shared sup-
ply voltage in a voltage island (or a system with a global supply
voltage) and periodic real-time tasks, the task partitioning and
DVFS schedule play a major role in energy minimization.

Considering the convexity of the dynamic power consump-
tion of a core, the energy consumption of executing some
workload in one core at a specific frequency, is bigger than ex-
ecuting the same workload, perfectly distributed in two cores,
at half of the frequency. This suggests that in most cases, a task
partitioning solution that balances the workloads throughout all
cores in the island would have the minimum dynamic energy
consumption. However, deriving such a balanced solution is
with high complexity and not feasible for most practical cases.
Thus, a good option is to use a polynomial time algorithm
based on load balancing, e.g., the Largest-Task-First (LTF)
strategy [17].

Moreover, once the tasks are assigned onto the cores in the
island, it is necessary to choose a policy that decides the volt-
age of the island and the frequencies of the cores for execution.
For periodic tasks, the simplest and most intuitive strategy is to
use a single voltage and frequency for executing, particularly,
the lowest voltage and frequency that satisfies the timing
constraints. Such a scheme, denoted as the Single Frequency
Approximation (SFA) scheme [14], has linear time complexity,
only from evaluating the core with the highest cycle utilization.
Naturally, SFA is not the optimal DVFS scheduling strategy for
energy minimization, but it significantly reduces the overhead
for changing the supply voltage of the islands and frequencies
of cores, given that SFA does not require voltage/frequency
changes at run time. Moreover, any uni-core DPM technique
can be adopted individually in each core together with SFA

http://dx.doi.org/10.1109/RTSS.2013.38

without additional effort, because no frequency alignment for
DVFS between cores is needed under SFA.

Combining LTF and SFA for energy minimization is a
practical (easy to implement) solution. However, its worst-case
performance in terms of energy efficiency is an open problem.

Objective: We focus on energy minimization on a
voltage island. We consider a set of periodic tasks assigned
to such an island. The objective of this paper is to present
and theoretically analyse a simple and practical solution,
that assigns the tasks onto cores in the voltage island (task
partitioning) and then applies a DVFS schedule (particularly
SFA) to decide the voltage of the island and the frequencies
of the cores. For the theoretical analysis, we compare our
scheme against the optimal task partitioning and optimal DVFS
schedule, especially for the state-of-the-art designs, that have
a few number of cores per voltage island.

Our Contributions: For periodic real-time tasks in a
single voltage island, our contributions are:

• We propose a task partitioning scheme based on LTF, called
Double-Largest-Task-First (DLTF) scheme, which saves en-
ergy for idling and is well suited to combine with SFA for
energy minimization. This scheme is presented in Section V.

• We reveal the effectiveness of combining DLTF and SFA
for energy efficiency. We show that such a solution has an
approximation factor (worst-case ratio of the energy con-
sumption for DLTF combined with SFA, against the optimal
task partitioning and optimal DVFS schedule) that can be
bounded. Specifically, the factor depends on the parameters
of the power consumption function and the number of cores
in the voltage island. When the island has up to 4 (8, 16, 32,
respectively) cores, the approximation factor for execution
is at most 2.01 (2.29, 2.55, 2.80, respectively). The analysis
is presented in Section VI and Section VII.

• In Section VIII, we perform numerical evaluations of several
specific case studies, without any approximation in the lower
bound for the optimal energy consumption, in order to show
the gap between the theoretical analysis and concrete cases.

• In Section IX, when the overhead for sleeping is non-
negligible, we show the effectiveness of combining DLTF
with SFA and any uni-core procrastination algorithm that
does not consume more energy than putting a core always
in idle mode when it has no workload to execute in its
ready queue. We show that the overall approximation factor
is increased by at most 1 from the previous analysis.

Related Work: Power-aware and energy-efficient sche-
duling for homogeneous multi-core systems has been widely
explored for real-time embedded systems with per-core DVFS,
e.g., [2], [3], [4], [13], [16]. In [4], it was shown that applying
the Largest-Task-First (LTF) strategy for task mapping results
in solutions with approximation factors, in terms of energy
consumption, in which the factors depend on the hardware
platforms. Specifically, by turning off a processor to reduce the
energy consumption in homogeneous multiprocessor systems,
Xu et al. [16] and Chen et al. [4] propose polynomial-time
algorithms to derive task mappings that try to execute at a
critical frequency. For homogeneous multiprocessor systems
with discrete voltage levels and frequencies, Moreno and de
Niz [13] present an algorithm that runs in polynomial time
and computes the optimal voltage and frequency assignment

for systems with uniform frequency steps and negligible
static/leakage power consumption. Based on VLSI circuit
simulations, Herbert and Marculescu [7] suggest that per-core
DVFS suffers from complicated design problems, making it
costly for implementation even though it is energy-efficient.

When considering only one global supply voltage, Yang et
al. [17] provide results for voltage scaling, to minimize the
energy consumption in systems with negligible static power
consumption and frame-based real-time tasks (all the tasks
have the same arrival time and period). Such an approach is
highly restricted and it is hard to extend to handle systems with
non-negligible static power consumption or periodic real-time
tasks (tasks have different arrival times and periodicity). The
assumptions in [17] are relaxed in [5], [15], by considering
periodic real-time tasks with non-negligible static and voltage-
independent power consumptions and non-negligible overhead
for turning to low-power idle modes. In [5], the number of
active cores is decided first and the frequencies of the active
cores are decided in a second stage. Nevertheless, the work in
[5] lacks theoretical analysis for the worst-case performance
of their approach for energy minimization. Additionally, Seo
et al. [15] dynamically balance the task loads of multiple cores
and adjust the number of active cores, to optimize the power
consumption for execution and to reduce the leakage power
consumption for low workloads. For sets of periodic real-time
tasks, the analysis in [14] derives the worst-case approximation
factor for the Single Frequency Approximation (SFA) scheme,
in terms of energy consumption.

II. SYSTEM MODEL AND PROBLEM DEFINITION

This section reviews the power and energy model adopted
for the rest of the paper and defines the problem.

A. Hardware Model

This paper focuses on a single voltage island, where all the
cores in the island have the same supply voltage and run at
the same frequency, at any given time point, e.g., one voltage
island of SCC [8], [9].1 The system can change the voltage and
frequency of the island by adopting DVFS. This model was
also adopted in [5], [17]. For a core to support a frequency,
the supply voltage in the island has to be adjusted accordingly,
in particular to the least available supply voltage such that
stable execution on the core is achievable for the frequency.
The available frequencies are in the range of [smin, smax].2

We denote the power consumption of a core executing
a certain task at frequency s as P (s), and the energy con-
sumption during time interval ∆t at frequency s is denoted as
E (s) = P (s) ·∆t. Particularly, we use

P (s) = β + αsγ , (1)

1The approximation factor for a system with multiple voltage islands is
equal to the approximation factor on one voltage island. The detailed analysis
for this argument can be found in Section XI in [14].

2For systems with discrete frequencies, all the analysis still holds simply
by multiplying the approximation factor by ψ = max

1<i≤F
P (fi)·fi−1

P(fi−1)·fi
, where

{f1, f2, . . . , fF } are the available frequencies. For example, for P (s) in
Equation (1), with α = 1.76 Watts

GHz3 , β = 0.5 Watts, γ = 3, and available
frequencies {0.1 GHz, 0.2 GHz, . . . , 3.0 GHz}, then ψ is equal to 1.14.

2

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

Frequency [GHz]

P
ow

er
[W

a
tt
s]

Experimental Values
Modeled Power Function

Fig. 1: Power model from experimental results in [8].

0 0.5 1 1.5 2
0

5

10

scrit

s [GHz]

E
(s
)
[J
o
u
le
]

Fig. 2: Energy consumption function for a single core ex-
ecuting 109 computer cycles with α = 1.76 Watts

GHz3 , γ = 3,
β = 0.5 Watts, and scrit = 0.52 GHz.

where α > 0 is a constant dependent on the effective
switching capacitance, γ > 1 is related to the hardware, and
β ≥ 0 represents the static power consumption. This power
consumption function has been widely used in the literature,
e.g., [2], [5], [14], [16], [17]. Therefore, we know that P (s)
is a convex and increasing function with respect to s.

During interval ∆t, a core running at frequency s executes
a certain amount ∆c of core cycles, such that ∆t = ∆c

s and

E (s) = (β + αsγ)
∆c

s
. (2)

This energy consumption is merely a convex function. Hence,
by setting the first order derivative of Equation (2) with respect
to s to zero, the minimum value for E (s) is found when
s is γ

√
β

(γ−1)α . In order to consider the case when such a
value is smaller than smin, we define the critical frequency as
scrit = max

{
smin, γ

√
β

(γ−1)α

}
. The critical frequency repre-

sents the frequency that minimizes the energy consumption
for execution when the overhead for sleeping is considered
negligible, as also shown in [3], [11].

For example, to show the validity of the power model, take
the 48-core system developed in [8]. The power consumption
function from Equation (1) was used in [14] to model the
experimental results from [8], resulting in power parameters
α = 1.76 Watts

GHz3 , γ = 3, β = 0.5 Watts, and scrit = 0.52 GHz.
Figure 1 shows this power model and the original experimental
measurements from [8]. Moreover, Figure 2 illustrates function
E (s) from Equation (2) for a single core executing 109

computer cycles with the same α, γ and β values, where it
is easy to observe the concept of a critical frequency.

When a core finishes executing all its workload in the
ready queue, it has to wait until a new task instance arrives.
During this waiting interval, the core can choose to stay idle

(in execution mode), consuming β power. Moreover, the core
can also choose to go to a low-power mode that consumes
β′ ≥ 0 power. As we can transfer the power consumption β′
to the power consumption of the voltage island for being active,
without loss of generality, we can set P (s) as P (s)−β′, such
that we can disregard the effect of the power consumption of
a core in a low-power mode. Nevertheless, the core consumes
some energy during the transition process of entering/leaving
the low-power mode. Given that we handle periodic tasks,
which always go back to the execution mode after a certain
amount of time, we denote overhead for sleeping to the
summation of the energy consumption both for entering and
leaving the low-power mode.

When the duration of the waiting interval until the arrival
of a new task instance is short enough, idling is more energy
efficient than sleeping. Contrarily, when the interval is suffi-
ciently long, sleeping results in higher energy savings. Thus,
we define the break-even time as the time such that the energy
consumption for idling is equal to the overhead for sleeping.

The analysis in Section VI and Section VII considers
negligible overhead for sleeping, for which the break-even time
is 0 and every core goes to sleep immediately when it has no
workload to execute. The analysis in Section IX extends such
results by considering non-negligible overhead for sleeping.

B. Task Model

We consider N periodic real-time tasks with implicit dead-
lines, i.e., {τ1, τ2, . . . , τN}. Every task τj releases an infinite
number of task instances with period (and relative deadline)
pj and every instance has worst-case execution cycles ej . We
consider partitioned scheduling, in which each task is assigned
onto a core, that is, when a task instance arrives to the system it
is executed on the assigned core. Specifically, we use Earliest-
Deadline-First (EDF) scheduling, where the task instance with
the earliest absolute deadline on each core has the highest
priority. The least common multiple among all periods is called
the hyper-period, denoted as L.

After the task partitioning is completed by using M cores,
all N tasks are grouped into M task sets {T1,T2, . . . ,TM}.
Without loss of generality, we assume that task set Ti is
assigned on core i, and we define its cycle utilization as
wi =

∑
τj∈Ti

ej

pj
. Moreover,

∑N
j=1

ej
pj

=
∑M
i=1 wi denoted

as the total cycle utilization. By defining w0 for simplicity
and without loss of generality, we order the cores such that
0 = w0 ≤ w1 ≤ w2 ≤ · · · ≤ wM . It has been well studied,
e.g., [12], that executing core i at frequency higher than or
equal to wi with EDF will meet the timing constraint.

C. Problem Definition

For N periodic tasks that are assigned into a voltage island,
the objective of this paper is to present and theoretically
analyse a practical solution, that assigns the N tasks onto the
M cores in the island and then applies a DVFS schedule, such
that the energy consumption in the voltage island is minimized.

We consider the task partitioning that results in the min-
imum energy consumption by applying the optimal DVFS
schedule as the optimal task partitioning. Obtaining the opti-
mal task partitioning for energy minimization is an NP-hard

3

problem [17]. For notational purposes, the task sets of the op-
timal task partitioning are denoted as {T∗1,T∗2, . . . ,T∗M} with
the corresponding cycle utilizations 0 = w∗0 ≤ w∗1 ≤ w∗2 ≤
· · · ≤ w∗M , ordered without loss of generality. In this paper we
use a practical task partitioning scheme based on the Largest-
Task-First (LTF) strategy, which we call Double-Largest-Task-
First (DLTF). Partitioning task with DLTF results in task
sets

{
TDLTF

1 ,TDLTF
2 , . . . ,TDLTF

M

}
with the corresponding cycle

utilizations 0 = wDLTF
0 ≤ wDLTF

1 ≤ wDLTF
2 ≤ · · · ≤ wDLTF

M ,
ordered without loss of generality. The detailed description
and properties of DLTF are presented in Section V.

After the task partitioning by applying DLTF, we consider
the Single Frequency Approximation (SFA) scheme as our
DVFS schedule [14]. Under SFA, all cores in the voltage
island always execute at single frequency su and each core
enters a low-power mode after executing all the workload in
its ready queue. The voltage of the island is set to the minimum
available voltage so that all M cores in the island can execute
stably at frequency su. The time complexity of SFA is O (M)
to ensure the feasibility, where M is the number of cores in the
voltage island and this complexity comes only from evaluating
the highest cycle utilization. Clearly, su must be at least wDLTF

M
to ensure feasible schedules. For completeness, preliminary
results for SFA will be presented in Section III.

Our proposed solution is therefore to use DLTF for task
partitioning combined with SFA as DVFS schedule. For the
theoretical analysis, we provide an approximation factor of
such an approach in terms of energy consumption, against the
optimal task partitioning and optimal DVFS solution, defined
AFDLTF

SFA and expressed as

AFDLTF
SFA = max

EDLTF
SFA

E∗OPT
≤ max

EDLTF
SFA

E∗↓
, (3)

where E∗OPT is the optimal energy consumption for the optimal
DVFS schedule and the optimal task partitioning during a
hyper-period, EDLTF

SFA is the energy consumption for our par-
titioning scheme under SFA during a hyper-period, and E∗↓
is a lower bound for the optimal energy consumption for
the optimal task partitioning and any feasible DVFS schedule
during a hyper-period. Since, E∗OPT is not easily obtained, in
the analyses we use its lower bound E∗↓ , that should not be
very far away from E∗OPT.

Note that SFA does not require any capability of volt-
age/frequency scaling at run time, as it only uses one fre-
quency. However, to explore the approximation factor we need
E∗↓ , in which changing the supply voltage and frequency of the
island is with negligible overhead and the available frequen-
cies are continuous between (0, smax]. This approach results in
a safe lower bound for the optimal energy consumption.

III. PRELIMINARY RESULTS FOR SFA

In order to obtain the approximation factor for DLTF
combined with SFA, three things are required:

• A lower bound for the energy consumption of the optimal
task partitioning and the optimal DVFS schedule, i.e., E∗↓ .

• The energy consumption in the voltage island by using SFA,
after partitioning task with DLTF, i.e., EDLTF

SFA .
• The approximation factor of SFA for a single voltage island

without considering task partitioning, denoted as AFn.p.
SFA.

The work in [14] provides comprehensive analysis for the
approximation factor of SFA for a given task partitioning, i.e.,
the group of task sets is fixed and task partitioning is not con-
sidered. Moreover, [14] derives preliminary equations needed
to compute the approximation factor AFDLTF

SFA in Equation (3).
For completeness, this section summarises the results in [14].

A. Lower Bound Energy Consumption

By applying the Lagrange Multiplier Method, the work in
[14] provides a lower bound for the energy consumption of any
task partitioning. Here we are interested in the lower bound of
the optimal energy consumption, denoted as E∗↓ . When β = 0,
by the results in [14], we have

E∗↓
(β=0) = αL

[
M∑
i=1

(
w∗i − w∗i−1

)
γ
√
M − i+ 1

]γ
. (4)

For the case that β 6= 0, from [14], we have

E∗↓ (w∗M) =


αγL

(
scrit

γ−1
) M∑
i=1

w∗i if w∗M≤sdyn

αL

[
M∑
i=1

(
w∗i − w∗i−1

)
γ
√
M − i+ 1

]γ
otherwise,

(5)
where sdyn is an auxiliary frequency3 with scrit < sdyn < smax.

B. Energy Consumption for SFA

After partitioning task by using DLTF, the frequency
chosen by SFA is either (1) scrit if wDLTF

M ≤ scrit, or (2)
wDLTF
M otherwise. The lowest energy consumption for SFA as

a function of wDLTF
M is defined as EDLTF

SFA

(
wDLTF
M

)
.

EDLTF
SFA (wDLTF

M) =


αγL

(
scrit

γ−1
) M∑
i=1

wDLTF
i if wDLTF

M ≤scrit

L
wDLTF
M

(
β + αwDLTF

M
γ) M∑

i=1

wDLTF
i otherwise

(6)

Clearly, when wDLTF
M ≤ scrit, DLTF combined with SFA

consumes no more energy than the lower bound E∗↓ . Hence,

the relation between smin and γ

√
β

(γ−1)α is of no consequence.
Thus, for simplicity in presentation, for the rest of this paper
we consider that smin = 0 and therefore set scrit to γ

√
β

(γ−1)α .
This results in safe upper bounds for the general case.

In the case that β = 0, then scrit is also zero and only the
dynamic energy consumption is present for SFA, which is

EDLTF
SFA

(β=0) (
wDLTF
M

)
= αL

(
wDLTF
M

γ−1
) M∑
i=1

wDLTF
i . (7)

Corollary 1: Regardless of the value of β, the energy
consumption of all the cores in a voltage island under SFA, for
a fixed hardware and a given hyper-period, only depends on the
value of wM and the total cycle utilization

∑M
i=1 wi. In other

words, it does not matter how the tasks are distributed among
task sets {T1, . . . ,TM−1} as long as w1 ≤ w2 ≤ · · · ≤ wM .

3The consideration of sdyn is an approximation made in [14] to provide a
closed analytical expression for E∗↓ . Under a specific case study, with known
tasks and hardware parameters, a more precise lower bound can be obtained
by solving Equation 9 in [14]. Such an approach is taken in Section VIII.

4

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

δ
max

M=2

M=8

M=16

M=24

M=32

δ

h
(δ
)

Fig. 3: h (δ) when γ = 3, highlighting δmax (from [14]).

C. Approximation Factor of SFA for a given task partition

By introducing the scaling factor ri = wi
wM

, the cycle
utilization wi of task set Ti for i = 0, 1, . . . ,M , can be
rephrased as wi = ri · wM , where

0 = r0 < r1 ≤ r2 ≤ · · · ≤ rM−1 ≤ rM = 1. (8)

Then, by defining H (r0, . . . , rM) as

H (r0, . . . , rM) =

M∑
i=1

ri[
M∑
i=1

(ri − ri−1) γ
√
M − i+ 1

]γ , (9)

we have the following lemma.

Lemma 1: For all r0, r1 . . . , rM , defined in Equation (8),
and by defining δ as

∑M−1
i=1 ri
M−1 , with γ > 1, if task sets

T1,T2, . . . ,TM−1 have the same utilization, i.e., ri = δ for
all i = 1, 2, . . . ,M − 1, then we have

H (r0, . . . , rM) ≤ h (δ) =
1− δ + δM(

1− δ + δ γ
√
M
)γ ≤ h (δmax) ,

(10)
where

δmax =
γ − 1 +M − γ γ

√
M

(γ − 1)
(
M γ
√
M −M − γ

√
M + 1

) . (11)

Proof: Under a fixed
∑M−1
i=1 ri, function H(r0, . . . , rM)

is maximized if and only if
∑M−1
i=1 (ri − ri−1) γ

√
M − i+ 1

is minimized. Such a global minimum happens when δ =∑M−1
i=1 ri
M−1 = ri−1 = ri for all r1, . . . , rM−1. Hence, by setting

ri to δ for i = 1, 2, . . . ,M − 1, in Equation (9), we obtain
function h (δ). Moreover, since h (δ) is a convex function of δ
when γ > 1, by taking the first order derivative of h (δ) with
respect to δ, its maximum value happens when δ is δmax. The
detailed proof can be found in Lemma 2 of [14].

Function h (δ), for γ = 3, is presented in Figure 3.

Lemma 2: Function h (δ) = 1−δ+δM
(1−δ+δ γ

√
M)

γ is strictly de-
creasing with respect to δ for M ≥ 2, γ > 1 and δ ≥ 0.5.

Proof: From Equation (10) (illustrated in Figure 3), it
is clear that h (δ) is a decreasing function with respect to δ
when δmax ≤ δ ≤ 1, M ≥ 2 and γ > 1. Moreover, δmax is
a decreasing function with respect to M , for all M ≥ 2 and
γ > 1. Hence, the highest value of δmax for a given γ occurs
when M = 2. Furthermore, δmax is an increasing function with
respect to γ, for all M ≥ 2 and γ > 1. Therefore, the highest
value of δmax is obtained when M = 2 and γ → ∞, which
converges to 1

ln 2 − 1 = 0.443. Finally, h (δ) is a decreasing

Algorithm 1 Largest-Task-First (LTF) strategy
Input: Tasks {τ1, τ2, . . . , τN};
Output: Task sets

{
TLTF

1 ,TLTF
2 , . . . ,TLTF

M

}
;

1: Sort all tasks in a non-increasing order of their cycle utilizations;
2: for i = 1 to M do
3: TLTF

i ← ∅;
4: end for
5: for j = 1 to N do
6: Find the smallest wLTF

i ;
7: TLTF

i ← TLTF
i + {τj};

8: end for
9: Re-order TLTF

i by a non-decreasing order of their cycle utilization;
10: Return

{
TLTF

1 ,TLTF
2 , . . . ,TLTF

M

}
;

function after 0.5 for any M ≥ 2 and γ > 1. The detailed
proof can be found in Lemma 4 of [14].

Considering Lemma 1, the approximation factor of SFA
without considering task partitioning is presented in the fol-
lowing Theorems from [14].

Theorem 1: When β = 0, the approximation factor of
SFA without considering task partitioning for periodic real-
time tasks, denoted as AFn.p.

SFA
(β=0), is

AFn.p.
SFA

(β=0) ≤ h (δmax) ,

where δmax is defined as a function of γ and M in Equa-
tion (11) and h() is defined in Equation (10). Therefore, the
approximation factor AFn.p.

SFA
(β=0) only depends on γ and M .

Proof: For a given task partitioning, AFn.p.
SFA

(β=0) is
equal to maxH (r0, . . . , rM). Based on Equation (10),
H (r0, . . . , rM) ≤ h (δmax) and thus the theorem is proven.
The detailed proof can be found in Theorem 1 of [14].

Theorem 2: When β 6= 0, the approximation factor of
SFA without considering task partitioning for periodic real-
time tasks, denoted as AFn.p.

SFA, is

AFn.p.
SFA ≤

γ − 1

[γγh (δmax)]
1

γ−1

+ h (δmax) ,

where δmax is defined as a function of γ and M in Equa-
tion (11) and h() is defined in Equation (10). Since h (δmax) is
only a function of γ and M , the approximation factor AFn.p.

SFA
is independent of α and β.

Proof: The proof can be found in Theorem 2 of [14].

IV. PRELIMINARY RESULTS FOR LARGEST-TASK-FIRST

Our DLTF scheme is based on LTF. For completeness, we
present the description and properties of LTF from [17].

A. Description of LTF

A good and widely used algorithm for task parti-
tioning is the Largest-Task-First (LTF) strategy, with time
complexity O (N (logN + logM) +M) [17]. LTF parti-
tions tasks {τ1, τ2, . . . , τN} into M groups of task sets{
TLTF

1 ,TLTF
2 , . . . ,TLTF

M

}
with the corresponding cycle utiliza-

tions 0 = wLTF
0 ≤ wLTF

1 ≤ wLTF
2 ≤ · · · ≤ wLTF

M , ordered
without loss of generality. Naturally, it holds that

∑M
i=1 w

LTF
i =∑M

i=1 w
∗
i , because the total cycle utilization of all tasks is

constant, regardless of how they are partitioned. The pseudo-
code for LTF is presented in Algorithm 1.

5

· · ·wLTF
1

wLTF
2

wLTF
M -1

wLTF
M

· · ·
w∗1

w∗2
w∗M -1

w∗M

Fig. 4: Utilization relation for LTF when w∗M ≥ wLTF
M .

· · ·

wLTF
1

wLTF
2

wLTF
M -1

wLTF
M

≤ wLTF
M

(
1− 1

θLTF

)

· · ·
w∗1

w∗2
w∗M -1

w∗M

Fig. 5: Utilization relation for LTF when there are at least two
tasks in the highest utilization task set and w∗M < wLTF

M .

B. Properties of LTF

The Largest-Task-First strategy is mainly a reformulation
of the Longest-Processing-Time (LPT) algorithm from [6] for
the Makespan problem. Consider the resulting task partitioning
from LTF, previously defined as

{
TLTF

1 ,TLTF
2 , . . . ,TLTF

M

}
, in

which wLTF
M is the maximum cycle utilization in the re-

sulting solution. Similarly, consider the optimal task par-
titioning for energy minimization, previously defined as
{T∗1,T∗2, . . . ,T∗M}, in which w∗M is the maximum cycle
utilization in the optimal solution. Clearly, if after the task
partitioning there is only one task in TLTF

M , then wLTF
M ≤ w∗M ,

since the cycle utilization of the task in TLTF
M is the lower bound

of the maximum utilization in the optimal task partitioning.

Moreover, if there are at least two tasks in TLTF
M , then it

holds that
wLTF
M

w∗M
≤ θLTF =

4

3
− 1

3M
, (12)

where θLTF is the approximation factor of LTF in terms of
task partitioning, due to the approximation factor of LPT for
the makespan problem due from [6]. Furthermore, under this
condition, in [17], it is also proven that

wLTF
1

wLTF
M

≥ 1

2
. (13)

From Corollary 1, for a set of tasks where the total cycle
utilization is constant, the energy consumption under SFA can
be reduced when the value of wM is reduced. Therefore,
considering Equation (12), we can conclude that LTF is a good
task partitioning scheme for energy minimization under SFA.

Figure 4 and Figure 5 illustrate the properties of LTF.

Throughout the rest of this paper, we consider that wLTF
M ≤

smax; otherwise, LTF does not derive a feasible solution.
Such infeasibility of the solution of LTF can be resolved by
a resource augmentation scheme to augment speed smax to
(4

3 −
1

3M)smax for ensuring the feasibility if feasible solutions
exist under the original smax frequency constraint.

V. DOUBLE-LARGEST-TASK-FIRST SCHEME (DLTF)

This section presents our task partitioning scheme for
energy consumption reduction suited to apply in combination
with SFA, called Double-Largest-Task-First (DLTF) scheme.

Algorithm 2 Double-Largest-Task-First (DLTF) scheme
Input: Tasks {τ1, τ2, . . . , τN};
Output: Task sets

{
TDLTF

1 ,TDLTF
2 , . . . ,TDLTF

M

}
;

1: Execute LTF for {τ1, τ2, . . . , τN};
2: wmax ← max

{
scrit, w

LTF
M

}
;

3:
{
TDLTF

1 ,TDLTF
2 , . . . ,TDLTF

M

}
←
{
TLTF

1 ,TLTF
2 , . . . ,TLTF

M

}
;

4: for i = 1 to M − 1 do
5: for all τk ∈ TDLTF

i do
6: for j =M to i+ 1 do
7: if ek

pk
+ wDLTF

j ≤ wmax then
8: TDLTF

j ← TDLTF
j + {τk};

9: break for loop j;
10: end if
11: end for
12: end for
13: end for
14: Return

{
TDLTF

1 ,TDLTF
2 , . . . ,TDLTF

M

}
;

A. Description of DLTF

Task partitioning scheme DLTF considers LTF as an
initial solution, which means that after executing LTF,{
TDLTF

1 = TLTF
1 ,TDLTF

2 = TLTF
2 , . . . ,TDLTF

M = TLTF
M

}
, with the

corresponding utilizations 0 = wDLTF
0 ≤ wDLTF

1 = wLTF
1 ≤

wDLTF
2 = wLTF

2 ≤ · · · ≤ wDLTF
M = wLTF

M , ordered without
loss of generality. Then, to reduce the energy consumption for
idling under SFA when considering non-negligible overhead
for sleeping, we regroup the tasks, shutting-down as many
cores as possible. For such a purpose, we define the auxiliary
cycle utilization wmax as max

{
scrit, w

LTF
M

}
. The value of wmax

is used as a maximum utilization for the task regrouping.

For the regrouping procedure, we consider a source task
set and a destination task set, denoted as TDLTF

i and TDLTF
j

respectively. The regrouping is an iterative procedure, where
we iterate through all the source task sets (in an increasing
manner with respect to their cycle utilizations), all the tasks
inside each source task set, and all the possible destination
task sets (in an decreasing manner with respect to their cycle
utilizations) for each one of these tasks. Particularly, we start
by choosing the source task set TDLTF

i , such that wDLTF
i is the

smallest cycle utilization among all task sets, that is, i = 1.
We then iterate (with no specific order) through all tasks τk
in TDLTF

i , with cycle utilization ek
pk

. For every τk, we further
iterate through the destination task sets TDLTF

j for all j =
M,M − 1, . . . , i+ 2, i+ 1, that is, we start from the task set
with the highest cycle utilization. If τk fits in TDLTF

j without
exceeding wmax, that is, if it holds that ek

pk
+ wDLTF

j ≤ wmax,
then we move τk to TDLTF

j and update the value of wDLTF
j . If

τk does not fit inside TDLTF
j without exceeding wmax, then we

update j to j − 1 and try again with a new destination task
set, until j reaches the value of i, point when we move to the
next task inside TDLTF

i . The process is repeated for all tasks
in the source task set TDLTF

i , and then i is updated to i + 1,
until i reaches M .

Finally, task sets with high cycle utilization after LTF will
have even higher cycle utilization after regrouping, and vice-
versa. Any core with utilization equal to 0, after partition-
ing with DLTF, can be further shut-down. A pseudo-code
for DLTF is presented in Algorithm 2. When we consider
negligible overhead for sleeping, based on Corollary 1, the
energy consumption of LTF under SFA is the same as the

6

energy consumption of DLTF under SFA. However, when such
overhead is non-negligible, DLTF saves some energy for idling
compared to plain LTF.

B. Properties of DLTF

Given that the total cycle utilization of all the tasks is a
constant for all possible task partitions, it holds that

M∑
i=1

wDLTF
i =

M∑
i=1

wLTF
i =

M∑
i=1

w∗i . (14)

Furthermore, when wLTF
M ≥ scrit, we have that TDLTF

M =
TLTF
M and therefore wDLTF

M = wLTF
M . Thus, when wLTF

i ≥ scrit,
the only property of LTF that does not hold in DLTF is
Equation (13). In other words, for this case, if after the task
partitioning there is only one task in TDLTF

M , then wDLTF
M ≤ w∗M ,

as the cycle utilization of the task in TDLTF
M is the lower bound

of the maximum utilization in the optimal task partitioning;
and, if there are at least two tasks in TDLTF

M , then it holds that
wDLTF
M

w∗M
≤ θLTF = 4

3 −
1

3M .

When wLTF
M < scrit, given that we might add some tasks into

task set TDLTF
M (in comparison with the original TLTF

M), then
most likely we will have that wDLTF

M ≥ wLTF
M . Nevertheless, if

LTF results in wLTF
1 ≤ wLTF

1 ≤ · · · ≤ wLTF
M < scrit, then all

cores will be executed at scrit and the energy consumption
for execution will be then minimized. Clearly, the optimal
task partitioning and optimal DVFS schedule will consume
the same energy for execution, resulting in an approximation
factor of 1. Therefore, for the analysis of the approximation
factor we will only focus in the case that wLTF

M ≥ scrit.

VI. APPROXIMATION FACTOR ANALYSIS WHEN β = 0

This section presents the analysis of the approximation
factor of DLTF combined with SFA, against the optimal
task partitioning and optimal DVFS solution when β = 0,
defined as AFDLTF

SFA
(β=0)

. Note that even though this is not a
practical setting, we do incremental analysis for simplicity in
presentation. The properties derived in this section will also
be used in Section VII when β 6= 0.

The expression for AFDLTF
SFA

(β=0)
is obtained by replacing

Equation (4) and Equation (7) inside Equation (3). By also
considering Equation (14), we have

AFDLTF
SFA

(β=0) ≤ max


(
wDLTF
M

)γ−1 M∑
i=1

w∗i[
M∑
i=1

(
w∗i − w∗i−1

)
γ
√
M − i+ 1

]γ
 .

To obtain the worst-case of AFDLTF
SFA

(β=0)
, we use the

scaling factor r∗i from Equation (8), such that 0 = r∗0 < r∗1 ≤
r∗2 ≤ · · · ≤ r∗M−1 ≤ r∗M = 1 and w∗i = r∗i · w∗M for all
i = 1, 2, . . . ,M . Moreover, by considering the definition of
H (r0, . . . , rM) and Lemma 1, AFDLTF

SFA
(β=0)

becomes

AFDLTF
SFA

(β=0) ≤ max

{(
wDLTF
M

w∗M

)γ−1

· h

(∑M−1
i=1 r∗i
M − 1

)}
,

(15)

· · ·w∗1
w∗2

w∗M -1

w∗M

· · ·
w′1 w′2 w′M -1

w′M=wDLTF
M

Fig. 6: Example of Cycle Utilization Adjustment in Lemma 3,
when w∗M ≥ wDLTF

M .

where h (δ) is defined in Lemma 1.

The following lemma presents a cycle utilization adjust-
ment in the optimal task partitioning, needed for the rest of
this section, that results in a reduced energy consumption lower
bound. An example of such a cycle utilization adjustment,
when w∗M ≥ wDLTF

M , is shown in Figure 6.

Lemma 3: After applying DLTF for task partitioning, by
adjusting w∗1 , w

∗
2 , . . . , w

∗
M to w′1, w

′
2, . . . , w

′
M , then the en-

ergy consumption lower bound in Equation (4) by using
w∗1 , w

∗
2 , . . . , w

∗
M is further reduced by using w′1, w

′
2, . . . , w

′
M ,

in which w′1 = w′2 = · · · = w′M−1 =
∑M−1
i=1 w′i
M−1 and

w′M =

{
wDLTF
M if w∗M ≥ wDLTF

M

max
{
wDLTF
M

θLTF
,
∑M
i=1 w

∗
i

M

}
if w∗M < wDLTF

M .

Proof: This lemma can be first proved by reorganizing the
cycle utilization w∗1 , w

∗
2 , . . . , w

∗
M to w′1, w

′
2, . . . , w

′
M such that

w′M = w∗M , w′1 = w′2 = · · · = w′M−1 =
∑M−1
i=1 w∗i
M−1 . The new

cycle utilization w′1, w
′
2, . . . , w

′
M has less energy consumption

by using Equation (4). Then, further, we can easily reduce w′M
by a constant ε while increasing the others w′1, w

′
2, . . . , w

′
M−1

by a constant ε
M−1 . It can be easily observed that this also

reduces the energy consumption under SFA.

Therefore, for the first case w∗M ≥ wDLTF
M , this cycle

utilization adjustment to w′1, w
′
2, . . . , w

′
M clearly reduces the

energy consumption lower bound in Equation (4). An example
of such a cycle utilization adjustment is shown in Figure 6.

For the second case, in which w∗M < wDLTF
M , we know

that w∗M ≥ wDLTF
M

θLTF
due to Equation (12). Therefore, we can

greedily reduce the cycle utilization w′M , until (a) w′M reaches
wLTF
M

θLTF
, point in which we cannot reduce further without violating

w∗M ≥
wDLTF
M

θLTF
; or either until (b) w′M reaches the average cycle

utilization, for which w′1 = w′2 = · · · = w′M and we cannot
reduce further without having that w′M < w′M−1. According to
the above cycle utilization adjustment, both reduce the lower
bound of the energy consumption in Equation (4) and ensure
that w′1 ≤ w′2 ≤ · · · ≤ w′M . Thus, the lemma is proven.

A. Approximation Factor when β = 0 and w∗M ≥ wDLTF
M

This subsection analyses the approximation factor when
β = 0 and w∗M ≥ wDLTF

M . The following lemma provides a
closed form for AFDLTF

SFA
(β=0)

for such a case.

Lemma 4: When applying DLTF for task partitioning, if
β = 0 and w∗M ≥ wDLTF

M , the approximation factor of DLTF
combined with SFA in terms of energy consumption, is equal
to the approximation factor of SFA without considering task
partitioning with β = 0, presented in Theorem 1.

7

Proof: From the definition of h (δ) in Equation (10) and
Lemma 1, it holds that Equation (15) is maximized according
to Lemma 3, by adjusting w∗1 , w

∗
2 , . . . , w

∗
M to w′1, w

′
2, . . . , w

′
M .

Moreover, from Lemma 1, we know that h (δ) is maximized
when δ = δmax, defined in Equation (10) and Equation (11).
Thus, under this condition, the approximation factor is less or
equal than h (δmax), and the lemma is proven.

This is clearly the best case when β = 0, since the approxi-
mation factor of DLTF combined with SFA cannot be lower
than the approximation factor of SFA without considering task
partitioning.

B. Approximation Factor when β = 0 and w∗M < wDLTF
M

This subsection analyses the approximation factor for the
case when β = 0 and w∗M < wDLTF

M .

Even though Lemma 1 states that h (δ) is maximized
in δmax, Lemma 6 shows that for this case, relation w′1

w′M
is

constrained so that it never reaches the value of δmax.

Lemma 5: When applying DLTF for task partitioning, if
w∗M < wDLTF

M , it holds that

w′1
w′M

≥ 4M + 1

6M
,

with w′1, w
′
2, . . . , w

′
M defined in Lemma 3.

Proof: When w∗M < wDLTF
M , using w′1, w

′
2, . . . , w

′
M from

Lemma 3, there are two cases to consider (1) w′M =
∑M
i=1 w

∗
i

M

or (2) w′M =
wLTF
M

θLTF
. For the first case, it is clear that w′1

w′M
= 1.

Hence, we focus on the second case, in which starting from
Equation (14) and remembering that wDLTF

M = wLTF
M , we have

wLTF
M +

M−1∑
i=1

wLTF
i = w′M +

M−1∑
i=1

w′i =
wLTF
M

θLTF
+ (M − 1)w′1

⇒ w′1 = wLTF
M

θLTF − 1

θLTF (M − 1)
+

∑M−1
i=1 wLTF

i

(M − 1)

⇒ w′1
w′M

=
θLTF − 1

M − 1
+
θLTF

wLTF
M

∑M−1
i=1 wLTF

i

(M − 1)
.

Thus, considering Equation (13), it holds that

w′1
w′M

≥ θLTF − 1

M − 1
+
θLTF

2
=

4
3 −

1
3M − 1

M − 1
+

4
3 −

1
3M

2

≥ 4M + 1

6M
,

and thus the lemma is proven.

Lemma 6: When applying DLTF for task partitioning, if
β = 0 and w∗M < wDLTF

M , the approximation factor of DLTF
combined with SFA in terms of energy consumption, is less
or equal than θγ−1

LTF · h
(

4M+1
6M

)
.

Proof: This lemma is proven by considering Lemma 2,
Lemma 3, Lemma 5 and Equation (15).

0 8 16 24 32 40 48
1

2

3

4

M

A
F
D
L
T
F

S
F
A

(β
=
0
)

 AFDLTF
SFA

(β=0)
when γ = 3

θ
γ−1
LTF · h(4M+1

6M
) when γ = 3

h(δmax) when γ = 3

AFDLTF
SFA

(β=0)
when γ = 2

θ
γ−1
LTF · h(4M+1

6M
) when γ = 2

h(δmax) when γ = 2

Fig. 7: Approximation factors for SFA combined with DLTF
when β = 0.

C. Worst-case Approximation Factor when β = 0

Finally, considering Lemma 4 and Lemma 6, the approxi-
mation factor for DLTF combined with SFA in terms of energy
consumption, when β = 0, is formalized in Theorem 3.

Theorem 3: When applying DLTF for task partitioning, if
β = 0, the approximation factor of DLTF combined with SFA
in terms of energy consumption is

AFDLTF
SFA

(β=0) ≤ max

{
h (δmax) , θγ−1

LTF · h
(

4M + 1

6M

)}
.

Proof: This comes from Lemma 4 and Lemma 6.

For a hardware platform, e.g., with γ = 2 or γ = 3,
functions h (δmax), h

(
4M+1

6M

)
and θLTF are dependent on the

value of M . Therefore, it is necessary to explore the impact of
M on the approximation factor of DLTF combined with SFA,
when β = 0. Theoretically, the approximation factor can go
up to ∞ when M →∞. However, practically, the number of
cores in a voltage island is not a very large number. Figure 7
presents the approximation factor, based on Theorem 3, for M
up to 48 when γ = 2 and γ = 3. Note that we do not expect
next-generation platforms to have more than 8 or 16 cores
per island, but it is important to show where the statements
of Lemma 4 and Lemma 6 cross each other. Whenever the
voltage island has at most 4 (8, 16, 32, respectively) cores
and negligible overhead for sleeping is considered, DLTF
combined with SFA, when β = 0, has an approximation
factor that can be bounded to at most 1.72 (2.02, 2.30, 2.56,
respectively) when γ = 3 and to at most 1.34 (1.47, 1.59,
1.96, respectively) when γ = 2.

VII. APPROXIMATION FACTOR ANALYSIS WHEN β 6= 0

This section presents the analysis of the approximation
factor of DLTF combined with SFA, against the optimal task
partitioning and optimal DVFS solution, defined as AFDLTF

SFA .

Clearly, Lemma 3 not only holds for Equation (4), but it
also holds for Equation (5). This happens because when w∗M ≤
sdyn, it does not matter whether we adjust the utilizations of
the optimal task partitioning to fit Lemma 3 or not. Moreover,
when w∗M > sdyn, Equation (5) is equal to Equation (4).

8

A. Approximation Factor as a function of sdyn

According to Equation (3), AFDLTF
SFA is the ratio between

Equation (6) and Equation (5), which expressed as a function
of wDLTF

M and w∗M is

EDLTF
SFA

(
wDLTF
M

)
E∗↓ (w∗M)

≤



β+αwDLTF
M

γ

αγwDLTF
M (scritγ−1)

if scrit<w
DLTF
M

and w∗M≤sdyn

β+αwDLTF
M

γ

αwDLTF
M

·
M∑
i=1

w∗i[
M∑
i=1

(w∗i−w∗i−1)
γ√M−i+1

]γ if sdyn<w
∗
M

≤wDLTF
M ≤smax

1 otherwise.
(16)

Lemma 7: By defining sdyn as

sdyn = scrit[γH (r∗0 , . . . , r
∗
M)]

1
γ−1 , (17)

we have

EDLTF
SFA

(
wDLTF
M

)
E∗↓ (w∗M)

≤
β + α

(
wDLTF
M

w∗M
sdyn

)γ
αγ

wDLTF
M

w∗M
sdyn (scrit

γ−1)
. (18)

Proof: Since α, β, γ and scrit are all constants, we

know that
EDLTF

SFA (wDLTF
M)

E∗↓(w∗M)
is a convex and increasing function

with respect to wDLTF
M when scrit < wDLTF

M and w∗M ≤ sdyn.

Therefore, for this case, it holds that
EDLTF

SFA (wDLTF
M)

E∗↓(w∗M)
≤ EDLTF

SFA (sdyn)

E∗↓(w∗M)
.

With the scaling factor r∗i from Equation (8) and the defi-
nition of H (r0, . . . , rM) from Equation (9), we can rephrase
Equation (16), when sdyn < w∗M ≤ wDLTF

M < smax, to

β
w∗M

γ + α
wDLTF
M

γ

w∗M
γ

α
wDLTF
M

w∗M

H (r∗0 , . . . , r
∗
M) . (19)

In the optimal task partitioning, function H (r∗0 , . . . , r
∗
M)

is a constant for a fixed set of tasks. Together with the fact
that α, β, M and γ are constants, we know that (19) is a
decreasing function with respect to w∗M .

With the above analysis, function
EDLTF

SFA (wDLTF
M)

E∗↓(w∗M)
reaches the

(lowest) upper bound when the above two cases intersect with
each other. That is, when

β + αwDLTF
M

γ

γwDLTF
M (scritγ−1)

=

β
w∗
M
γ + α

wDLTF
M

γ

w∗
M
γ

wDLTF
M
w∗
M

H (r∗0 , . . . , r
∗
M) ,

which results in the definition of sdyn in Equation (17), when
w∗M = sdyn. Thus, the inequality in Equation (18) holds when
w∗M = sdyn, and this lemma is proven.

B. Approximation Factor when β 6= 0 and w∗M ≥ wDLTF
M

This subsection analyses the approximation factor when
β 6= 0 and w∗M ≥ wDLTF

M . Lemma 8 provides a closed form
for AFDLTF

SFA for such case.

Lemma 8: When applying DLTF for task partitioning, if
β 6= 0 and w∗M ≥ wDLTF

M , the approximation factor of DLTF
combined with SFA in terms of energy consumption, is equal

to the approximation factor of SFA without considering task
partitioning with β 6= 0, presented in Theorem 2.

Proof: We define smax
dyn as the maximum value for sdyn,

which from Equation (9), Lemma 1 and Lemma 3, it happens
when smax

dyn = scrit [γh (δmax)]
1

γ−1 . Moreover, when w∗M ≥
wDLTF
M , the maximum value for Equation (18) is obtained when

sdyn is equal to smax
dyn and when w′M = wDLTF

M , according to
Lemma 3. Thus, by replacing in Equation (18), we obtain the
expression from Theorem 2, and the lemma is proven.

Similar to Lemma 4, this is clearly the best case when β 6= 0,
since the approximation factor of DLTF combined with SFA
cannot be lower than the approximation factor of SFA without
considering task partitioning.

C. Approximation Factor when β 6= 0 and w∗M < wDLTF
M

The following lemma provides a closed form for this case.

Lemma 9: When applying DLTF for task partitioning, if
β 6= 0 and w∗M < wDLTF

M , the approximation factor of DLTF
combined with SFA in terms of energy consumption, is less
or equal than γ−1

θLTF[γγh(4M+1
6M)]

1
γ−1

+ θγ−1
LTF h

(
4M+1

6M

)
.

Proof: From Lemma 1 we know that H (r∗0 , . . . , r
∗
M) is

less or equal than h (δ), defined in Equation (10). Moreover,
from Lemma 3 and Lemma 5, when w∗M < wDLTF

M , it holds
that H (r∗0 , . . . , r

∗
M) ≤ h

(
4M+1

6M

)
. Thus, when w∗M < wDLTF

M ,

it holds that sdyn ≤ s∗dyn = scrit
[
γh
(

4M+1
6M

)] 1
γ−1 . Moreover,

for this case, the maximum value for Equation (18) is obtained
when sdyn is equal to s∗dyn and when w′M =

wDLTF
M

θLTF
, according to

Lemma 3 and Lemma 5. Therefore, by replacing these values
in Equation (18), the lemma is proven.

D. Worst-case Approximation Factor when β 6= 0

Finally, considering Lemma 8 and Lemma 9, the approxi-
mation factor for DLTF combined with SFA in terms of energy
consumption, when β 6= 0, is formalized in Theorem 4.

Theorem 4: When applying DLTF for task partitioning, if
β 6= 0, the approximation factor of DLTF combined with SFA
in terms of energy consumption is

AFDLTF
SFA ≤ max

{
γ − 1

[γγh (δmax)]
1

γ−1

+ h (δmax) ,

γ − 1

θLTF
[
γγh

(
4M+1

6M

)] 1
γ−1

+ θγ−1
LTF h

(
4M + 1

6M

) .

Proof: This comes from Lemma 8 and Lemma 9.

Similar to Section VI-C, for a fixed hardware platform,
AFDLTF

SFA is a function of M . Figure 8 presents the approxima-
tion factor, based on Theorem 4, for M up to 48 when γ = 2
and γ = 3. Whenever the voltage island has at most 4 (8, 16,
32, respectively) cores and negligible overhead for sleeping is
considered, DLTF combined with SFA has an approximation
factor that can be bounded to at most 2.01 (2.29, 2.55, 2.80,
respectively) when γ = 3 and to at most 1.53 (1.64, 1.75,
2.09, respectively) when γ = 2. These values are just slightly
higher than those of Section VI-C.

9

0 8 16 24 32 40 48
1

2

3

4

M

A
F

D
L
T
F

S
F
A

 AFDLTF
SFA when γ = 3

γ−1

θLTF[γγh(4M+1
6M)]

1
γ−1

+ θ
γ−1
LTFh(

4M+1
6M

) when γ = 3

γ−1

[γγh(δmax)]
1

γ−1
+ h(δmax) when γ = 3

AFDLTF
SFA when γ = 2

γ−1

θLTF[γγh(4M+1
6M)]

1
γ−1

+ θ
γ−1
LTFh(

4M+1
6M

) when γ = 2

γ−1

[γγh(δmax)]
1

γ−1
+ h(δmax) when γ = 2

Fig. 8: Approximation factors for SFA combined with DLTF
when β 6= 0.

VIII. NUMERICAL EVALUATIONS

This section provides numerical results for specific case
studies, without any approximation in the lower bound for the
optimal energy consumption, instead of using Equation (5).

A. Numerical Evaluation Setup

Similar to Section II-A, the parameters of P (s) are chosen
as α = 1.76 Watts

GHz3 , β = 0.5 Watts, γ = 3, and scrit = 0.52 GHz,
modelled from the experimental measurements from [8].

We consider 150 cases of synthetic tasks for every M .
Every case considers a different amount of tasks, different
cycle utilizations, the existence or non-existence of one con-
siderably large task, and different resulting hyper-periods.
When using SFA, the tasks are partitioned using DLTF. As
for the optimal task partitioning, given that obtaining it is
an NP-hard problem, we consider two lower bounds as
proved in Section VI and Section VII: (1) when there is only
one task in task set TDLTF

M we consider a low bound with
w∗1 = w∗2 = · · · = w∗M−1 = δmax · w∗M and w∗M = wDLTF

M
(from Lemma 1, Lemma 3 and Lemma 8), and (2) when there
are at least two tasks in task set TDLTF

M we consider a lower
bound with w∗1 = w∗2 = · · · = w∗M−1 = w∗M · 4M+1

6M and
w∗M =

wDLTF
M

θLTF
(from Lemma 3, Lemma 5 and Lemma 9).

For the analysis in Section VII, we used the lower bound
in Equation (5) for the optimal energy consumption and the
optimal task partitioning, derived in [14]. The reason for using
this approximated lower bound is due to the difficulty of
obtaining the actual optimal values. A more precise expression,
specifically Equation (9) in [14], can be numerically solved by
using Newton’s method for a specific input instance. Such an
approach can help obtain less pessimistic and concrete energy
consumption values for the optimal DVFS schedule.

B. Numerical Evaluation Results

The maximum concrete factor among the 150 evaluated
cases of synthetic tasks for every M is reported as the peak

0 8 16 24 32 40 48
1

2

3

4

M

E
D
L
T
F

S
F
A

(w
D
L
T
F

M
)

E
∗ ↓
(w

∗ M
)

p
ea

k

 AFDLTF
SFA

E
DLTF
SFA (wDLTF

M
)

E∗

↓
(w∗

M
)

peak

Fig. 9: Numerical results of DLTF combined with SFA for
α = 1.76 Watts

GHz3 , β = 0.5 Watts and γ = 3.

factor for approximation, denoted by
EDLTF

SFA (wDLTF
M)

E∗↓(w∗M) peak
. Figure 9

presents the results of this peak factor, together with the
analytical upper bound derived in Theorem 4, for γ = 3.

We observe that the peak factor provides a lower an-
alytical bound for approximation for these concrete cases.
The difference between this peak factor and the theoretical
AFDLTF

SFA from Theorem 4 comes from the precise computation
of Equation (9) in [14], by using Newton’s method for specific
case studies, instead of using the approximated lower bound
from Equation (5).

IX. NON-NEGLIGIBLE SLEEPING OVERHEAD

For systems with non-negligible overhead for sleeping, our
scheme can be further combined with DPM schemes to decide
when to switch a core into a low-power mode. There are
two cases to be considered: (1) the total cycle utilization is
less than scrit, i.e.,

∑N
j=1

ej
pj
< scrit, and (2) the total cycle

utilization is no less than scrit, i.e.,
∑N
j=1

ej
pj
≥ scrit. For

the first case, DLTF assigns all the tasks on one core and
executes them at the critical speed, making this a uniprocessor
scheduling problem. For example, we can then use the Left-To-
Right (LTR) algorithm in [10] (only for the DPM) to achieve
a 2-approximation for such a case.

For the second case, i.e.,
∑N
j=1

ej
pj
≥ scrit, our scheme

can be further combined with any uni-core procrastination
algorithm that does not consume more energy than putting
a core always in idle mode when it has no workload to
execute in its ready queue. The rest of this section analyses the
approximation factor of such an approach, against the optimal
task partitioning and optimal DVFS and DPM schedule.

For simplicity in presentation, we assume that under the
scheme that uses DLTF combined with SFA, every core
stays idle (in execution mode) when it has no workload to
execute in its ready queue, consuming β power. This provides
a safe upper bound for the analysis, since by considering
the break-even time entering a low-power mode optimally,
will not consume more energy. The energy consumption for
idling in a hyper-period when using DLTF combined with
SFA and any uni-core procrastination algorithm, is denoted
as idle

(
EDLTF

SFA-DPM

)
. Furthermore, suppose that M† cores are

activated for execution in DLTF. The energy consumption
for execution in the optimal task partitioning and optimal
DVFS and DPM schedule, is denoted as active (E∗DVFS-DPM).
Moreover, we have the following lemmas for the upper bound
of idle

(
EDLTF

SFA-DPM

)
and the lower bound of active (E∗DVFS-DPM).

10

Lemma 10: When
∑N
j=1

ej
pj
≥ scrit, it holds that

idle
(
EDLTF

SFA-DPM

)
< 0.5M†Lβ.

Proof: In DLTF with
∑N
j=1

ej
pj
≥ scrit, we know that

wDLTF
i + wDLTF

` > max{wLTF
i , scrit} for any two cores i and

` with wDLTF
i > 0 and wDLTF

` > 0; otherwise, the tasks on
either core i or ` will be moved to other cores. Therefore, by
executing at speed max{wLTF

i , scrit} for all these M† cores,
we know that the total idle time in DLTF with SFA for the
activated cores in the hyper-period is

L

M∑
i=M−M†+1

(
1− wDLTF

i

max{wDLTF
M , scrit}

)
<
LM†

2
.

Therefore, the lemma is proved.

Lemma 11: When
∑N
j=1

ej
pj
≥ scrit, it holds that

active (E∗DVFS-DPM) ≥ 0.5M†L
γ

γ − 1
β.

Proof: There are two cases: (1) wDLTF
M < scrit, or (2)

wDLTF
M ≥ scrit. For the first case, similar to the analysis

shown in Lemma 10, we know that
∑N
j=1

ej
pj

> M†

2 scrit.
Therefore, by the definition of the speed scrit, we know that
active (E∗DVFS-DPM) is at least the energy consumption for
executing all the tasks at scrit. By the above argument, we have
active (E∗DVFS-DPM) ≥ 0.5M†L · P (scrit) = 0.5M†L γ

γ−1β for
the first case.

For the second case, similarly, we have
∑N
j=1

ej
pj

>
M†

2 wDLTF
M ≥ M†

2 scrit. Therefore, the statement for
active (E∗DVFS-DPM) ≥ 0.5M†L·P (scrit) ≥ 0.5M†L γ

γ−1β also
holds for this case.

Finally, the following theorem provides the approximation
factor when considering non-negligible overhead for sleeping,
defined as AFDLTF

SFA-DPM.

Theorem 5: By using DLTF combined with SFA and any
uni-core procrastination algorithm that does not consume more
energy than putting a core always in idle mode when it has no
workload to execute in its ready queue, when

∑N
j=1

ej
pj
≥ scrit,

it holds that

AFDLTF
SFA-DPM ≤ AFDLTF

SFA +
γ − 1

γ
.

Proof: Considering Theorem 4, Lemma 10, Lemma 11,
and that by definition AFDLTF

SFA ≥ 1, we have

total
(
EDLTF

SFA-DPM

)
= active

(
EDLTF

SFA-DPM

)
+ idle

(
EDLTF

SFA-DPM

)
≤ AFDLTF

SFA · active (E∗DVFS-DPM) +
γ − 1

γ
active (E∗DVFS-DPM)

≤
(

AFDLTF
SFA +

γ − 1

γ

)
· active (E∗DVFS-DPM) ,

where total
(
EDLTF

SFA-DPM

)
is the total energy consumption for

using DLTF combined with SFA and any uni-core procras-
tination algorithm that does not consume more energy than
putting a core always in idle mode when it has no workload
to execute in its ready queue. Thus, the theorem is proven.

X. CONCLUSIONS

In this paper we have presented a practical solution to
partition and schedule periodic real-time task in a voltage
island, that combines DLTF and SFA for energy minimiza-
tion. Most importantly, we provide thorough analysis of the
approximation factor of such solution, in terms of energy
efficiency, against the optimal task partitioning and optimal
DVFS schedule. The analysis shows that the approximation
factor can be bounded to a value depending on γ and the
number of cores in a voltage island. For systems with non-
negligible overhead for sleeping, further combination with any
uni-core procrastination algorithm (that does not consume
more energy than putting a core always in idle mode when
it has no workload to execute in its ready queue) increases the
approximation factor by γ−1

γ .

Acknowledgements: This work is supported in part by Baden
Württemberg MWK Juniorprofessoren-Programms.

REFERENCES

[1] S. Albers and A. Antoniadis, “Race to idle: new algorithms for
speed scaling with a sleepstate,” in Symposium on Discrete Algorithms
(SODA), 2012, pp. 1266–1285.

[2] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in IPDPS, 2003, pp. 113 – 121.

[3] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo, “Leakage-aware energy-efficient
scheduling of real-time tasks in multiprocessor systems,” in Proceedings
of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2006, pp. 408–417.

[4] J.-J. Chen and L. Thiele, “Energy-efficient scheduling on homogeneous
multiprocessor platforms,” in SAC, 2010, pp. 542–549.

[5] V. Devadas and H. Aydin, “Coordinated power management of peri-
odic real-time tasks on chip multiprocessors,” in Proceedings of the
International Conference on Green Computing, 2010, pp. 61 –72.

[6] R. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
Journal on Applied Mathematics, vol. 17, pp. 263–269, 1969.

[7] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in ISLPED, 2007, pp. 38–43.

[8] J. Howard and others, “A 48-core ia-32 processor in 45 nm cmos using
on-die message-passing and dvfs for performance and power scaling,”
IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 173–183, 2011.

[9] Intel Corporation, “Single-chip cloud computer (SCC).”
[10] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,” in

Symposium on Discrete Algorithms (SODA), 2003, pp. 37–46.
[11] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage

scaling for real-time embedded systems,” in Proceedings of the 41st
Design Automation Conference (DAC), 2004, pp. 275–280.

[12] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[13] G. Moreno and D. de Niz, “An optimal real-time voltage and frequency
scaling for uniform multiprocessors,” in Proceedings of the 18th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2012, pp. 21–30.

[14] S. Pagani and J.-J. Chen, “Energy efficiency analysis for the single
frequency approximation (SFA) scheme,” in Proceedings of the 19th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2013.

[15] E. Seo, J. Jeong, S.-Y. Park, and J. Lee, “Energy efficient scheduling of
real-time tasks on multicore processors,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 11, pp. 1540–1552, 2008.

[16] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé, “Energy-efficient
policies for embedded clusters,” in LCTES, 2005, pp. 1–10.

[17] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An approximation algorithm
for energy-efficient scheduling on a chip multiprocessor,” in Conference
on Design, Automation, and Test in Europe (DATE), 2005, pp. 468–473.

11

