MatEx: Efficient Transient and Peak Temperature
Computation for Compact Thermal Models

Santiago Pagani*, Jian-Jia Chen', Muhammad Shafique*, and Jorg Henkel*

*Chair for Embedded Systems (CES)

Karlsruhe Institute of Technology (KIT), Germany

TDepartment of Informatics
TU Dortmund University, Germany

Corresponding Author: santiago.pagani @kit.edu

Abstract—In many core systems, run-time scheduling de-
cisions, such as task migration, core activations/deactivations,
voltage/frequency scaling, etc., are typically used to optimize
the resource usages. Such run-time decisions change the power
consumption, which can in turn result in transient temperatures
much higher than any steady-state scenarios. Therefore, to be
thermally safe, it is important to evaluate the transient peaks be-
fore making resource management decisions. This paper presents
a method for computing these transient peaks in just a few
milliseconds, which is suited for run-time usage. This technique
works for any compact thermal model consisting in a system
of first-order differential equations, for example, RC thermal
networks. Instead of using regular numerical methods, our algo-
rithm is based on analytically solving the differential equations
using matrix exponentials and linear algebra. This results in
a mathematical expression which can easily be analyzed and
differentiated to compute the maximum transient temperatures.
Moreover, our method can also be used to efficiently compute
all transient temperatures for any given time resolution without
accuracy losses. We implement our solution as an open-source
tool called MatEx. Our experimental evaluations show that the
execution time of MatEx for peak temperature computation can
be bounded to no more than 2.5 ms for systems with 76 thermal
nodes, and to no more than 26.6 ms for systems with 268 thermal
nodes, which is three orders of magnitude faster than the state-
of-the-art for the same settings.

I. INTRODUCTION

Managing and dealing with temperature is a major issue in
computing systems. In order to avoid undesired high temper-
atures, chips are generally provided with Dynamic Thermal
Management (DTM) techniques [8]. When a part of a chip
heats up above a predefined threshold temperature, DTM is
triggered such that the temperature is reduced. For such a
purpose, DTM techniques can, for example, power down parts
of the chip, gate the clock of cores, or reduce the supply
voltage and frequencies. Although naturally DTM is necessary
because it guaranties that chips are not damaged due to high
temperatures, frequent triggers of aggressive DTM techniques
may degrade the overall performance of the system.

There are several power budgeting and thermal manage-
ment techniques in the literature (e.g., [S], [14]) which are
derived/formulated for the steady-state temperatures, that is,
the stable temperatures achieved when the system runs during
a long enough time without changes in power. The problem
with such approaches is that when there are power changes
(e.g., due to mapping/scheduling decisions), the transient tem-
peratures might exceed the corresponding steady states. When
these steady-state temperatures are high enough, such a tran-
sient behavior might trigger DTM, thus reducing the system’s
performance. More importantly, if the transient temperatures
grow faster than the speed in which DTM can react to them,
chips can be seriously damaged. Such transient effects are
visible in the following motivational example.

(b) 4 active cores [°C]

(a) 12 active cores

Fig. 1: Motivational example: Two different steady-states.
Active cores are boxed in black. Top numbers represent the
power consumptions of active cores and bottom numbers
represent the temperatures in the center of each core. Detailed
temperatures are shown according to the color bar.

o
o

‘ x x 160
<« 87.51°C (at t = 1.065)

(Figure la)

o]
(&)

-1 120
(Figure 1b)
...................................... - 80

s Max. Temp. among all cores
= = = Temperature on Core_2,1 Il 40
------ Total Power on the chip

0o 05 1 15 2 25 3
Time [seconds]

9]
o

Temperature [°C]
oo
w

Total power [Watts]

N |
-

Fig. 2: Motivational example: Transient temperatures. During
t = [0s, 1s] there are 12 active cores according to Figure la.
During t = [1s, 3s], we activate 4 cores according to Figure 1b.
The highest transient temperature happens on the core in the
2™ row and 1% column, that is, Core_2,1, at t = 1.06s.

Motivational Example: For simplicity in presentation,
consider a many-core system with 16 cores' of size 3.2mm x
3.0mm, arranged in 4 rows and 4 columns. Assume a thresh-
old temperature for triggering DTM of 80°C and a cooling
solution from the default configuration of HotSpot [7]. After
running simulations with HotSpot, Figure 1 shows the steady-
state temperature distribution of two mappings with different
numbers of active cores and power consumptions. For both
cases the maximum steady-state temperature among all cores
is 80°C, that is, DTM is not triggered in either steady state.

However, as seen in the transient simulations in Figure 2,
the temperature on at least one core exceeds 80°C for several
seconds, even reaching 87.51°C, when transitioning from the
mapping in Figure la to that in Figure 1b. In fact, the tem-
perature on Core_2,1 increases to 86.60°C almost instantly,
potentially damaging the chip because DTM takes some time
to become active. This transient behavior happens regardless

1Out-of-order Alpha 21264 cores in 22nm simulated with McPAT [12].

(©2015 IEEE. Published in Design Automation and Test in Europe (DATE), Grenoble, France, March 2015. Available in the IEEE Xplore Digital Library.

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7092629

of the fact that the steady-state temperatures for both mappings
do not exceed the threshold temperature of 80°C. The cause
behind this effect is that the 8 cores that are shut-down require
some time to cool down, and they transfer heat to the other
cores during this period.

Objective: In this paper we present a fast and accurate
method to compute the peaks in transient temperatures for
run-time usage. In this way, the system can estimate whether
a mapping/scheduling decision will exceed the threshold for
triggering DTM. Our method works with any compact thermal
model composed by a system of first-order differential equa-
tions, for example, RC thermal networks [7]. The proposed
technique is based on matrix exponentials and linear algebra,
allowing us to derive an analytical expression for computing
the transient temperatures. The peaks in transient temperatures
can be then easily computed by analyzing and differentiating
such an equation, which is something impossible to do when
solving the system of differential equations with regular nu-
merical methods. Moreover, given that our method is based
on an exact solution which is a function of time, it can also
efficiently compute all transient temperatures for any given
time resolution without accuracy losses.

Our Novel Contributions: For thermal models composed
by a system of first-order differential equations:

e Based on matrix exponentials, we derive a fast polynomial-
time algorithm that efficiently computes all transient temper-
atures from input power traces, for any given time resolution
without accuracy losses.

e We derive a fast and accurate method to compute peaks
in transient temperatures generated by changes of power
consumptions inside a chip.

Open-Source Contributions: We implement our algo-
rithms as an open-source tool called MatEx (from matrix
exponentials), which is particularly useful for making ther-
mally safe run-time mapping and scheduling decisions. MatEx
is available for download at http://ces.itec.kit.edu/download.

II. RELATED WORK

Significant work has been done for temperature estimation
in integrated circuits. Most are limited to steady-state compu-
tations, e.g., [11], [15], [19], failing to detect transient peaks in
temperature. However, there exist several techniques that are
capable of dealing with transient thermal simulations, e.g., [3],
(61, [71, [91, [16], [17], [18], [20].

The work in [18] presents a 3-D transient thermal simulator
based on the Alternating Direction Implicit (ADI) method,
whit linear time complexity and a linear memory requirement.
However, different packaging components cannot be modeled
with detailed temperature distribution information. In [9],
authors propose coupling a gate-level logic simulator with
an analytical solution. However, the model is only applicable
for dynamic power consumption and the analytical solution is
computationally exhausting for complex geometries with com-
posite materials, limiting the approach only to dice geometries.
In [3], authors present ESESC, a time-based sampling simula-
tor that enables integrated power and temperature evaluations
for multi-core systems. Nevertheless, temperature simulations
cannot be easily separated from complete simulations, deny-
ing fast temperature prediction based on power consumption
values. The work in [16] suggests a technique for temperature
estimation based on application-specific calibrations using the
available built-in sensors. The authors show that each applica-
tion has a unique thermal signature, providing a fast method for

temperature estimation by combining mapping and scheduling
information. The limitation of [16] is that it assumes that an
application consumes constant power as long as it is running.

Among all thermal simulators, HotSpot [7] is the most
widely used. HotSpot constructs a compact thermal model
based on the popular stacked-layer packaging scheme in mod-
ern Very Large-Scale Integration (VLSI) systems, resulting
in an RC thermal network. In addition to modeling silicon
and several packaging layers made of different materials,
HotSpot includes a high-level on-chip interconnect self-heating
power and thermal model such that the thermal impacts on
interconnects can also be taken in consideration. For transient
temperature computations, HotSpot solves the system of dif-
ferential equations using a fourth-order Runge-Kutta numerical
method, with an adaptive number of iterations.

There are a few techniques that currently compete with
HotSpot [6], [17], [20]. Power Blurring [20] is a matrix
convolution technique, in which the temperature distribution
of the chip is regarded as a blurred image of the power map
when it is blurred with a filter mask for the impulse response,
obtained by using a Finite Element Analysis (FEA) tool such
as ANSYS [2]. The thermal profile for a given power map is
obtained by convolving it with the thermal mask. The work in
[17] proposes a compact thermal modeling technique, which
builds a composable model from detailed structures for each
basic module using the finite difference method, then reduces
the model complexity, and tries to merge the boundary nodes
of modules to improve the reduction efficiency, leading to
different space discretizations for the whole thermal system.
By using the generalized integral transforms (GIT), the work
in [6] presents an analytical thermal simulator to estimate
the temperature distribution on a chip with a truncated set of
spatial bases which only needs very small truncation points.

Although some of these tools are reasonably efficient,
none of the considered techniques is suitable to only compute
the peaks in temperature during the transient state. Hence,
traditional tools must extract these peaks from extensive simu-
lations for many time steps, taking several seconds to compute.
Contrarily, the method presented in this paper can compute
peaks in transient temperatures in just a few milliseconds,
which is particularly useful for run-time mapping and sche-
duling decisions, and it can efficiently compute all transient
temperatures for any time resolution without accuracy losses.

III. SYSTEM MODEL

This paper focuses on compact thermal models that are
composed by a system of first-order differential equations,
relating the temperatures of different areas of the chip (ther-
mal nodes) with their power consumptions and the ambient
temperature, as shown in Equation (1). Considering the well-
known duality between thermal and electrical circuits, one such
a model is, for example, an RC thermal network like the one
used in HotSpot [7]. For simplicity of presentation, the notation
and descriptions used in this paper are namely those used in RC
thermal networks. Nevertheless, as long as the thermal model
can be formulated as in Equation (1), the same methods and
conclusions apply for other models.

An RC thermal network is composed by /N thermal nodes
that are interconnected through thermal conductances. Every
thermal node is also associated with a thermal capacitance
to consider the effects of the transient temperatures. The
ambient temperature, defined as T,n,, is considered to be
constant (there is no capacitance associated with it). The power

http://ces.itec.kit.edu/download

consumptions of active elements are heat sources. Thus, for
an RC thermal network with N thermal nodes, we can build
a system of N first-order differential equations, expressed as

AT +BT =P + T, G, (1)

where matrix A = [a; ;]\, contains the thermal capaci-
tances, matrix B = [b; ;]\, contains the thermal conduc-
tances between vertical and lateral neighboring nodes, column
vector T = [T} (t)] v, represents the temperature on every
thermal node, column vector T” = [T} ()] 5., holds the first
order derivative of the temperature on every thermal node with
respect to time, column vector P = [p;|y,, contains the
power consumption on every thermal node, and column vector
G = [gi] v contains the thermal conductance between every
thermal node and the ambient temperature. When thermal
node ¢ is not in contact with T, the value of g; is zero.
Furthermore, Equation (1) can be rephrased as

T = CT+A 'P+T,myA"'G with C=—-A"'B. (2)

Moreover, initial conditions are needed when solving any dif-
ferential equation. Hence, we define vector Tinie = [Tinitx) ny1
which contains the initial temperatures on all nodes at ¢ = 0s.

In the steady-state, Equation (1) becomes
BTsteady =P+ TambG or Tsteady = B_1P + TambB_lG;

where vector Teaqy = [Tsteady k] Nx1 contains the steady-state
temperatures on all thermal nodes, and B~ = [b™'x ;]

is the inverse of matrix B. Moreover, only focusing on the
steady-state temperature of node %, denoted Tieagy,, We have

N N
Titeady), = Z b ki i+ Tamb - Z by g (3
=1 =1

IV. PROBLEM DEFINITION

For a given matrix A, matrix B, vector G, and ambient
temperature T, the objective of this paper is to derive a fast
and accurate method to efficiently compute the peak in the
transient temperature on node k, that is, T}, (¢), after a change
in the power consumption of one or more nodes, such that
vector P is the new power vector after the change in power.

For this purpose, we first need to find an analytical solution
for the system of first-order differential equations presented in
Equation (2). In other words, we need to find a mathematical
expression from which we can efficiently compute T}, (¢) for
any thermal node k£ and time ¢ > 0. This is done in Section V.

Then, from the results in Section V, we can find the time
instant in which T}, (¢) is maximized, which we define as ¢1%.
Finally, we simply compute T}, (¢'%) to obtain the value of
the peak in the transient temperature of node k for the given
power change. This is presented in Section VI.

V. COMPUTING ALL TRANSIENT TEMPERATURES

It has being well studied (e.g., [13]), that the system of
first-order differential equations from Equation (2) can be
analytically solved by using matrix exponentials. Therefore,
assuming that when there is a change in power this happens
at time ¢ = 0 and the new power values are those of vector P,
applying the results from [13] we can re-write Equation (2) as
a function of Tjni, Tiieady, and C, resulting in

T= Tsteady + e (Tinil - Tsteady)) 4

where ¢©! = [, /] N s defined as a matrix exponential.
Matrix C and matrix B are related to hardware and they are
constant for a given thermal model. Hence, the variables in
Equation (4) are ¢, Tipi;, and Tyeaqy (Which in turn depend
on P and T,u,). Note that Equation (4) does not imply that
the temperature on every node approaches its steady-state
temperature exponentially, as €©* is a matrix exponential and
not a regular exponential function.

There are several methods to solve matrix exponential e,
including numerical methods that solve it for a given ¢, and
analytical methods based on linear algebra in which ¢ is a
variable. Focusing on the latter, the work in [13] presents a
solution to the matrix exponential as eCt = VDV !, Here,
V =[vi ;] v v Tepresents a matrix containing the eigenvectors
for matrix C, matrix V™' = [z],y is the inverse of
matrix V, and D = [d; ;] v, v is @ diagonal matrix such that
D = diag (e, e*? .. e*t) where Ai,Ag,..., Ay are
the eigenvalues of matrix C. The eigenvalues and eigenvectors
of matrix C are computed by a plg/ing linear algebra [1], with
a total time complexity of O (N*) Because this a physical
and stable system in which all temperatures eventually reach
their steady states, it holds that A\; <0 forallt=1,2,... N.
Note that for a given matrix C (that is, a given chip), the
eigenvalues, matrix V, matrix V=1, and D only need to be
computed once. In this way, the matrix exponential can be
solved by computing every e©?; ; inside e©* as

N
Ct Ai-t
NS ka,i “Zigc et)

=1

Applying these results for matrix exponentials from [13]
to compute the transient temperatures, from Equations (4) and
(5), the temperature on node & as a function of time becomes

N N
E Ag-t §

Tk (t) = T’Sleadyk + et Vk,i * Zi,j (T}nilj - Tstead)’j) ’
i=1 j=1

This computation can be achieved very efficiently by first

building auxiliary matrix H = [Hy ;] -, - such that
N
Hy i =g Z Z; (Tmitj - Tsteadyj) , (6)
j=1

forall k=1,2,...,N and forall : = 1,2, ..., N. Finally, for
an ambient temperature 1y, starting from initial temperatures
Tin at t = Os, and considering the steady-state temperatures
Tieady after a power change to vector P, the temperature on
node k at time ¢, that is, T} (¢), is computed as

N
Ty (t) = Tueasyy, + Y Hri - €. (7)

i=1
Note that, unlike the eigenvalues and eigenvectors which are
only computed once for a given chip, vector Teqqy and matrix
H are computed/build once for every change in power, with
a total time complexity of O (N?). Therefore, for a given ¢

and with matrix H already built, the total time complexity for
computing T}, (t) for all k =1,2,..., N is O (N?).

There are additional implementation improvements that can
reduce the execution time (not the complexity). For example,
when building matrix H for every change in power, we can
compute an auxiliary vector Tgist = Tinit — Titeady, allowing
subtraction Tipi; — Tsteadyj to be computed N times instead

Algorithm 1 Build auxiliary matrix H

Input: Matrices V and V1, eigenvalues, vectors Ty;; and Tsteadys

Output: Auxiliary matrix H;

: for j =1to N do
leff] <~ ’Tmll]

end for

for i =1to N do
auxH; < Y0, 2 j - Tierj:

: end for

:for k=1to N do

for i =1to N do
Hk,i — Vi auxH;;

10: end for

11: end for

12: return Auxiliary matrix H;

CZ;teady j N

VR NR L

Algorithm 2 Compute transient temperatures at time ¢

Input: Auxiliary matrix H, and time of interest ¢;
Output Temperatures T}, () forall k=1,2,...,N;
:fori=1to N do

auxExp, « eri't;
: end for
for k =1to N do

Ty (t) — Tsteadyk + Zil auxExp, - Hk,i§
: end for
: return Ty (t) forall k =1,2,...,N;

Jousrwns

of N? times. Similarly, for a given {, we can compute an
auxiliary vector {e*f etz o e t} which allows this
exponentiation to be computed only N times instead of N?2
times. A pseudo-code to build auxiliary matrix H is presented
in Algorithm 1, and a pseudo-code to compute T}, (t) for every
k is presented in Algorithm 2.

VI. COMPUTING PEAKS IN TRANSIENT TEMPERATURES

In order to compute the peaks in the transient temperatures,
we need to find the time instant ™% at which the temperature
in node k is maximized. Because T} g) results in a different
expression for every k, the value of ¢* is different for every
node. Once ¢ is known, we can compute T}, (t'*) to obtain
the value of the peak in the transient temperature of node k.
Since T}, (t) depends on power vector P, time ¢'% needs to be
computed for every change in power.

Given that T}, (¢) is a summation of decaying exponential
functions, we know that T}, (¢) is continuous and differentiable
with respect to ¢ for ¢ > 0. We define the first-order derivative
of Ty, (t) as Ty, (t), which from Equation (7) is expressed as

N
= E)\i'Hk,i'e)‘ ¢
i=1

For example, Figure 3 shows the first-order derivative of
the temperature on Core_2,1 for the simulations in Figure 2.
As seen in Figure 3, when there is a peak in the temperature
of node k, the slope of T}, (t) changes sign and T}, (¢) is equal
to zero. Hence, a method to find a transient peak on node k
is to solve T} (t) = 0. Given that T} (¢) eventually reaches
its steady-state temperature Tyeady,, there is always at least
one solution for T}, (¢)=0 when ¢ — oo. There can be several
solutions with T}, (¢) =0, and every solution in which¢ > O is a
potential peak in the temperature on node k. A naive approach
is to find all solutions and test the one that results in the
highest temperature. Nevertheless, since T}, (¢) is a summation
of decaying exponential functions, from control theory [10] we
know that for any stable system in which all poles are less than

8 T - - - 150

TERRILERT ERRRTIES T/ (t) on Core_2.1 g
al Y L Total Power on the chip 130 g
Na) I T, (t) =0 (att = 1.06s) o)
S 0 I / 110 %
|- i Q‘
=i 90 Z
1 =
0 0.5

Time [seconds]

Fig. 3: First-order derivative of the temperature on Core_2,1
for the transient simulations in Figure 2. After the change in
power, Ty, (t) is zero at t = 1.06s and when ¢ — co.

or equal to zero, the maximum temperature (or overshoot in
control theory [10]) happens always at the first peak. Applying
the Laplace transform to Equation (7), we have

T;teady k N H ki

S TSN

Ty (S) =

where T}, (S) is the Laplace transform of T} (t). Given that
A; <0 forall i =1,2,...,N, all poles in T} (S) are less
than or equal to zero, and hence the above conclusion holds.
Thus, the only solution of interest for T}, (¢) = 0 is the closest
solution to zero such that ¢ > 0, and this solution is ¢*.

Unfortunately, equation 77, (t) = 0 cannot be solved an-
alytically. One approach for solving such an expression is to
apply the Newton-Raphson method [4], for which we need the
second-order derivative of T, (t), that is, T}’ (¢), expressed as

N
! L‘)ZZ)\?'H}CJ-BA t
=1

Then, starting from an initial guess for tTk defined as tgk,
the value of ¢'" is approximated iteratively. The value of t*
for the n-th iteration, defined as ¥, is computed from tjlk_l
Particularly, tI¥ is computed as

Tk
() e S Hi
n—1" — Yn—1
TV (tjﬁ_ 1) PR A%-Hk,i-e

As initial guess we use t =0, such that the method converges
to the first transient peak Finally, t'% is set to tW, where W
is a constant indicating the total number of iterations used
when applying the Newton-Raphson method, and T}, (t'%) is
computed through Equation (7). A pseudo-code to compute the
peak temperatures on all nodes is presented in Algorithm 3.

k
thh — Tk

Tk
i tn—l

There is the possibility that T}, (¢) is decreasing or increas-
ing, that is, there is no peak in T} (¢) and its maximum value
happens at T} (0) or Titeady,» respectively. Thus, the actual
maximum temperature to consider is

max {Tk (tTk) ’Tk (0) a,-TSleadyk} .

Moreover, if there is a new change in power at time fchange.
the temperature on node £ might never reach Tcady e For such
cases, the maximum temperature to consider is

max {Tk (tTk) ,Tk (0) 7Tk (tchange)})

and Tiyi,, for the next computation is set to Ty (fchange)-

HotSpot *

L | Resolutlon 1 ms L

HotSpot

Resolution 3.33 us

— MatEx

Resolutlon 1 ms

= | |

Resolution 3.33 us

Temperature [°C]
BN
()
I

0 02 04 06 08 1 0
Time [seconds]

0 2 0 4 0.6 0.8
Time [seconds]

1 0 02 04 06 08 1 0 02 04 06 08 1
Time [seconds]

Time [seconds]

Fig. 4: Simulation results with all transient temperatures for the case of 64 cores and a single change in power.

Algorithm 3 Peak temperature computation

Input: Auxiliary matrix H, and total number of iterations W
Output: Peak temperatures Ty (t%) forall k =1,2,...,N;
1: for k =1to N do

2: TR0
forn =1to W do e
fh o gtk _ D MHM*“
ZNI)\Q tT"’

: end for

3
4
5: end for
6
7: return T} (tTk) forall k=1,2,...,N;

Algorithms 1, 2, and 3 are implemented as an open-source
tool called MatEx (from matrix exponentials), available for
download at http://ces.itec.kit.edu/download.

VII.

In this section, we evaluate the accuracy and the perfor-
mance of MatEx, compared to the widely-adopted HotSpot [7].

EVALUATIONS

A. Setup

The compact thermal model, that is, the values of matrix
A, matrix B, and vector G, are computed through HotSpot
and given to MatEx as inputs. As MatEx is not tied to HotSpot,
any other compact modeling tool can be used to derive the RC
thermal network. We use HotSpot in our evaluations mainly
to compare the accuracy of MatEx with a widely-used tool.

Inside MatEx, Algorithm 2 is used to compute all transient
temperatures for a given time resolution, and Algorithm 3 is
used to compute the peaks in transient temperatures generated
by the changes of power inside the chip. Therefore, we conduct
two separate experiments, one to test each algorithm. When
testing Algorithm 2, we need to specify the time resolution,
that is, the time steps between every transient computation.
Particularly, we consider two resolutions: 3.333 us and 1ms,
and these same time resolutions are used for the simulations
with HotSpot. When evaluating Algorithm 3 we consider 20
iterations for the Newton-Rhapson method. The length for the
power trace is set to 1s. Given that MatEx needs to build
auxiliary matrix H for every change in power, a higher number
of power changes results in longer execution time for MatEx.
Hence, to account for two different cases, the power traces
are generated randomly considering 1 power change and 100
power changes®. With respect to the number of cores in the
chip, we consider 4 different cases in which the chip has 16
cores, 32 cores, 48 cores, and 64 cores. For these numbers of
cores, HotSpot generates RC thermal networks with 76 nodes,
140 nodes, 204 nodes, and 268 nodes, respectively.

2We intentionally use synthetic traces in order to have two very distinctive
numbers of power changes. Where we to use power traces from real appli-
cations, the effects due to the number of power changes would be harder to
observe, given that they would be imposed by the application and architecture.

B. Results

Figure 4 presents the experimental results comparing the
accuracy of both solutions for the case of 64 cores and a
single change in power’. Given that HotSpot uses the fourth-
order Runge-Kutta method to solve the system of differential
equations, Figure 4 shows (zooming) that there are some accu-
racy losses when the time resolution decreases. Specifically, by
taking 3.333 us as reference (most accurate case for HotSpot),
we observe some jitter in HotSpot’s transient output when the
time resolution is 1ms. This happens because for each new
step, the Runge-Kutta method computes a difference from the
previous result, and a smaller resolution introduces more error.
Contrarily, the accuracy of MatEx is entirely independent on
the time resolution used for computing all transient temper-
atures. This comes from the fact that MatEx computes the
temperature through Equation (7) for any given time ¢, and the
value of the previous temperature computation is not necessary.
Therefore, when running full transient simulations, the user
can adapt the time resolution in MatEx for any specific needs,
without additional considerations about accuracy losses.

Figure 5 and Figure 6 present the execution time re-
sults of HotSpot and MatEx (Algorithm 1 and Algorithm 2),
respectively, for the experiment that computes all transient
temperatures, for all the cases described in Section VII-A. For
each tool, a higher time resolution results in longer execution
times. In HotSpot, execution time is only affected by the time
resolution, and not by the number of power changes. In MatEx,
aside from the effect of the time resolution, the number of
power changes can also slightly increase the execution time.
In our experiment, for a resolution of 1ms Algorithm 2 is
executed 1000 times, while Algorithm 1 is executed 100 times
(100 power changes) or only once (1 power change), thus the
effect of the number of power changes is noticeable. However,
for a resolution of 3.333 s Algorithm 2 is executed 3 - 10°
times, masking the execution time of Algorithm 1. The most
important fact is that MatEx is always faster than HotSpot for
the same time resolution. Specifically, MatEx is on average 40
times faster than HotSpot for all the evaluated cases, being
up to 100 times faster for the case with 64 cores, one power
change, and time resolution of 1 ms. This enables MatEx to
be used not only for peak temperature estimations, but also to
replace HotSpot for general transient temperature computation.

Figure 7 presents the execution time results of MatEx
(Algorithm 1 and Algorithm 3) for the experiment that only
computes the peaks in the transient temperatures, for all the
cases described in Section VII-A. Because HotSpot (or any
other numerical method) is unable to analyze the peaks in
temperature without simulating the entire trace, the execution
time of HotSpot for this experiment is the same as when
computing all transient temperatures and these values are

3Other results are omitted due to space constraints. Nevertheless, similar
observations apply to all other cases.

http://ces.itec.kit.edu/download

I Resolution 1 ms (1 power change) [Resolution 3.33 pus (1 power change) HEEll Resolution 1 ms (100 power changes) EEH Resolution 3.33 s (100 power changes) ‘

s

183.995 ms

__ 1500 | HotSpot - = 60 MatEx (Alg. 1 and 2)
2 o . B)

o 1000 - D R RS R o 40l)

£ oo 33 g N
= 500 2 & % & mom = s 2]l 5 S
= - I D a1 B B 20 2 2

g EE mm W N M £ moa Nzl 2
S 2 B @ = o N
5 20 sPal =HE E 0.3 SEEl S
S 10 g E | g 0.2 B IE
4} M o0.1 z

o
o

16

32 48
Cores in Chip

Fig. 5: Execution time for computing all

32
Cores in Chip

48

- X
2 4 | MatEx (Alg. 1 and 3) o |
ERE - P 23
3 . PUEA be EE ad
= z = 21 wa S 53
=} = < 28 — =y oy
|:|é 3 = 1 22 S0 I|:| EE
~ R & &
als 5 == | [NEEE 23
0 = AR P
& =l [l 5 0.03 zz 52 oo [l
54 '3
=0 g 00225 2.3 t
M M 0.01 5= H

64 16

32 48
Cores in Chip

Fig. 6: Execution time for computing Fig. 7: Execution time for computing the

transient temperatures and the peaks in all transient temperatures using MatEx peaks in the transient temperatures using

the transient temperatures using HotSpot.

already presented in Figure 5 (HotSpot was trivially modified
to keep track of the highest transient temperature incurring in
negligible overhead). On the other hand, MatEx (Algorithm 3)
uses the Newton-Raphson method to compute the time instants
of the peaks in temperature. Particularly, for a system with
16 cores, Figure 7 shows that the execution time of MatEx
when having one power change is only up to 2.5ms, which
is suited for run-time scheduling decisions. The results also
show that for peak temperature computation the number of
power changes has a linear impact in the execution time of
Algorithm 3. Thus, when we have 100 power changes the
execution time of Algorithm 3 is around 100 times longer than
when having a single power change.

VIII. CONCLUSIONS

In this paper we have presented a new method to efficiently
compute peaks in transient temperatures, as well as all transient
temperatures for any given time resolution. This new method
is based on matrix exponentials and we have integrated it in
an open-source tool, called MatEx. Experimental evaluations
were conducted to compare the efficiency and accuracy of
MatEx with that of HotSpot. With respect to the computation
of all transient temperatures, our results show that, while in
HotSpot the time resolution affects the accuracy, in MatEx the
resolution can be freely chosen without additional considera-
tions about accuracy losses. Furthermore, the execution time
of MatEx for the same time resolution is up to 100 times faster
than HotSpot. For the computation of the peaks in temperature,
the execution time of MatEx is just a few milliseconds for
all the evaluated cases with only one change in power. This
suggests that MatEx can be used for run-time computation
of peaks in temperature for scheduling and task migration
decisions. In this way, MatEx can efficiently help to prevent
undesired triggers of DTM or damages to the chip when DTM
would be unable to react fast enough.

ACKNOWLEDGEMENTS

This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Centre Invasive Computing [SFB/TR 89].

REFERENCES
[1]
[2]
[3]

“Eigen C++ template library (v3.2.2),” 2014, http://eigen.tuxfamily.org.
ANSYS Inc., “ANSYS R15.0,” 2014, http://www.ansys.com.

E. K. Ardestani and J. Renau, “ESESC: A fast multicore simulator using
time-based sampling,” in HPCA, 2013, pp. 448-459.

(Algorithm 1 and Algorithm 2).

(4]

(5]

(6]

(7]

(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

MatEx (Algorithm 1 and Algorithm 3).

J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizdbal,
Numerical Optimization: Theoretical and Practical Aspects, 2nd ed.
Springer-Verlag, 2006.

X. Hu, Y. Xu, J. Ma, G. Chen, Y. Hu, and Y. Xie, “Thermal-sustainable
power budgeting for dynamic threading,” in DAC, 2014, pp. 187:1-
187:6.

P-Y. Huang and Y.-M. Lee, “Full-chip thermal analysis for the early
design stage via generalized integral transforms,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 5, pp.
613-626, May 2009.

W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. Stan, “HotSpot: a compact thermal modeling methodology
for early-stage VLSI design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, no. 5, pp. 501-513, May 2006.
Intel Corporation, “Dual-core intel
datasheet, revision 003,” August 2007.
S. Klab, A. Napieralski, and G. De Mey, “Logi-thermal simulation of
digital CMOS ICs with emphasis on dynamic power dissipation,” in
MIXDES, 2009, pp. 361-365.

B. Kuo and F. Golnaraghi, Automatic Control Systems, 8th ed.
Wiley & Sons, 2002.

Y.-M. Lee, T.-H. Wu, P.-Y. Huang, and C.-P. Yang, “NUMANA: A
hybrid numerical and analytical thermal simulator for 3-D ICs,” in
DATE, 2013, pp. 1379-1384.

S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“MCcPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in MICRO, 2009, pp. 469—
480.

H. M. Moya-Cessa and F. Soto-Eguibar, Differential Equations: An
Operational Approach. Rinton Press, 2011.

xeon processor 5100 series

John

T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical power management for asymmetric multi-core
in dark silicon era,” in DAC, 2013, pp. 174:1-174:9.

H. Qian, H. Liang, C.-H. Chang, W. Zhang, and H. Yu, “Thermal
simulator of 3D-IC with modeling of anisotropic TSV conductance and
microchannel entrance effects,” in ASP-DAC, 2013, pp. 485-490.

D. Rai, H. Yang, I. Bacivarov, and L. Thiele, “Power agnostic technique
for efficient temperature estimation of multicore embedded systems,” in
CASES, 2012, pp. 61-70.

H. Wang, S. X.-D. Tan, D. Li, A. Gupta, and Y. Yuan, “Composable
thermal modeling and simulation for architecture-level thermal designs
of multicore microprocessors,” TODAES, vol. 18, no. 2, pp. 28:1-28:27,
Apr. 2013.

T.-Y. Wang and C. Chen, “3-D Thermal-ADI: a linear-time chip level
transient thermal simulator,” TCAD, vol. 21, no. 12, pp. 1434-1445,
Dec 2002.

Y. Zhan and S. S. Sapatnekar, “Fast computation of the temperature
distribution in VLSI chips using the discrete cosine transform and table
look-up,” in ASP-DAC, 2005, pp. 87-92.

A. Ziabari, J.-H. Park, E. Ardestani, J. Renau, S.-M. Kang, and
A. Shakouri, “Power blurring: Fast static and transient thermal analysis
method for packaged integrated circuits and power devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2014.

http://eigen.tuxfamily.org
http://www.ansys.com

