
Peak Power Management for Scheduling Real-time
Tasks on Heterogeneous Many-Core Systems

Waqaas Munawar∗, Heba Khdr∗, Santiago Pagani∗, Muhammad Shafique∗, Jian-Jia Chen† and Jörg Henkel∗
∗Karlsruhe Institute of Technology (KIT), Germany, E-mail: firstname.secondname@kit.edu

†TU Dortmund University, Germany, E-mail: jian-jia.chen@cs.uni-dortmund.de

Abstract—The number and diversity of cores in on-chip
systems is increasing rapidly. However, due to the Thermal Design
Power (TDP) constraint, it is not possible to continuously operate
all cores at the same time. Exceeding the TDP constraint may
activate the Dynamic Thermal Management (DTM) to ensure
thermal stability. Such hardware based closed-loop safeguards
pose a big challenge in using many-core chips for real-time tasks.
Managing the worst-case peak power usage of a chip can help
toward resolving this issue. We present a scheme to minimize
the peak power usage for frame-based and periodic real-time
tasks on many-core processors by scheduling the sleep cycles for
each active core and introduce the concept of a sufficient test
for peak power consumption for task feasibility. We consider
both inter-task and inter-core diversity in terms of power usage
and present computationally efficient algorithms for peak power
minimization for these cases, i.e., a special case of “homogeneous
tasks on homogeneous cores” to the general case of “heterogeneous
tasks on heterogeneous cores”. We evaluate our solution through
extensive simulations using the 48-core SCC platform and gem5
architecture simulator. Our simulation results show the efficacy
of our scheme.
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I. INTRODUCTION

The trends of increased integration are resulting in many-
core architectures. The increase of digital logic on the chips
and the failure of Dennard’s scaling [8] will result in increased
power densities on next generation chips. Consequently, in-
creased power densities have introduced the so-called Dark
Silicon problem, where a significant percentage of the total
available cores in a many-core system cannot be powered-on
simultaneously due to the thermal constraints [9], [14], [28].
Commonly, the chip manufacturers provide a Thermal Design
Power (TDP) value which is considered to be the highest
sustainable power that a chip can consume without triggering
any performance throttling mechanisms [16], e.g., Dynamic
Thermal Management (DTM). The heat-sink and the chip’s
cooling solution are designed according to the TDP value.

Activation of DTM can result in hardware-based perfor-
mance throttling to keep the chip within safe operating con-
ditions. Modeling the resultant performance loss precisely to
guarantee real-time performance constraints is non-trivial due
to the introduction of new variables, e.g., ambient temperature
and the DTM policy of the chip. One way of guaranteeing
sustainable performance is to have a DTM-free operation. If
operation below TDP guarantees that DTM is not activated,
then consequently, managing the cumulative peak power con-
sumption of the cores to be within the TDP limit guarantees
DTM-free operation.

Treating TDP as a hard limit negates the possibility of
using the cores at high power for short spans of time, i.e.,
the so called thermal sprinting. But, on the other hand, the
major benefit it provides is that it becomes a basis of a simple,
online and pessimistic but sufficient test for guaranteeing the
feasibility of real-time tasks scheduled on many-core chips
whose TDP values are known. This peak power based sufficient
schedulability test is similar to the widely used utilization
based schedulability test for the design of schedulers in real-
time systems. There have been extensive results for the latter
in the literature. Moreover, for scheduling decisions, this test
abstracts the need to consider the details such as initial tem-
perature of the core, distance of the core from the periphery,
distance from other active cores, etc.

In order to operate the chip within the TDP constraint,
peak power minimization is helpful. It is important to note
that peak power minimization is not the same as energy
minimization. Much of the existing research has focused on
energy minimization for real-time tasks on multi-core plat-
forms [5], [6]. Energy minimization can be equivalent to
average power minimization, whereas, in this paper our focus
is on peak power minimization. Also, for cores whose voltage
and frequency is individually scalable (per-core DVFS), the
problem of minimizing the peak power can be equivalent to
the problem of minimizing the energy. That is, as the cores
can be individually slowed down appropriately to finish the
workload just in time, the core’s workload gets distributed over
the whole frame. This optimally suppresses any peaks in the
power consumption, and also results in optimal reduction of the
energy consumption as the cores are operated at the minimum
feasible frequency. In this direction, there exist results that can
be directly applied [5], [6].

Nevertheless, due to monetary and chip-area cost, per-core
DVFS is not feasible for many-core systems (i.e., systems with
100s or possibly 1000s of cores). Hence tiled architectures are
getting popular [15]. Each tile consists of a group of cores
and the operating frequency is selectable at the granularity
of a tile [15]. For such architectures, after the frequency
of operation for a tile has been selected, the cores on that
tile can be individually be turned on or off, i.e., Dynamic
Power Management (DPM) can be used to control the power
consumption. For this, an appropriate scheduling of sleep time
for each processing core belonging to a tile can result in
reduced peaks in the power consumption for that tile, thereby
reducing the peak power consumption for the whole chip. We
address this problem in this paper.

Motivational Example: Consider a many-core system with
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Fig. 1: Motivational Example of two different schedules.

4 cores, i.e., c1, c2, c3, and c4, where each core executes
tasks at 1 GHz. Assume that the power consumption for
execution is 2 Watts per core, and that each core consumes 0
Watts when sleeping. Moreover, for simplicity in presentation,
assume negligible overhead for sleeping. Under such hardware
settings, consider that there are 4 real-time tasks arriving at
time 0, i.e., τ1, τ2, τ3, and τ4. Each task needs to execute
7.5 · 108 computer cycles, and all tasks share a common
deadline of 1 second, i.e., frame-based tasks. Although this
results in a total utilization of 3, if task migration is not desired,
then any task partitioning scheme will assign one task in each
core.

Figure 1 shows two possible schedules where all tasks
meet their deadlines. For the schedule in Figure 1a, all tasks
start execution simultaneously at time 0, and all cores go
to sleep after 0.75 seconds. This results in a peak power
consumption of 8 Watts. On the other hand, by using Dynamic
Power Management (DPM) to control the sleep cycles of the
cores, Figure 1b shows another possible schedule. For this
second case, the peak power consumption is 6 Watts, from
only activating 3 cores at any given time. Assume that TDP
for this chip is 7 Watts. In this case, the first schedule will
result in activation of DTM whereas the second one can avoid
it. In case of the first schedule, DTM might be activated,
triggering hardware-based performance throttling to keep the
chip within thermally safe operating conditions. This can result
in tasks missing their deadlines. Contrarily, in the second
schedule DTM activation can be avoided if execution below
TDP guarantees DTM-free operation. Here, once a schedule is
selected for the real-time task set, a sufficient feasibility test
can be designed to check if the cumulative peak power of all
cores exceeds the TDP for the chip. This example illustrates (i)
the potential benefit of an appropriate coordinated schedule of
sleep cycles of the cores in order to reduce the total peak power
consumption, and, (ii) the need to add the additional criterion
of peak power consumption for checking the feasibility of a
task set with real-time requirements.

Objective: The goal of this paper is to find a sleeping
schedule for active cores on a fixed hardware platform, con-
sidering the heterogeneity of cores and tasks, such that the peak
power consumption is minimized to help toward satisfying
the TDP constraint, while guaranteeing that all real-time tasks
meet their deadlines.

Our Contributions: For hard real-time tasks:

• We present a peak power management scheme (PPM). For
the sake of completeness, we first deal with the task par-
titioning onto the available cores and decide the individual
schedule for all tasks. After this, we schedule the sleep cycle
which is equivalent to the unconsumed utilization of each
individual core. This is done such that the peak power con-
sumption is minimized, without violating the hard real-time
requirements of the tasks. An analysis of our scheme details
how our solution decides the sleep cycle for individual
cores, starting from “homogeneous tasks on homogeneous
cores” to the most general case of “heterogeneous tasks on
heterogeneous cores”.
• In addition to the existing utilization based schedulability

tests, we introduce the concept of a sufficient test for
schedulability considering the peak power consumption of
a task set with real-time requirements.

We simulate our PPM scheme using power traces collected
from the 48-core SCC [15] platform and gem5 architecture
simulator in combination with McPAT [20].

The paper is organized as follows: In Section IV, we
present an overview of our scheme. In Sections V, VI and VII
we deal with the different cases arising due to heterogeneity of
tasks and processing cores while focusing only on frame-based
real-time tasks. In Section VIII we generalize our solution
to include implicit deadline periodic tasks. In Section IX we
present the results of simulations and we conclude the paper
in Section X.

II. RELATED WORK

In the past, much research has focused on power, energy
and thermal management for multi-core systems [10], [17],
[24], [25]. In [10] the global thermal-aware scheduling of
sporadic tasks is analyzed to minimize the peak temperature
using DVFS as a knob. For a multi-core system where cores
share voltage and frequency islands, the work in [24], [25]
presents and analyses an energy-efficient task partitioning
scheme. Likewise, in [17] optimal procrastination interval for
each task with real-time constraints is derived to minimize the
energy consumption. In these works the scheduling decisions
are intended to reduce the energy or temperature by controlling
the average power consumption. Therefore, these cannot be
effectively modified to control the peak power consumption to
remain within the TDP constraint, as is the case in our work.
Moreover we cater for heterogeneity of cores and tasks as well.

The work in [23], [26], [27] focuses on maximizing perfor-
mance under a power constraint, e.g., TDP. In [23], a control-
based framework is proposed to obtain the optimal trade-off
between power and performance of asymmetric multi-core
systems under a specific power budget (TDP). The work in
[26] exploits the process variations between the cores in a
homogeneous multi-core system to pick the more suitable
cores for an application to improve performance. Their results
show that the performance efficiency can be increased along
with the increasing dark silicon area, due to the proportional
increment of the process variations. However, in both of
these works [23], [26], the performance is not guaranteed,
making it unsuitable for real-time tasks. In our work, we
tackle the dual problem, in which we focus on minimizing the
peak power consumption while considering the schedubility



of the hard real-time tasks as constraints, i.e., delivering a
guaranteed performance. In [27] Sartori et al strive to boost
the performance while guaranteeing that power consumption
of the chip does not shoot beyond a threshold. However, the
performance is again not guaranteed. In contrast, we provide
a simple, polynomial time, online admissibility test for hard
real-time task sets.

Another work in high correlation to ours is [19], which
develops a new scheduling algorithm that minimizes the peak
power consumption for real-time tasks. However, the complex-
ity of the method is so high that it can only be used for offline
design. In comparison, we present polynomial time algorithms,
that can be used for online scheduling.

III. SYSTEM MODEL AND PROBLEM DEFINITION

We employ the commonly used system model for a het-
erogeneous multi-core system [2] as follows: Given a set of
software processes (tasks), a set of processing entities (cores)
upon which these tasks can execute, and the rate at which
the processing cores execute the tasks and their corresponding
power consumption values, our goal is to determine a mapping
of the tasks onto the cores and determine a time schedule for
the cores in such a way that the peak power consumption is
minimized.

A. Task and Hardware Model

This paper focuses on a set of n periodic tasks T =
{τ1, τ2, . . . , τn} which share the same arrival time and deadline
i.e., frame-based tasks. All tasks have the same period T , and
in each period all tasks have the same arrival time 0. This task
model is later extended to include the more general implicit
deadline periodic tasks in Section VIII where tasks do not
necessarily share the same period. We consider partitioned
scheduling, in which each task is assigned onto a core, i.e., task
migration among cores is not allowed. We also assume that all
jobs are independent. That is, they do not share resources, they
do not have data dependencies, and there is no interprocess
communication. This model is not as restrictive as it appears,
since there are ways to transform a set of dependent tasks to
independent ones [18].

We focus on a multi-core system with m heterogeneous
cores, that is, C = {c1, c2, . . . , cm}. Having a system with
heterogeneous cores implies that tasks will have different
execution times and power consumptions, depending on the
core in which each task is mapped to. The power consumption
for execution consists of a dynamic and static component.
Moreover, cores can be put to sleep mode by gating the clock.
We assume that changing the execution frequency of cores or
putting them to sleep mode, and vice versa, takes negligible
amount of time, as it is accomplished through clock gating.
During the sleep mode cores consume only the static power,
which might be different for each core. However, since the
static power is continuously being consumed, it only adds
a constant offset to the peak power consumption of tasks
(considering the tiled-architecture, all cores belonging to tiles
in which at least one core is active consume static power,
whereas the cores in other tiles can be turned off/power gated).
Hence, without loss of generality, we focus on dynamic power
consumption and consider leakage as a constant offset. For-
mally, we assume that the peak dynamic power consumption

of task τi executing on core cj is denoted as pi,j , resulting in a
peak power matrix P = [pi,j ]n×m. Normally, during different
execution phases a task might have different power values, and
considering only the peak power is a safe approach.

Similarly, we define ui,j as the utilization of task τi
executing in core cj . That is, assume that task τi requires xi,j
amount of time in the worst case when executing on core cj to
meet its deadline. The period of τi is T for all i (frame-based
tasks), thus, ui,j =

xi,j

T . This results in an utilization matrix
U = [ui,j ]n×m. It holds that 0 ≤ ui,j ≤ 1, when xi,j ≤ T . If
xi,j > T , then we set ui,j to ∞ to guarantee that core cj is
not considered for placement of task τi.

B. The Studied Problem

For n frame-based tasks and a heterogeneous many-core
platform with m cores, the objective of this paper is to find a
schedule and mapping for executing all the n tasks without
violating their deadlines, while minimizing the total peak
power consumption.

IV. SOLUTION OVERVIEW

To fulfil the aforementioned objective, we propose a peak
power management scheme (PPM). The solution presented in
this paper consists of two independent steps as discussed in the
subsequent sections. The first step deals with task partitioning
into the cores and decides the individual schedule of each
core. In the second step we decide a sleep cycle for individual
cores in such a way that the peak power is minimized without
affecting the individual schedules of cores. The second step is
the key challenge targeted in this paper.

A. Step 1: Task Partitioning

In the first step, as we consider partitioned scheduling, the
mapping of the tasks into cores has to be decided. Performing
partitioned scheduling to ensure the timing constraints is a
well-studied topic, in which the recent survey by Davis and
Burns [7] provides a comprehensive study. However, as this
part is more related to the feasibility of task partitioning, we
only sketch the key concepts.

Deciding whether there exists a feasible task assignment
for a set of tasks with real-time constraints into multiple cores
is an NP -hard problem in the strong sense [2]. However, for
example, the approximation algorithms by Graham [12] and
Baruah [2] can be adopted to provide efficient and effective
task partitioning for homogeneous and heterogeneous many-
core systems, respectively.

The output of the task partitioning algorithms is a partition
matrix K = [ki,j ]n×m. For every element in the matrix, ki,j
is set to 1 if task τi is partitioned to be executed on core cj
and 0 otherwise.

It is not necessary to use all the given m cores for assigning
the tasks, that is, the task partitioning may group the tasks into
less than m cores. If the time complexity is tolerable, the whole
process (Step 1 and Step 2) can be iteratively called to decide
the number of cores for assigning the tasks. For the simplicity
of presentation, we only focus on one iteration in which the
number of cores for allocating tasks is fixed, and any known
algorithm, e.g., [2], [12], for task partitioning is adopted.



Moreover, the derived task partitioning also guarantees that
the utilization of the tasks assigned on one core is less than or
equal to 100%, in which adopting any workload-conserving
scheduling policy in one core individually ensures that the
tasks can meet the deadlines due to the assumption of frame-
based tasks. If the derived task partitioning has a core with
utilization larger than 100%, either another more powerful task
partitioning algorithm should be adopted or we should consider
more cores to partition the tasks.

B. Step 2: Sleep Schedule Decision

After the tasks are mapped onto the cores and every core’s
internal schedule is decided in Step 1, this phase decides the
sleep schedule for each core such that the internal schedule of
the core remains unaffected and the peak power is minimized.

Theorem 1: If a frame-based, synchronous task set with
period T and cumulative utilization U , can be feasibly sched-
uled on a single core, it can also be feasibly scheduled if the
core is halted for bT (1− U)c time in every T interval.

Proof: The system is either idle or executing jobs in time
interval [0, T ). Since we focus on frame-based real-time tasks
here, any schedule is feasible if the core is halted only by at
most T (1−U) amount of time, as the remaining time is used
for executing jobs.

Explanatory Example: Suppose that after partitioning, one
of the processing cores has two tasks (τ1, τ2) with the period
of 10 ms and worst case execution times of 3 ms and 4 ms,
respectively. The cumulative utilization is 3

10 + 4
10 = 0.7. As

per Theorem 1, the processing core can be put to sleep for
30% of time and the task set can still be feasibly scheduled.
A sample schedule is shown in Figure 2.

0 1 2 3 4 5 6 7 8 9 10

τ1 τ2

(a) Original schedule

0 1 2 3 4 5 6 7 8 9 10

τ1 τ1 τ2

(b) Schedule with sleep cycle

Fig. 2: An example of a modified schedule with sleep cycle.

Based on the chip’s architecture and task structure, we
consider two observations.

1) Task set heterogeneity: The power consumption of a core
caused by executing a task can either be task independent,
or dependent. We call the former case homogeneous
task set and the latter heterogeneous task set. For ho-
mogeneous task set, it holds that pi,j = pi+1,j for all
i = 1, 2, . . . , n− 1 (all the rows of column j in matrix P
are equal).

2) Core heterogeneity: Like tasks, we classify the cores
into two disjoint sets: homogeneous and heterogeneous.
Homogeneous cores are those in which the power con-
sumption of task τi is independent of the core where it is
executed, i.e., pi,j = pi,j+1 for all j = 1, 2, . . . ,m−1 (all
the columns of row i in matrix P are equal). Furthermore,
this implies that all cores are equal in their capabilities,
hence task τi has the same utilization on any core, i.e.,
ui,j = ui,j+1 for all j = 1, 2, . . . ,m− 1 (all the columns

of row i in matrix U are equal). Those cores that do not
follow the above condition are heterogeneous cores.

These two conditions results in four possible cases. We discuss
these in the following sections and provide efficient solutions
for each.

V. HOMOGENEOUS TASKS ON HOMOGENEOUS CORES

In this section we consider that all the tasks are identical in
their power consumption and only differ from each other in the
utilization requirements. Also, all the cores have identical be-
havior for power consumption and computational performance
output. This is the simplest case and will form the foundation
for solving the complex cases that follow.

As we consider only homogeneous tasks being executed
on homogeneous cores, it holds that pi,j = pconst for all pi,j ∈
P. For this case, a time schedule with minimum peak power
can be obtained by extending the McNaughton’s wrap-around
rule [22] using core utilization values. Note that the wrap-
around rule was designed for other scheduling purposes (i.e.,
to minimize the maximum completion time).

Suppose that the core utilizations, for all m cores in the
system, are represented through the row matrix W = [wj ]m.
Using the partition matrix K and the utilization matrix U,
we can fill matrix W, such that wj =

∑n
i=1 ki,j · ui,j for all

j = 1, 2, . . . ,m. Clearly, for a feasible schedule, it should hold
that wj ≤ 1 for all j = 1, 2, . . . ,m.

Using W, we apply the wrap-around rule as follows.
Assume that there are m bins of time (b1, b2, . . . , bm), each of
size T . The starting time for each is 0. Iteratively, we assign
T · wj time from bin bk to core j, starting from b1 and w1.
When core j is assigned time from bin bk, the value of bk
is updated to bk − T · wj . If for core j, the time requirement
cannot be fully satisfied from bin bk, then we assign as much
as possible from bk so that bk becomes zero, and the rest is
assigned from bk+1. As wj ≤ 1 ∀wj ∈W, a core gets time
slices from at most two bins. The time slices assigned by this
algorithm forms the schedule of the core.

An example of assigning 3 cores having utilizations 0.5, 0.9
and 0.5 into 3 bins is presented in Figure 3. Here, c1, having
a utilization of 0.5, is completely assigned to first half of b1.
In terms of per-core DPM schedule, this allocation means that
c1 is only turned on in the beginning half of the frame, let
us say T , then, from 0 to 0.5T . c2, with a utilization of 0.9,
cannot be fully assigned to b1, so it is partially assigned to the
last half of b1 and the rest is “wrapped-around” to the initial
40% of b2. Correspondingly, for its DPM schedule, c2 can be
turned on in the initial 40% of the frame (0−0.4T ) and then in
the last half of the frame (0.5T −T ). Similarly, c3 is assigned
time slot from 0.4T to 0.9T fulfilling its requirement of 0.5
utilization.

This is a polynomial-time algorithm, with a time com-
plexity of O(m) for m cores. Moreover, due to the wrap-
around policy, it is also clear that at any time instant, the
algorithm will activate at most c∗ cores at the same time, where
c∗ =

⌈∑n
i=1

∑m
j=1 ki,j · ui,j

⌉
.

Clearly the peak power consumption, π, of the task sched-
uled using above presented rule is given as π = pconst · c∗
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Fig. 3: Wrap-around example for 3 cores.

Consequently, for testing the schedubility of the task set, if it
holds that TDP ≥ π, then this task set is feasible.

Theorem 2: At least dUe processing cores must be simul-
taneously powered on to feasibly schedule a set of frame-based
real-time tasks with a cumulative utilization of U .

Proof: Suppose that for a task set with cumulative uti-
lization U , we have a feasible schedule in which the number
of simultaneously activated cores is less than dUe. Then, it
follows from the pigeon-hole principle that at least one of the
cores must have a utilization more than 1, hence the task set
is infeasible. This is a contradiction.

A trivial indication from Theorem 2 is that the wrap-
around rule minimizes the number of simultaneously activated
processing cores. Hence, it gives an optimal solution for the
peak power minimization for homogeneous tasks scheduled on
homogeneous cores, regardless of the task partitioning scheme
used in Step 1.

Remark: Furthermore, this algorithm can also be used to
approximate the cases in which the power consumption of
the task set is non-homogeneous or the case in which the
capabilities of the cores are heterogeneous.

VI. HOMOGENEOUS TASKS ON HETEROGENEOUS CORES

In this case we assume that cores differ in their power con-
sumption. This can be the result of manufacturing variations
or complexity of the core due to added hardware accelerators.
However, the power consumption is independent of the tasks.
That is, ∀i ∈ {2, . . . ,m} pi,j = p1,j for every core j.

This case is particularly relevant to heterogeneous archi-
tectures where the cores differ so much from each other due
to their capabilities that the power consumption profile of the
cores is practically dependent only on the core being used. An
example of such architecture is ARM big.LITTLE [13].

To solve this case we present a greedy approach called
Least Density First (LDF). This approach works as follows.
Firstly, we calculate the individual core utilizations, W, as
in Section V. That is, using the partition matrix K and the
utilization matrix U, we can fill matrix W, such that wj =∑n

i=1 ki,j · ui,j for all j = 1, 2, . . . ,m. We start with the core

Algorithm 1: Least Density First (LDF)
Input:

Individual peak power usage: R = [rs]1×m,
Per-Core Utilizations: V = [vs]1×m,
Total time slots: q.

Output:
Net peak: π
Schedule assignment: A = [as,t]m×q ,

s.t. as,t =

{
1 if sth resource is to be used at t
0 otherwise.

Algorithm:
Density state: D = [d]1×q ← [0]1×q
A = [as,t]m×q ← [0]m×q
while R not empty do

Sort D ascending;
Select and remove largest rs ∈ R;
Assign first dvs × qe slots to be used for rs;
Mark corresponding as,t ∈ A =1;
Update D : D← D + rs · {as,t : ∀t ∈ (1, . . . , q)};

π = max(D);

that has the highest power consumption and assign it dwj · qe
slots from q total slots. After this, we update a density state
vector, which is null initialized, by summing the total power
consumption for all slots. For the next core, we again assign
dwj · qe slots with the lowest density so far, and update the
density state vector, again. This is done iteratively for each
core in W. The pseudo code for this scheme is presented in
Algorithm 1.

Formally, we set R and V as follows to use Algorithm 1:

• R = per-core power consumption, i.e., R = [ej ] where
ej =

∑n
i=1 ki,j · pi,j ∀j ∈ {1, . . . ,m}. The length of R

is m.
• V = per-core utilization, i.e., V = [wj ] where wj =∑n

i=1 ki,j · ui,j ∀j ∈ {1, . . . ,m}.

The output matrix, A, from Algorithm 1 gives the schedule for
the cores with the added sleep cycle. This schedule is feasible
if the peak power consumption, π, is within the TDP. Here,
π can be used as the basis for an offline, sufficient feasibility
test for the task set. The problem of generating a schedule that
minimizes the peak power is NP -hard, as shown in Theorem
3.

The working of this algorithm is explained in the example
shown in Figure 4. Here we have three cores with c1, c2 and
c3 with utilizations of 0.6, 0.5, 0.9 and power consumption
values of 3, 4, 2 Watts. First, we choose the core with the
highest power consumption, c2 and assign it the required slots
and update the density vector D. Here, the height of the bars
represents the density. After this, we choose the next highest
power consuming core and assign it the required number of
lowest density slots and so on. This results in the per-core
schedule shown in the third iteration in Figure 4, and the peak
in power consumption is 7 Watts.

LDF is a polynomial time algorithm. Since there is one
multiplication and two sorting operations involved, one for
the cores’ utilization vector (logm) and another one for the
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Fig. 4: Example for least density first algorithm

density vector (q log q) inside a loop that iterates m times, the
worst case time complexity of the algorithm is bounded by
O(m(mq + logm+ q log q)).

Theorem 3: For a given task partitioning of homogeneous
tasks onto heterogeneous cores, deriving a schedule for cores
to optimally minimize the peak power is an NP -hard problem.

Proof: We reduce from the optimization version of the
partitioning problem. Given a set of m numbers, the optimiza-
tion version of the partitioning problem is to divide them into
two disjoint subsets, A and A′, such that the difference of sum
of the numbers in each subset is minimized. Such a problem
is NP-hard [11].

The reduction works as follows. Consider the special case
of our problem in which we have m tasks with utilization
50%, every task has a different peak power consumption, and
the deadline for the frame-based tasks of 1. The objective is
to decide whether a core is executed in the window of (0, 0.5]
or (0.5, 1], such that the final peak power consumption is
minimized, which is the same as minimizing the difference
between the peak power of the windows.

This problem is equivalent to the optimization version of
the partitioning problem, where the peak power consumption
of the tasks represents the numbers to partition. Deciding
to execute a core in the window of (0, 0.5] is equivalent
to putting the number of its power consumption to set A.
Similarly, deciding to execute a core in the window of [0.5, 1)
is equivalent to putting the number of its power consumption
to set A′.

Therefore, an optimal solution to the optimization version
of the partitioning problem is equivalent to an optimal solution
to this special case of our studied problem and vice versa.
Hence, we conclude the NP -hardness of our studied problem.

VII. HETEROGENEOUS TASKS ON
HOMOGENEOUS/HETEROGENEOUS CORES

In this section we present an algorithm for two cases, that
is, (i) the power consumption is dependent on the task but not
on the core it executes on, and, (ii) the power consumption is
dependent on the task as well as the core on which the task
executes.

The former case applies to the wide variety of multi-core
chips currently available in the market, where several identical
cores are available on the chip and the power consumption
profile of tasks differ from each other due to resource access
pattern. Whereas, the latter case is a generalization to include
many-core chips such that a core might consume less power

Algorithm 2: LDF with occupancy check
Input:

Power matrix: P = [pi,j ]n×m,
Partition matrix: K = [ki,j ]n×m,
Utilization matrix: U = [ui,j ]n×m,
Maximum number of time slots: q.

Output:
Peak power consumption: π,
Schedule assignment: A = [aj,t]m×q ,

s.t. aj,t =

{
i if ith task scheduled at core j for t
0 otherwise.

Algorithm:
Density state: D = [d]1×q ← [0]1×q
A = [aj,t]m×q ← [0]m×q
while P not empty do

Sort D ascending;
Select and remove largest pi,j ∈ P;
Assign dki,j · ui,j · qe globally least dense and
locally free slots in core j to task n;
Set corresponding ai,j ∈ A = i;
Update D : D←

∑m
j=1 power usage at slot

t ∀t ∈ (1, . . . , q);
π = max(D);

for one task and more power for another task, and there might
exist another core in the system whose power consumption
values are reversed for the same two tasks. This is the most
general case, with all the previous cases being a special form
of this case.

We present a variation of Least Density First algorithm to
solve both these cases. The variation from the earlier presented
Least Density First algorithm is explained as follows. In the
normal version of LDF the only decision criteria is based
on density. However, in this algorithm we also check the
assignment of the slots. We start with the highest power
consuming task and assign it the lowest density free slots in the
core in which this task has been partitioned, and this process
is repeated for all tasks. The extra step of checking the free
slots is necessary as the globally lowest density slots might
already be occupied in the core of interest. Since we are only
considering partitioned scheduling, i.e., each task is assigned to
only one core, hence we do not need to check for the condition
in which the same task is concurrently scheduled at two cores.
The pseudo code for the procedure is presented in Algorithm
2.

Like in the previous section, the matrix A gives us the
schedule of the cores. This schedule is feasible if π is less
than or equal to the TDP.

This is also a polynomial time algorithm. Here, we sort the
P array of size n×m, and for every iteration of the loop we
sort the D array of q numbers. The worst case time complexity
of this algorithm is given as O(nm(mq + log nm+ q log q)).

VIII. IMPLICIT DEADLINE PERIODIC TASKS

The solutions presented in Sections V, VI and VII are
only applicable to frame-based task sets. In this section, we
present a method to extend the previous results to include



implicit deadline periodic task sets. We include the following
tasks types in the task model. Each task τi releases an infinite
number of task instances (jobs) with period Ti and relative
deadline Di, where Di = Ti. We assume that the tasks are
synchronized, that is, the first job of each task arrives at the
same instant. Frame-based tasks are a special form of implicit
deadline periodic tasks.

The core idea here is that an implicit deadline real-time
task set can be feasibly scheduled until its utilization on
each core does not exceed 100%. Therefore, the slack left
after task partitioning can be reclaimed to halt the processing
cores in a coordinated manner to decrease the peaks in power
consumption.

Theorem 4: A feasible, implicit deadline task set with
periods {T1, T2, · · · , Tn} and with cumulative utilization U
can be feasibly scheduled with Earlier-Deadline-First (EDF)
policy, if the processing core is put to sleep for (1−U) fraction
of time in every ∆ interval, where ∆ is the greatest common
divisor (GCD) of (T1, T2, · · · , Tn) and is synchronized with
the tasks.

Proof: Consider an implicit deadline task set with periods
{T1, · · · , Tn} and worst case execution times {C1, · · · , Cn}
which is feasibly schedulable with EDF policy. Consider that
the sleep time of the processing core is an additional implicit
deadline task, τs, with period ∆ and execution time of ∆(1−
U), where U =

∑n
j=1

Cj

Tj
.

Assume that after introducing τs the system cannot be
feasibly scheduled using EDF policy and a job, Ji,k, of a task,
τi, misses its absolute deadline, di,k. Suppose that t0 is the
last instant before di,k when the system was idle. If such an
instant does not exist, then t0 denotes the starting time of the
system. Since the system cannot be feasibly scheduled with
EDF, then it must hold that:

di,k − t0 <
n∑

j=1

⌊
di,k − t0
Tj

⌋
Cj +

⌊
di,k − t0

∆

⌋
∆(1− U)

=⇒ 1 <

n∑
j=1

Cj

Tj
+ (1− U)

=⇒ 1 < U + 1− U
=⇒ 1 < 1

We reach a contradiction. Hence the assumption that a task
set, originally feasibly schedulable with EDF policy, becomes
infeasible with the addition of τs with period ∆ and execution
time ∆(1− U), is invalid and the theorem is proven.

Applicability of the earlier presented algorithms to implicit
deadline periodic tasks is a more general result but an overhead
can be expected due to the additional switching transitions to
and from the sleep mode. Since, ∆ is the greatest common
divisor of the periods of all tasks, it can be small, and, as a
sleep cycle has to be placed in each ∆, this can make the
system infeasible if there is high timing overhead associated
with putting the system to sleep.

For periodic tasks, in case of homogeneous tasks on
homogeneous cores, the feasibility of real-time constraints
originating from peak power consumption can be verified by

Application Period [ms] Dynamic power usage (W)
P54C Alpha

x264 30 0.70 0.66
bodytrack 30 1.00 0.81
swaptions 450 0.60 0.74

blacksholes 900 0.50 0.70

TABLE I: Specs. of applications used for simulations

the same test as introduced in Section V. The peak power is
given as π = dUe·pconst, where U is the cumulative utilization
and pconst is the power consumption of any core.

For the most general case, i.e., heterogeneity of either task
set or both the task set and the processing cores, the test
introduced in the Section VII for verifying the feasibility of
real-time constraints for the second version of LDF (Algorithm
2) can be utilized repeatedly. Since there is a sleep period
included in the schedule for every core in the system in every
∆ interval, we can use LDF (Algorithm 2) within each ∆
interval to coordinate the sleep periods of cores to minimizes
the peak power. The peak power, π, for each ∆ is known
from Algorithm 2. To find the highest peak that can occur,
the system must be analyzed for an interval equal to the hyper
period of the system. A hyper period is that interval after which
the system repeats itself. It is equivalent to the least common
multiple of the periods of the task set. Concretely, we employ
the task partitioning algorithm as discussed previously (Section
IV-A) and use Algorithm 2 with P, K and U matrices obtained
from the partitioning. Here, we set the number of slots, q,
equal to ∆. Algorithm 2 returns the value of peak, π for this
∆. The same process is repeated for next ∆ intervals till the
total analyzed period equals a hyper period. The highest peak
among all ∆ intervals belonging to the hyper period, is used
to decide the feasibility.

Similarly, for homogeneous tasks on heterogeneous cores
Algorithm 1 can be utilized repeatedly for one hyper period
and the highest value of π can be compared against TDP for
feasibility testing.

IX. RESULTS AND DISCUSSION

In this section we present the results of our simulations. To
evaluate our scheme we used applications from Parsec bench-
mark suite [3] running on the SCC platform and on Alpha
cores that we simulate using gem5 and McPAT infrastructure.
To highlight the difference between peak power minimization
and average power minimization, i.e., energy minimization, we
compare the presented algorithms with a well known energy
minimization scheme. The details of the setup and the results
are presented below.

A. Platform details

We use Intel’s 48 core SCC platform [15] for power mea-
surements. This platform is equipped with 48 Pentium (P54C)
cores which are based on 45nm manufacturing process. The
cores are distributed into evenly placed 24 tiles with 2 cores
per tile. A network on chip in mesh topology allows the inter-
core communication. We use four applications from Parsec
benchmark suite [3] and individually obtain the peak power
consumption for each, using the on-board instrumentation.
Details of the applications used to collect the power traces are
presented in the next section. SCC offers a tiled architecture
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Fig. 5: Power consumption profile for each period (frame-based tasks)

with the so-called voltage and frequency islands. The voltage
can only be changed at the granularity of 8 cores and frequency
at the granularity of 2 cores. As a precursor to future many-
core chips, it shows that DPM based power control will remain
an essential control ‘knob’ in future chips.

Since SCC platform only has homogeneous cores, it cannot
be used to measure the effect of core-heterogeneity. For this,
we simulated a synthetic platform based on SCC’s architecture
and same dimensions, but with 24 Alpha cores [21] replacing
24 Pentium cores, one in each tile. Alpha cores are also
based on 45nm manufacturing process and are simulated using
gem5 [4]. The peak power measurements for the Alpha cores
are obtained through simulation using McPAT. Alpha and
Pentium cores differ in their power consumption as well as
computational performance but are based on the same manu-
facturing technology. This makes them a good candidate for
judging the efficacy of this work. We run the same applications
on both types of cores to measure the power profiles for each
application.

In the following discussions, the results based on the
homogeneous cores (Figures 5a, 5b, 7 and 9) are from the SCC,
while the ones based on the heterogeneous cores (Figures 5c,
5d, 6 and 8) are from the simulated platform.

B. Real-time workload

We generate synthetic workloads for the simulations. Our
scheme of workload generation is based on the widely used
technique in real-time community presented in [1]. We iter-
atively generate a randomized task set, where we add a new
task to the set at each iteration. Each task has three param-
eters: (1) utilization, (2) peak power and (3) period. These

three parameters are obtained as follows. For each task, the
utilization is assigned randomly in the interval (0, ul), where
ul is the minimum of 1 and left over utilization in the platform.
We stop adding more tasks to the task set when ul ≤ 0.05.
The peak power consumption is chosen among the actual
measurements that were performed using the SCC platform
and the simulated Alpha core on gem5. We use the traces
collected from four applications from the Parsec benchmark
suite [3] to sample their peak power consumption as shown in
Table I. Parsec benchmark suite has 13 applications. In order
to curtail evaluation time, we randomly selected four out of
these and executed their single core versions. Here, x264 is an
H.264 video encoder, bodytrack is computer vision application
that tracks human body whereas swaptions and blacksholes are
financial analyses applications. For the third parameter: the
period of the real-time workload, in the first step, we select
the period for all tasks to be 30ms, in order to simulate a
frame-based task set. In the second step, we use the actual
periods as mentioned in Table I for implicit deadline periodic
tasks.

After generating the task set, we use the partitioning
algorithm presented in [2] to partition the tasks into the
available cores. Since this algorithm guarantees to find a
feasible mapping if, at most, half of the processing capacity is
utilized, we use the system utilization of 24 where not men-
tioned otherwise. Note that it is not possible to cause thermal
throttling in case of SCC due to an overly pessimistically
designed heat sink.

C. Baseline Scheme

To compare our scheme, we use a well known energy
minimization procrastination scheme presented in [17]. The



schedule obtained using [17] minimizes the energy consump-
tion for tasks with real-time requirements. In essence, the
energy minimization scheme procrastinates the tasks as much
as possible without violating the performance constraints. In
its original form, it activates all the cores towards the end
of the schedule, causing a peak in the power consumption
at the end of the period for frame-based tasks. To suppress
this peak towards the end of the schedule, we modify the
scheme by keeping m∗ cores activated through out the period,
starting with the most power consuming cores, and activating
more in the end to meet performance requirements. Here,
m∗ =

⌊∑m
j=1

∑n
i=1 ui,j · ki,j

⌋
, i.e., floor of the total system

utilization. By keeping a subset of cores activated throughout
the period, the power consumption is distributed over the
length of whole period and the peaks in power consumption
are suppressed. This provides the basis for a fair comparison.

D. Results

Our focus in the paper has been on minimizing the peak
power. We present two important results in this regard.

Firstly, we show a simple comparison of PPM against a
well known baseline scheme for energy minimization for both
varieties of tasks and cores. We generate the schedule required
for the different combinations of applications considering their
real-time requirements using our scheme and the baseline.
Initially, we consider frame-based tasks with the period to
be 30ms. To simulate the case of homogeneous task sets
we only use swaptions on all cores. To simulate the case of
homogeneous cores we use only the power data from the SCC.

Frame-based Tasks: For frame-based tasks, the results are
summarized in Figure 5. Here we can see that in all four cases
our scheme produces a more balanced power consumption
profile as compared to the baseline. Since we prefer the least
dense slots (LDF), the power consumption of our scheme gets
distributed over the whole period, which helps in avoiding
peaks.

The wrap-around method (WrapA) was basically designed
for homogeneous tasks on homogeneous cores and it solves
this case optimally. In Figure 5a it can be seen that peak
produced by WrapA is not higher than that of LDF, although
not at the same point in schedule. WrapA achieves peak power
consumption of 3 Watts less than the baseline scheme. In the
rest of the three cases, that is, when either tasks or cores are
non-homogeneous in their power consumption (Figures 5b, 5c
and 5d), it does not produce optimal results. Nevertheless,
this method still fares better than the baseline scheme and its
maximum deviation from the LDF remains less than 10%. The
greedy approach employed in the LDF method achieves better
results than both the baseline scheme and WrapA in this case.

In the second case, we evaluate the effect of increasing
the load on the peak power. The results are summarized in
Figure 6. In this case we only consider the general case
of heterogeneous tasks on heterogeneous cores. As expected,
it can be seen that as the workload increases, the peak in
power starts to grow for all three schemes. Here again, we
observed that maximum deviation of WrapA method does not
exceed 10% (1.58 Watts) from the value achieved by LDF,
whereas baseline scheme deviates up to 35.5% (6.08 Watts).
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Fig. 6: Effect of increasing workload on peak power consump-
tion
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Fig. 7: Periodic workload: heterogeneous tasks on homoge-
neous cores

The maximum deviation for both WrapA and the baseline
scheme was observed at the total chip utilization of 35, with a
general trend of higher deviations with increasing utilizations
for both.

Non Frame-based, Periodic Tasks: The results for the non
frame-based periodic tasks are presented in Figures 7 and 8.
Here we use the periods and power profiles for the tasks
as mentioned in Table I. We assign the utilization randomly
according to the methodology introduced in [1]. For periodic
tasks we only present the results for non-homogeneous task
set on both homogeneous and heterogeneous cores. Hence, we
employ Algorithm 2 here. In this case, the difference between
the energy minimization vs. peak power minimization becomes
quite apparent. The baseline scheme used is designed with the
perspective of energy minimization. In Figure 8, the baseline
has a peak power consumption of 5 Watts more than LDF and
3 Watts more than WrapA, whereas the baseline consumes less
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Fig. 8: Periodic workload: heterogeneous tasks on heteroge-
neous cores
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Fig. 9: Cumulative energy consumption: Periodic workload,
heterogeneous tasks on homogeneous cores

energy as shown in Figure 9. In the case of homogeneous cores
(Figure 7), the difference in peak power consumption is even
bigger. In both cases, LDF and WrapA keep a more balanced
power profile, like in the case of frame based tasks, and
for this reason they are able to suppress the peaks, specially
towards the end of the schedule where the baseline scheme
causes a peak in order to fulfill the performance requirements
of real-time tasks that have been back-logging during the
procrastination. The peaks caused at every 30, 450 and 900
ms correspond to the periods of the tasks used for evaluation.

X. CONCLUSIONS

In this paper we presented solutions to minimize the peak
power consumption for executing real-time tasks on many core
architectures which can help contain the power consumption
within the TDP constraint. We argued that the peak power
consumption of a real-time task set must also be verified when
deciding its scheduling feasibility. The presented peak power
management scheme follows a two step procedure: first the
tasks are partitioned on to the available cores and the schedule
for each core is decided. Afterwards, our solution minimizes
the peak power consumption for systems with: homogeneous
tasks on homogeneous cores, either heterogeneous cores or
tasks, and with both heterogeneous tasks on heterogeneous
cores. This is achieved by putting the cores to sleep mode
at appropriate points in time, without affecting the tardiness
of real-time tasks. For this, we presented algorithms with
polynomial-time complexity. We simulated our scheme using
power traces for two platforms; SCC and a heterogeneous
core platform based on the SCC design. Our results show the
efficacy of our scheme for peak power minimization.
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