
000-0-0000-0000-0/13/$26.00 c© 2013 IEEE. Published in the 32nd IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA,
USA, November 2013.

MOMA: Mapping of Memory-intensive Software-pipelined
Applications for Systems with Multiple Memory Controllers

Janmartin Jahn, Santiago Pagani, Jian-Jia Chen, Jörg Henkel
Karlsruhe Institute for Technology (KIT), Germany

{jahn, pagani, chen, henkel}@kit.edu

Abstract—In many-core systems, the efficient deployment of computa-
tional and other resources is key in order to achieve a high throughput.
Current state-of-the-art task mapping schemes balance the computational
load among cores while avoiding congestions within the communication
links. The problem is that a large number of cores running many memory-
intensive tasks may congest memory controllers because their number
and bandwidth is constrained. To avoid a high throughput degradation
that could result from congested memory controllers, the mapping of
tasks must be sensitized to the limited bandwidth of off-chip memory.
Designing efficient and effective algorithms to optimize the throughput
by jointly considering the load of memory controllers, computation, and
communication is very challenging.

In this paper, we address this problem by distributing cores among
applications and then heuristically map tasks such that the load of
the memory controllers is sufficiently balanced. Our heuristic also
minimizes the effect of decreased throughput resulting from mapping
communicating tasks to cores that belong to different controllers.

Our experiments encourage us in that we can reduce the saturation
of memory controllers and significantly increase the system throughput
compared to employing several state-of-the-art task mapping schemes.

I. INTRODUCTION
Many-core systems have emerged as a powerful means to achieve

performance increases through parallel processing beyond the capa-
bilities of single-core systems and are projected to integrate hundreds
or even thousands of cores on a single chip [1]. A key challenge is
the efficient employment of cores that is largely impacted by the
task mapping [2]–[4]. State-of-the-art task mapping schemes aim
at balancing the computational load among cores while avoiding
contentions in the communication links between them (see [5]–[7]).
Due to the rapidly increasing number of cores, bandwidth limitations
of memory controllers (i.e. controllers located on-chip that enable
access to off-chip memory) may have a significant impact on the
system throughput when running memory-intensive tasks [8].

This limitation is mostly due to the fact that both the number
of pins to connect the chip with off-chip memory as well as the
bandwidth of each individual pin is limited [9]. Hence, the number
of memory controllers and their individual bandwidth are also limited.
In systems with a large number of cores, each memory controller has
to serve (too) many requests [8]. As an example, Intel’s newest Xeon
PhiTM5110P integrates 16 memory controllers for 61 cores and there,
each memory controller serves the accesses of approx. 4 cores [10].
However, as the number of memory controllers is limited by the pin
count constraints [8], each memory controller may need to serve the
accesses of 64 cores in a system with 1024 cores. Thus, it has to
serve 16 times the requests.

In case one memory controller serves many memory-intensive
tasks, it may operate in saturation, i.e. it may be requested to access
more data than it can provide. This reduces the bandwidth that is avail-
able for the individual tasks, and hence their throughput will degrade.
Such a saturation of memory controllers has recently been identified
as the major cause for deteriorated throughput [9]. Furthermore, when
tasks on different memory controllers require communications, the
corresponding data have to be copied from one memory controller
to the other, inducing a performance penalty. Section IV shows an
example of how task mapping to balance the computational load
among cores can cause memory controllers to operate in saturation

and how that may degrade the system throughput.
However, it is challenging to map memory-intensive tasks jointly

based on computation, communication, and off-chip memory accesses
because the throughput depends on the saturation of memory con-
trollers, and vice versa. In this paper, we present MOMA to effi-
ciently tackle this challenge for memory-intensive software-pipelined
applications. Software pipelines are a well-established paradigm for
parallel programming in systems with distributed, private memories
and is most prominently employed for stream-processing applications.
To summarize, our novel contributions are:

– Our MOMA algorithm jointly optimizes the mapping of software
pipelines based upon considering computation, communication,
and the load of memory controllers.

– We provide simulated experiments, which demonstrate that
MOMA achieves a significant improvement over state-of-the-art
mapping schemes in systems that comprise a large number of
cores.

The rest of this paper is organized as follows: Section II defines
terms and sets definitions, Section III discusses related work, and
Section IV illustrates a motivational example. In Section V, our
system model and problem definition is presented, while Section VI
details our MOMA algorithm. Experimental results showing the
significant advantages of our novel technique are presented in
Section VII while Section VIII concludes this paper.

II. TERMS AND DEFINITIONS
For the rest of this paper, following terms and definitions hold:
1) In this paper, task mapping refers to assigning a task to a core.
2) A software pipeline is a parallel application that comprises mul-

tiple stages that repeatedly perform iterations (i.e. computations)
on a stream of input data. The output of one stage forms the input
of its direct successor, and there is no further communication.
Each stage is a software task.

3) We refer to the time required for the computations of each
iteration as the computational requirements of a stage, assuming
the responsible memory controller is not saturated.

4) The bandwidth requirements of a stage denote the amount of
off-chip memory that it accesses, in MB/s, assuming that its
throughput is not limited by the bandwidth constraints of its
memory controller. The memory requirements of a stage denote
this per iteration, in MB.

5) The throughput of a software pipeline denotes the number of
iterations the pipeline finishes per second. The system throughput
is the average throughput of all applications. We use this metric
since software pipelines often run perpetually such that metrics
as makespan are not applicable.

6) Fusing consecutive stages means to map them to the same core
similar to fusing filters in StreamIt [11]. This reduces the degree
of parallelism of the pipeline and the number of cores it uses.
No on-chip communication between fused stages is necessary.
Stages can be fused (and fused stages can be split) at runtime.

7) A memory island consists of one memory controller and a num-
ber of cores. All memory accesses of the cores of one memory
island are served by the same memory controller. tasks that are
mapped to one memory island can share memory and may pass
pointers to data, while tasks mapped to different memory islands
transfer data via message passing (MPI, e.g. [12]).

8) The load of a memory controller denotes the accesses it serves
per second, in MB/s.

9) The bandwidth constraint of a memory controller expresses the
maximum load, in MB/s.

III. RELATED WORK
We group the related work into task mapping schemes, design-

time placement strategies for memory controllers, and into request
optimization strategies.

State-of-the-art task mapping schemes for many-core systems,
e.g. [2]–[6], [13]–[24], concentrate on balancing the computational
load among cores while avoiding bottlenecks in the communication
infrastructure, assuming either shared or distributed (private) memo-
ries. This allows to achieve good results in systems where memory
controllers cannot be saturated because they serve a small number
of cores (as it is the case in many multi-core systems, such as
in traditional symmetric multiprocessors (SMP), or in Intel’s Xeon
PhiTM5110P [10]), or because the individual cores are too slow to
saturate the memory controllers (e.g. the P54C cores of Intel’s Single-
Chip Cloud Computer [25]). The task mapping schemes [3], [4], [24]
are similar to MOMA they target many-core systems with distributed
memories and complex parallel applications. However, their focus is
on balancing computation and communication among cores, while
MOMA takes computation, communication, and bandwidth require-
ments into account. Hence, we compare MOMA to these schemes.

StreamIt-based software pipelines [11] can be mapped to embedded
multi-core systems considering CPU load and on-chip scratch-pad
memory [7]. However, this work aims at maximizing the throughput
by reducing DMA traffic to off-chip DRAM and does not face a
saturation of these units due a small numbers of cores. In contrast
to this, we tackle scenarios with a large number of cores where this
must be taken into account.

Design-time placement strategies: based on offline estimations of
the workload, design-time strategies place the memory controllers
to balance the accesses among them, e.g. [8]. Assuming static task
mappings and that memory accesses are predictable at design-time,
the physical location of memory controllers, and thus the assign-
ment of cores (and consequently of tasks) to memory controllers is
optimized. However, such strategies cannot provide good results in
scenarios where the applications as well as their individual memory
requirements are unpredictable at design time, e.g. because they
depend on user interactions or on the input data.

Request optimization strategies: Memory controllers can schedule
requests in a way that improves their throughput [9] by grouping
requests. However, these strategies cannot balance the requests across
multiple memory controllers, and thus such approaches cannot ac-
count for scenarios where some memory controllers are saturated
due to unfavorable task mappings, even though the total bandwidth
requirements of tasks does not exceed the combined bandwidth
constraints of all memory controllers.

To summarize, state-of-the-art task mapping schemes aim at sys-
tems with a small number of cores where memory controllers cannot
be saturated. However, this is an issue in systems with a large
number of cores and thus, these scenarios must be addressed. Existing
approaches to avoid the saturation of memory controllers require
that the memory accesses are predictable at design-time, or aim at
optimizing the performance of individual memory controllers without

(a) Throughput: 10.71 iterations/second (b) Throughput: 19.1 iterations/second

Stages

0 - 2

Stages

3, 4

M
1 : 1

2
8

 M
B

/s

Stages

5, 6

Stage

7

M
2 : 3

.8
9
 M

B
/s

Stages

0 - 2

Stages

3, 5

M
1 : 7

2
.6

5
 M

B
/s

Stage

7

M
2 : 6

5
.5

6
 M

B
/s

Stages

4, 6

Fig. 1: Simple system with two memory islands / four cores. Balanc-
ing computational requirements (a) saturates memory controller M1

and leads to a significantly reduced throughput as compared to (b).

balancing the load among memory controllers. Orthogonal to this, we
propose to incorporate bandwidth requirements into task mapping so
that the load is balanced among memory controllers.

IV. MOTIVATION
We motivate by discussing an example of task mapping (for the

purpose of balancing computations among cores) that puts the mem-
ory controllers in saturated operation and causes a severe throughput
degradation. For illustration, let us consider a system with two
memory islands of 2 cores each, and each memory controller with
bandwidth constraint of 128 MB/s1. We map a software-pipelined
application (“Object Tracking”) with 8 stages. Table I lists their
computational requirements and memory requirements.

Stage

Computational requirements [ms]

Memory requirements [MB]

0 1 2 3 4 5 6 7

24.3 11.7 13.2 22.9 26.2 23.8 26.9 49.3

0.18 0.23 0.46 5.43 5.65 0.17 0.17 0.02

TABLE I: “Object Tracking”: Computational demands and memory
requirements of the 8 stages.

To balance the computational requirements, one may map Stages 0
to 2 to Core 0, stages 3-4 to Core 1, stages 5-6 to Core 2, and stage 7
to Core 3. If the memory controllers of both memory islands were not
saturated, a throughput of 20.04 iterations/second could be achieved.
However, the mapping results in a load of 11.95 MB/iteration and
0.36 MB/iteration for the memory controllers, respectively. Due to
their bandwidth constraint of 128 MB/s, one memory controller
is saturated at approx. 10.71 iterations/second, which limits the
application’s throughput to this level. In order to account for the
bandwidth constraint of memory controllers, Stages 0 to 2 may be
mapped to Core 0, 3 and 5 to Core 1, 4 and 6 to Core 2, and
stage 7 to Core 3, which results in a total memory requirement of
6.78 MB/iteration and 6.12 MB/iteration for the memory controllers,
respectively. This mapping allows to achieve a throughput of approx.
19.1 iterations/second (limited by the computational load on Core 2),
which causes a load of 72.65 MB/s and 65.56 MB/s for the memory
controllers, which is below their bandwidth constraint and thus,
they are not saturated. This corresponds to an increased throughput
by approx. 76%. Figure 1 shows these mappings and the resulting
throughputs.

Consequently, it is crucial that task mapping jointly balances the
computational requirements and the load of memory controllers.
Otherwise, a saturation of memory controllers and a significantly
reduced throughput can be the result. This problem worsens with
a growing number of cores per memory island.

1We chose a low bandwidth constraint for this example to illustrate the
problem in a simplified way with four cores. However, the problem arises
equally in systems with fast memory controllers where each memory controller
has to serve a multitude of cores.

2

M1 M2

M3 M4

C1,1 C1,2 C1,3

C1,4 C1,5 C1,6

C2,1 C2,2 C2,3

C2,4 C2,5 C2,6

C3,1 C3,2 C3,3

C3,4 C3,5 C3,6

C4,1 C4,2 C4,3

C4,4 C4,5 C4,6

Fig. 2: Example of a target architecture showing four memory islands,
each island Ii containing 6 cores Ci,j and one memory controller Mi.
Cores are connected via a network-on-chip.

tj,1
bj,1

tj,2
bj,2

· · · · · ·
tj,N′

j

bj,N′
j

eout
j,1

oin
j,1 ein

j,2

oout
j,1 eout

j,2

oin
j,2

oout
j,2

ein
j,N′

j

eout
j,N′

j

oout
j,N′

j

Fig. 3: The model of software pipelines.

V. SYSTEM MODEL AND PROBLEM DEFINITION
In the following, we detail our system model and define the

mapping problem formally.

A. Hardware Model
We consider that there are V memory controllers M =
{M1,M2, . . . ,MV }, and each controller serves the Q cores of the
corresponding memory island Ii ∈ I = {I1, I2, . . . , IV }, such that
there are Q·V cores in total in the system. Every core Ci,j is identified
by pair (i, j), where i = 1, 2, . . . , V represents the memory islands
to which it belongs, and j = 1, 2, . . . , Q the index of the core inside
its memory island. Figure 2 shows an example of the architecture.

We consider that each memory controller Mi has a bandwidth
constraint of Bi and a remaining bandwidth constraint of B′i, such
that when no stages are mapped then B′i = Bi holds. When mapping
stage Sj

h from pipeline Pj to memory island Ii, the value of B′i is
updated by subtracting the bandwidth requirement bj,h.

Similarly to B′i, Q
′
i denotes the number of free cores (i.e. cores

where no pipeline stage has been mapped to) of memory island Ii.
When n stages of a pipeline are mapped to island Ii, then n is
subtracted from Q′i. Obviously, Q′i ≥ 0 holds, because only up to
Q fused stages can be mapped to an island.

B. Pipeline Model
In the context of this paper, every application j forms a software

pipeline Pj with N ′j stages. Stage i of pipeline Pj is denoted as
Sj
i . Per iteration, each stage Sj

i has a computational requirement of
tj,i (unit: seconds) and a bandwidth requirement of bj,i (unit: MB/s).
When stage Sj

i−1 is mapped to the same memory island as Sj
i , it takes

ein
j,i time for stage Sj

i to receive the data from stage Sj
i−1. In contrary,

when stage Sj
i−1 is mapped to a different memory island than Sj

i ,
it takes eout

j,i time for stage Sj
i to receive the input data from stage

Sj
i−1. Similarly, oin

j,i represents the time to send the output data to
stage Sj

i+1 when both stages are mapped to the same memory island,
and oout

j,i corresponds to the time required for sending the output data
when Sj

i and Sj
i+1 are mapped to different memory islands. Figure

3 illustrates the model.
Such a model is based on the assumption that oin

j,i−1 and ein
j,i corre-

spond to exchanging pointers, given that memory can be accessed in

a shared manner within a memory island. Likewise, when Sj
i−1 and

Sj
i communicate across memory islands, oout

j,i−1 and eout
j,i correspond

to transferring the data between memory controllers, which requires
considerably more time.

tj,1
bj,1

tj,2
bj,2

tj,3
bj,3

tj,4
bj,4

tj,5
bj,5

eout
j,1

oin
j,1 ein

j,2

oout
j,1 eout

j,2

oin
j,2 ein

j,3

oout
j,2 eout

j,3

oin
j,3 ein

j,4

oout
j,3 eout

j,4

oin
j,4 ein

j,5

oout
j,4 eout

j,5

oout
j,5

tj,1
bj,1

tj,2 + tj,3
bj,2 + bj,3

tj,4
bj,4

tj,5
bj,5

eout
j,1

oin
j,1 ein

j,2

oout
j,1 eout

j,2

oin
j,3 ein

j,4

oout
j,3 eout

j,4

oin
j,4 ein

j,5

oout
j,4 eout

j,5

oout
j,5

Fig. 4: Example of fusing pipeline stages.

Consecutive stages can be fused to form a single stage, as shown in
Figure 4. When Sj

i−1 and Sj
i are fused, the resulting computational

requirement and bandwidth requirement, after fusion, are tj,i−1+ tj,i
and bj,i−1 + bj,i, respectively. Moreover, oin

j,i−1, oout
j,i−1, ein

j,i and eout
j,i

are not considered, because Sj
i−1 and Sj

i then form a single stage
and thus no data exchange over the on-chip network is necessary.

For simplicity, the resulting number of stages after fusion for
pipeline Pj is denoted as Nj , such that Nj ≤ N ′j . Furthermore,
the maximum response time for a given mapping of pipeline Pj is
denoted Tj , and is computed by Equation (1). Finally, cores cannot
be shared among fused stages, and thus

∑K
j=1 Nj ≤ Q · V holds.

Tj = max
i=1,2,...,Nj

{
e∗j,i + tj,i + o∗j,i

}

where

e∗j,i =


eout
j,i if i = 1

ein
j,i if Sj

i−1, S
j
i ∈ Ik

eout
j,i if Sj

i−1 ∈ Ih and
{
Sj
i

}
∈ Ik

o∗j,i =


oout
j,i if i = Nj

oin
j,i if Sj

i , S
j
i+1 ∈ Ik

oout
j,i if Sj

i ∈ Ik and Sj
i+1 ∈ I`

(1)

We obtain the memory requirements for each stage by offline
analysis. However, the bandwidth requirements bj,i of each stage
cannot be accurately estimated in advance, given that the throughput
of every application depends on the final mapping. Nevertheless, the
bandwidth requirements are needed to avoid saturating the memory
controllers. Therefore, we compute an upper bound for the bandwidth
requirement bj,i for stage Sj

i , by dividing the memory requirement
by the maximum response time Tj for pipeline Pj , assuming that
its throughput is not limited by bandwidth constraints and that no
communication across memory islands is necessary.

C. Problem Definition
For a system with V memory controllers, where each memory con-

troller manages Q cores, the objective is to map K software pipelines
P = {P1, P2, . . . , PK} with weights W = {w1, w2, . . . , wK}
(weights can be interpreted as user-defined priorities), such that the
weighted system throughput is maximized using up to Q · V cores,
i.e.,

Maximize

{
K∑

j=1

wj

Tj

}
such that

K∑
j=1

Nj ≤ Q · V. (2)

3

Algorithm 1 MOMA Algorithm

Input: The information of the system and the pipelines to map;
Output: A mapping to maximize the overall system performance;
1: Execute Phase 1;
2: repeat
3: Execute Phase 2;
4: Execute Phase 3;
5: until All stages of all pipelines are mapped onto cores
6: return The mapping of all stages from all pipelines;

Intuitively, the stages mapped to a memory island Ii suffer from
degraded performance when the remaining bandwidth constraint B′i
becomes negative, i.e. B′i < 0. Consequently, in addition to find
a solution for the goal and constraint of Equation (2), the MOMA
algorithm aims at avoiding this by balancing the load among memory
controllers. Finding a perfectly balanced memory bandwidth assign-
ment is a NP-complete problem in a strong sense, which can be easily
reduced from the 3-PARTITION problem [26]. The design of our
MOMA algorithm is aimed to derive heuristic approximated solutions
in polynomial-time.

VI. MOMA ALGORITHM
In this section, we describe our three-phase heuristic, MOMA,

presented in Algorithm 1, that finds a solution for Equation (2), i.e.,
it solves the defined problem. As an overview of MOMA, an initial
solution is derived (Phase 1), and all stages have been mapped with
the objective of minimizing a saturation of memory controllers (Phase
2), and minimizing the degradation of throughput that results from
mapping communicating stages to multiple memory islands while not
saturating the controllers (Phase 3).

A. Phase 1: Initial solution
In this phase, an initial solution based on the algorithm presented

by [24] is obtained, which solves two problems: (a) it distributes the
cores among the applications, and then, given the number of cores
for each application, (b) it fuses their stages so that their throughput
is maximized. For the completeness of this paper, the algorithm
proposed in [24] is summarized in Appendix A. The initial solution
neglects the bandwidth constraint of the memory controllers and
the overhead when stages communicate that are mapped to different
memory islands. It should be noted that our approach is not tied to
this algorithm; other algorithms to obtain these initial fusions could
be used as well.

The objective of this phase is to consider the fusion of the stages
individually for all pipelines, which will not be modified from this
point on. Thus, for the rest of this paper, each pipeline Pj will
consist of Nj fused stages, and constraint

∑K
j=1 Nk ≤ Q · V is

satisfied. Given that the optimal solution that considers all constraints
might result in different fusions and cores per application, no further
modifications to these fusions implies that no optimal solution is
achievable, but the complexity of the problem is considerably reduced.
Phase 1 thus gives a starting point for phases 2 and 3, namely the
fusions and number of cores for each application. Then, as explained
in Section V-B, the upper bound for the bandwidth requirements bj,i
for all stages can be computed based on the memory requirements
for each stage and the maximal response time of each pipeline.

Before proceeding to phase 2, three ordered tables are built to be
used in phases 2 and 3.

a) Memory Controller Information Table (MCI): Each row
in this table holds the memory island identifier Ii, the number of
free cores Q′i of each memory island Ii and the remaining memory
bandwidth constraint B′i of the corresponding memory controller Mi,
for all i = 1, 2, . . . , V . The table is ordered in a decreasing manner
with respect to B′i. As explained in Section V-A, the values of B′i

I B′ Q′

I1 B′
1 Q′

1

I2 B′
2 Q′

2

I3 B′
3 Q′

3

...
...

...

IV B′
V Q′

V

(a) Table MCI

P
∑

b

P1
∑N1

i=1 b1,i

P2
∑N2

i=1 b2,i

P3
∑N3

i=1 b3,i

...
...

PK
∑NK

i=1 bK,i

(b) Table RB

P S b

P1 S1
1

b1,1

P1 S1
2

b1,2

P2 S2
1

b2,1

...
...

...

PK SK
NK

bK,NK

(c) Table SSB

TABLE II: Examples for Tables MCI (with B′1 ≥ B′2 ≥ · · · ≥ B′V),
RB (before phase 2, and

∑N1
i=1 b1,i ≥

∑N2
i=1 b2,i ≥ · · · ≥

∑NK
i=1 bK,i)

and SSB (with N1 = 2 and b1,1 ≥ b1,2 ≥ b2,1 ≥ · · · ≥ bK,NK).

and Q′i are updated when stages are mapped to Ii, after which the
corresponding row is reordered (the entire table does not need to be
re-sorted, because only this row changes). When memory island Ii
has no more free cores, i.e. Q′i = 0, the memory controller Mi is
removed from the table. An example for this table is presented in
Table IIa.

b) Remaining Bandwidth requirement per-pipeline Table
(RB): Each row of RB contains the total bandwidth requirements of
the non-mapped stages of each pipeline Pj , for all j = 1, 2, . . . ,K.
The table is sorted with respect to the total bandwidth requirements in
a decreasing order. When a stage is mapped to a core, its bandwidth
requirements are subtracted from the corresponding row in the table,
and this row is reordered (the table does not need to be re-sorted,
because only this row changes). When all stages of pipeline Pj have
been mapped, the corresponding row is removed from the table. An
example for this table is presented in Table IIb.

c) Single Stage Bandwidth Requirements Table (SSB): This
table contains the memory bandwidth requirements of every non-
mapped stage of each pipeline Pj , for all j = 1, 2, . . . ,K. The
table is ordered in a decreasing order with respect to the bandwidth
requirement of each stage. When a stage is mapped to a core,
the corresponding row is removed from the table. No reordering is
necessary. An example for this table is presented in Table IIc.

Phases 2 and 3 mostly focus on the first rows of each table, hence,
for simplicity in presentation, the parameters that represent the first
row of each table are denoted as Mfirst

MCI, B
′first
MCI, Q′

first
MCI, P

first
RB ,

∑
bfirst

RB ,
P first

SSB, Sfirst
SSB and bfirst

SSB.

B. Phase 2: Mapping stages with high bandwidth requirements
For the fusions of Phase 1, there may be stages whose bandwidth

requirements exceed the maximum remaining bandwidth constraint
among all memory controllers, i.e., ∃bj,h > B′i for all i =
1, 2, . . . , V , j = 1, 2, . . . ,K and h = 1, 2, . . . , Nj . This means that
mapping such stages to any memory island will saturate its memory
controller as there will be at least one controller with B′i < 0.

The objective of this phase is to balance the saturation caused
by such stages among all memory controllers by using a “largest
bandwidth requirements first” strategy in order to minimize the
impact of the saturation of memory controllers. Otherwise, −B′i
may be unnecessarily high, which could lead to a severely degraded
throughput for all stages mapped to the corresponding memory island
Ii.

Therefore, this phase starts by checking if the stage with the
highest bandwidth requirement exceeds the remaining bandwidth of
the memory controller with the highest remaining bandwidth, i.e.,
whether the value of bfirst

SSB is larger than the value of B′first
MCI (given that

both tables are ordered, it is not necessary to check for all i, j and

4

Algorithm 2 MOMA: Phase 2

Input: Tables MCI, RB and SSB;
Output: Mapping of current high bandwidth requirement stages;
1: while bfirst

SSB > B′first
MCI do

2: Map single stage Sfirst
SSB to the island of controller Mfirst

MCI;
3: Update and re-order table MCI;
4: Update and re-order table RB;
5: Remove first row of table SSB;
6: Update parameters that represent the first row of each table;
7: end while
8: return Information about the mapped stages;

h). If this condition holds, this stage is mapped to the corresponding
memory island, i.e., stage Sfirst

SSB is mapped to Ifirst
MCI.

Once the stage is mapped, we subtract the value of bfirst
SSB from B′

first
MCI,

decrease Q′
first
MCI by 1 and reorder the first row of table MCI. Similarly,

we also subtract bfirst
SSB from

∑
bfirst

RB and reorder the first row of table
RB. Finally, we remove the first row of table SSB, and update all
parameters that represent the first row of each table.

If there are no more stages in table SSB, the mapping is completed.
If there are still stages in table SSB, we repeat the process until bfirst

SSB
is smaller than B′

first
MCI, and then proceed to Phase 3. A pseudo-code

for Phase 2 is presented in Algorithm 2.

C. Phase 3: Mapping pipelines with highest bandwidth requirements
This phase aims at mapping consecutive stages to a memory island,

such that the used bandwidth of its memory controllers is maximized
without exceeding the bandwidth constraint. Stages are mapped
considering both bandwidth requirements and the communication
latency when communicating between memory islands.

We focus on the pipeline with the highest bandwidth require-
ment for non-mapped stages and the highest remaining bandwidth
constraint, i.e., pipeline P first

RB and controller Mfirst
MCI, respectively. For

simplicity in presentation, we consider Pj = P first
RB and denote

N non-mapped
j as the number of non-mapped stages of pipeline Pj .
We evaluate all combinations of mapping

1, 2, . . . ,min
{
N non-mapped

j , Q′
first
MCI

}
consecutive stages of pipeline Pj

to the memory island of controller Mfirst
MCI. After Phase 2, at least

one combination that requires less bandwidth than B′
first
MCI exists, e.g.,

any single stage bj,h for h = 1, 2, . . . , N non-mapped
j . Furthermore, we

only consider the combinations of consecutive stages of pipeline Pj

with less or equal bandwidth requirements than B′
first
MCI. Therefore,

when checking the combinations of mapping stages Sj
h to Sj

` , if∑`
n=h bj,n > B′

first
MCI, there is no need in considering the rest of the

combinations that start on Sj
h.

In order to consider B′i as well as eoutj,s and ooutj,s when mapping
stages to memory controllers, we introduce a window that contains
different possible combinations with similar bandwidth requirements,
and choose the combination that achieves the highest throughput
for its application (affected by eoutj,s and ooutj,s). For all possible

combinations in the window
[
B′

first
MCI −

B′first
MCI
Y

, B′
first
MCI

]
, where Y is any

integer (a design parameter) larger or equal than 1 that sets the size
of the window. In other words, e.g., with Y = 5, we first consider
only the combinations that require a bandwidth between 80% and
100% of B′

first
MCI. If there is no combination inside this window, we

move the window to
[
B′

first
MCI − 2

B′first
MCI
Y

, B′
first
MCI −

B′first
MCI
Y

]
, e.g., 60%

and 80% of B′
first
MCI with Y = 5. We repeat this up to Y times, until

we find at least one combination inside the window. Among all the
combinations inside the evaluated window, we choose the one with
the minimum partial maximum response time for consecutive stages
Sj
h to Sj

` , according to Equation (3), and map the selected stages to
the memory island of controller Mfirst

MCI.

T ′j (h, `) =


eout
j,h + tj,h + oout

j,h if h = `

max


eout
j,h + tj,h + oin

j,h,

max
h<n<`

{
ein
j,n+tj,n+oin

j,n

}
,

ein
j,` + tj,` + oout

j,`

 if h < `
(3)

Once stages Sj
h to Sj

` are mapped, we update table MCI by
subtracting

∑`
n=h bj,n from B′

first
MCI and reorder the first row. For

updating tables RB and SSB, some further considerations need to be
taken. In case that h = 1 or l = N non-mapped

j , we proceed in a similar
fashion as done for Phase 2: we subtract

∑`
n=h bj,n from

∑
bfirst

RB and
reorder the first row of table RB; and we remove all the rows that
correspond to the mapped stages from table SSB.

However, when h > 1 and l < N non-mapped
j , it implies that

some stages are mapped to the memory island of controller Mfirst
MCI,

while both their preceeding stages as well as their succeeding stages
are mapped to different islands. When this happens, in order to
correctly compute the minimum partial maximum response time for
new iterations of Phase 3, we need to split pipeline Pj into two sub-
pipelines, one with stages Sj

1 to Sj
h−1 and another with stages Sj

`+1

to Sj
Nj

. Failing to do this would give incorrect results for Equation (3)
in new iterations of Phase 3. With the sub-pipelines, we can proceed
to update table RB by removing the old pipeline and inserting the
new sub-pipelines in the corresponding order. Similarly, we remove
all stages from the previous pipeline from table SSB and insert the
stages of the sub-pipelines, also in the corresponding order.

Once all three tables are updated, we also update all parameters
that represent the first row of each table. If there are no more stages
in table SSB, the mapping is completed. If there are still stages in
table SSB, the algorithm continues to execute by returning to Phase
2, since after updating B′

first
MCI, now there may exist a single stage

with a bfirst
SSB value larger than B′

first
MCI. A pseudo-code for Phase 3 is

presented in Algorithm 3.

D. Algorithmic Complexity
For notational simplicity, we denote Nmax = max

1≤j≤K
Nj . The time

complexity for Phase 1 is for computing the initial solution and,
using the algorithm from [24], is O

(
max

{
QVN2

max, Q
2V 2K

})
.

The time complexity for Phase 2 and Phase 3 are O (NmaxK) and
O
(
max

{
N2

max, Q
2
})

, respectively. Given that Phase 2 and 3 can be
executed up to NmaxK times, the total time complexity for MOMA
is O

(
max

{
QVN2

max, Q
2V 2K,N3

maxK,NmaxQ
2K
})

.

VII. EXPERIMENTAL RESULTS
This section presents our experimental setup and discusses our

experiments with respect to the achieved system throughput, the
saturation of memory controllers, and the overhead. We compare
our approach to DistRM [4] and AIAC [3] to show that a signif-
icant improvement over state-of-the-art runtime task mapping can
be achieved by balancing the load of the memory controllers. Our
proposed MOMA approach is orthogonal to design-time optimization
strategies such as [8] and also orthogonal to request optimization
strategies, e.g. [9] and could be combined with those approaches to
complement them on system level.

A. System Details and Implementation
Adaption of OCM [24]: To adapt OCM [24] for comparison with

our MOMA approach from Section VI, cores are distributed to the
applications and the stages are fused accordingly. Then, stage S1

1

of pipeline P1 is mapped to core C1,1, stage S1
2 of application P1

is mapped to core C1,2, . . ., and stage SK
NK

of application PK is
mapped to core CV,Q.

5

Algorithm 3 MOMA: Phase 3

Input: Tables MCI, RB and SSB;
Output: Mapping of stages for highest bandwidth pipeline;
1: Pj ← P first

RB ;
2: for h = 1, 2, . . . ,max

{
N

non-mapped
j , Q′first

MCI

}
do

3: for ` = h, h+ 1, . . . ,max
{
N

non-mapped
j , Q′first

MCI

}
do

4: if
∑`

n=h bj,n ≤ B′first
MCI then

5: for y = 1, 2, . . . Y do
6: if 1− y

Y
≤

∑`
n=h bj,n
B′first

MCI
≤ 1− y−1

Y
then

7: Window[y] ← Append combination
[
Sj
h, S

j
`

]
;

8: end if
9: end for

10: end if
11: end for
12: end for
13: for all y = 1, 2, . . . Y do
14: if Window[y] is not empty then
15: for all Elements in Window[y] do
16: Compute T ′j (h, `) according to Equation (3);
17: end for
18:

[
Sj
h, S

j
`

]
← Element with minimum T ′j (h, `);

19: Map stages
[
Sj
h, S

j
`

]
into controller Mfirst

MCI;
20: Update and re-order table MCI;
21: Update and re-order table RB;
22: Remove rows of mapped stages from table SSB;
23: Update parameters that represent the first row of each table;
24: return Information about the mapped stages;
25: end if
26: end for

Implementation of the Applications: We use several software-
pipelined applications, as shown in Table III, since they are well-
suited to form software pipelines. We manually parallelized them
(using C/C++) and use MPI [12] for communication between stages.

Obtaining Stage Parameters: The parameters of each stage are
obtained through offline analysis. To obtain tj,i, we collect the
difference of the CPU cycle counter before and after the computation
of a stage. For this, each stage is run separately on a single Intel
Core CPU at 1.2 GHz (Family 6, Model 23, Stepping 10), while
the input data has been pre-computed and is stored in memory (the
memory controller is not saturated). bj,i is measured by generating
an extensive memory trace in a second profile run by using guard
pages that allow to trace memory accesses accurately. Only first-
time accesses to each memory page are considered to account for
cache effects. This corresponds to an infinite cache size and thus can
be considered as very conservative. In a real system, the memory
accesses can be assumed to be higher than our measurements, thus
the load of the memory controllers and thus the benefit of our MOMA
algorithm may be higher. To obtain oinj,i, o

out
j,i , einj,i, and eoutj,i , the stages

run on Intel’s Single-Chip Cloud Computer [25] and transfer the
output data of each stage using Intel’s RCCE library. The experiments
to obtain the parameters are repeated and their results are averaged
across multiple runs.

Different sets of input data for “automotive”, “h264ref’, and “lame”
Name Stages Source Input data
automotive 21 Algorithms from [27] 3 different input scenes
h264ref 4 SPEC CPU 2006 [28] 352x240, 576x432, 640x480,

720x405, 1080x720 resolution
lame 4 MiBench [29] CBR/VBR bitrates 8, 128, 320
PGP 5 MiBench [29] input from benchmark suite
sphinx3 22 SPEC CPU 2006 [28] input from benchmark suite

TABLE III: Benchmark applications.

allow to obtain varying computational requirements, communication
demands, and memory accesses. Each set of input data is associated
with one instance of the application. The input scenes for “automo-
tive” are characterized by low, medium, and high traffic. The input
video sequences for “h264ref” have resolutions of 352x240, 576x432,
640x480, 720x405, and 1080x720 pixels. Different command line
options for “lame” create CBR and VBR output with bitrates of 8,
128, and 320.

B. Experimental Setup and Scenario
Setup: We use a high-level many-core system simulator to simulate

systems with an arbitrary number of cores and memory controllers.
It simulates a network-on-chip similar to the one of Intel’s Single-
Chip Cloud Computer (SCC) [25], i.e. it transfers flits of 16 Bytes
at 533 MHz, assumes a 16 KiB send/receive buffer per core, and
uses a x/y routing strategy. Each core execute traces collected as
described in Section VII-A, where each stage repeats a pattern of
(a) receiving input data (einj,i or eoutj,i), (b) computation and accessing
memory (tj,i and bj,i), (c) sending output data (oinj,i or ooutj,i) . The
memory controllers are configured for certain bandwidth constraints
and perform FIFO scheduling for requests. Our simulator is written
in C++ and runs on a system with 4 Six-Core AMD Opteron 8431
processors at 2.4 GHz, running a 2.6.37 Ubuntu Linux.

Scenario: The applications detailed in Table III are spawned
repeatedly until the total number of stages (not considering fusions)
exceeds the number of cores by a factor of ≥ 3. This number
is chosen arbitrarily in order to achieve considerable system load.
Our experiments are performed for three different systems with 128,
512, and 1024 cores. All systems contain 16 memory islands (as
Intel’s Xeon Phi 5110P [10]), thus each memory controller serves
8, 32, and 64 cores, respectively. Each memory controller has a
bandwidth constraint of 128 GiB/s, similar to the bandwidth constraint
of many state-of-the-art GDDR5 controllers. For the system with
128 cores, the cores cannot saturate the memory controllers due to
their limited performance. This is similar to Intel’s Single-Chip Cloud
Computer [25], where the comparably slow individual cores cannot
saturate a memory controller [30].

C. Throughput and Memory Controller Load
Figure 5 (a) compares the throughput of our proposed MOMA

scheme with OCM [24] (i.e. our Phase 1, as described above),
DistRM [4], and AIAC [3], for 1024 cores over a period of 10
seconds. The throughput can be increased by approx. 1.29x, 1.61x,
and 3.95x over these schemes, respectively, by reducing the saturation
of memory controllers. Figure 5 (b) shows a similar result for 512
cores, however, the improvement over OCM [24] and DistRM [4]
is smaller. The reason is that for a system size of 512 cores, each
memory controller serves 32 cores (as compared to 64 cores for
1024 core systems), the memory controllers are less often saturated.
Finally, in a 128-core system, the throughput achieved by MOMA is
less than when using OCM [24] and the improvement over the other
DistRM [4] and AIAC [3] is smaller, as depicted in Figure 5 (c),
as the memory controllers are not saturated because their bandwidth
constraint exceeds the bandwidth requirements.

Table IV summarizes the relative improvements achieved when
Cores OCM [24] DistRM [4] AIAC [3]

128 -4.7% 11.6% 113.2%
512 8.9% 35.4% 311.3%
1024 29.3% 61.5% 295.0%

TABLE IV: Relative throughput of MOMA compared to OCM [24],
DistRM [4], and AIAC [3]. Negative values correspond to lower
throughputs.

6

0

10

20

30

40

50

60

70

80

90

0
.0

1

0
.5

4

1
.0

7

1
.6

2
.1

3

2
.6

6

3
.1

9

3
.7

2

4
.2

5

4
.7

8

5
.3

1

5
.8

4

6
.3

7

6
.9

7
.4

3

7
.9

6

8
.4

9

9
.0

2

9
.5

5

S
y
s
te

m
 t

h
ro

u
g
h

p
u

t
[i
te

ra
ti
o

n
s
/s

e
c
o
n

d
]

Time [s]

MOMA OCM [24] DistRM [4] AIAC [3]

Improvement: 1.09x

Improvement: 1.35x

Improvement: 4.11x

0

10

20

30

40

50

60

70

80

90

100

0
.0

1

0
.5

4

1
.0

7

1
.6

2
.1

3

2
.6

6

3
.1

9

3
.7

2

4
.2

5

4
.7

8

5
.3

1

5
.8

4

6
.3

7

6
.9

7
.4

3

7
.9

6

8
.4

9

9
.0

2

9
.5

5

S
y
s
te

m
 t

h
ro

u
g
h

p
u

t
[i
te

ra
ti
o

n
s
/s

e
c
o
n

d
]

Time [s]

MOMA OCM [24] DistRM[4] AIAC [3]
0

10

20

30

40

50

60

70

80

90

0
.0

1
0

.5
1

1
.0

1
1

.5
1

2
.0

1
2

.5
1

3
.0

1
3

.5
1

4
.0

1
4

.5
1

5
.0

1
5
.5

1
6

.0
1

6
.5

1
7

.0
1

7
.5

1
8

.0
1

8
.5

1
9

.0
1

9
.5

1

S
y
s
te

m
 t

h
ro

u
g
h

p
u

t
[i
te

ra
ti
o

n
s
/s

e
c
o
n

d
]

Time [s]

MOMA OCM [24] DistRM [4] AIAC [3]

Improvement: 1.29x

Improvement: 1.61x

Improvement: 3.95x

Degradation: 0.95x

Improvement: 1.12x

Improvement: 2.13x

(a) 1024 cores (b) 512 cores (c) 128 cores

Fig. 5: Comparison of the system throughput achieved by MOMA and several task mapping schemes in systems with 1024, 512, and 128
cores and 16 memory controllers.

0

0.05

0.1

0.15

0.2

0.25

0
.0

1
0

.4
5

0
.8

9
1

.3
3

1
.7

7
2

.2
1

2
.6

5
3

.0
9

3
.5

3
3

.9
7

4
.4

1
4

.8
5

5
.2

9
5

.7
3

6
.1

7
6

.6
1

7
.0

5
7

.4
9

7
.9

3
8

.3
7

8
.8

1
9

.2
5

9
.6

9

V
a

ri
a

n
c
e

Time [s]

AIAC [3] DistRM [4] OCM [24] MOMA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0
.0

1
0

.4
5

0
.8

9
1

.3
3

1
.7

7
2

.2
1

2
.6

5
3

.0
9

3
.5

3
3

.9
7

4
.4

1
4

.8
5

5
.2

9
5

.7
3

6
.1

7
6

.6
1

7
.0

5
7

.4
9

7
.9

3
8

.3
7

8
.8

1
9

.2
5

9
.6

9

V
a

ri
a

n
c
e

Time [s]

AIAC [3] DistRM [4] OCM [24] MOMA

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0
.0

1
0

.4
5

0
.8

9
1

.3
3

1
.7

7
2

.2
1

2
.6

5
3

.0
9

3
.5

3
3

.9
7

4
.4

1
4

.8
5

5
.2

9
5

.7
3

6
.1

7
6

.6
1

7
.0

5
7

.4
9

7
.9

3
8

.3
7

8
.8

1
9

.2
5

9
.6

9

V
a

ri
a

n
c
e

Time [s]

AIAC [3] DistRM [4] OCM [24] MOMA

(a) 1024 cores (b) 512 cores (c) 128 cores

Fig. 6: Variance between the load of the 16 memory controllers that results from using MOMA and several task mapping schemes, for 1024,
512, and 128 cores over a period of 10 seconds.

1
7

5
0

2
2

0

1
3

1
7

4
3

2
1

8

1
3

7 2

1

1

10

100

1000

10000

1024 512 128

R
u

n
ti
m

e
 [
m

s
]

Cores

Total
Phase 1
Phase 2 & 3

0

Fig. 7: Runtime overhead of the MOMA algorithm for 1024, 512,
and 128 cores (16 memory islands), which is dominated by Phase 1.

using MOMA compared to the state-of-the-art schemes. From these
observations, we conclude that MOMA effectively balances the
bandwidth requirements to avoid a saturation of memory controllers.

Figure 6 illustrates the variance of the load of the memory con-
trollers over a period of 10 seconds for systems with 1024, 512, and
128 cores. For 1024 cores, AIAC [3] has the lowest variance between
memory controllers because it achieves a low throughput and thus, the
load of the memory controllers is low. As compared to OCM [24] and
to DistRM [4], MOMA achieves a significantly lower variance, and
thus a better balance, of the load of memory controllers. The load
balance is responsible for the increased throughputs for systems with
1024 and 512 cores. As illustrated in Figure 5 (c) and 6 (c), the
throughput achieved when using MOMA is lower than when using
OCM [24]. The reason is that the imbalanced load of the memory
controllers that results from OCM [24] does not saturate a memory
controller. As a result, the balancing performed by MOMA worsens
the throughput slightly. Consequently, MOMA is limited to systems
with a large number of cores and scenarios of memory-intensive
applications. In such scenarios, it can greatly improve the system
throughput over the state of the art.

D. Overhead
Figure 7 shows the runtime overhead of our MOMA algorithm

for 1024, 512, and 128 cores. The runtime is purely dominated by
Phase 1, which is the initial solution as obtained by the algorithm
taken from [24] (other algorithms to obtain the initial fusions could
also be used for Phase 1). The runtimes of Phases 2 and 3, which
refine this initial solution to balance the bandwidth requirements
among the memory controllers, is very small and thus, we consider
the runtime overhead of our algorithm well tolerable.

VIII. CONCLUSION
We have presented MOMA, a task mapping scheme for memory-

intensive software-pipelined applications. MOMA computes map-
pings not only based upon the computation and on-chip communi-
cation requirements of tasks, but also jointly based upon their off-
chip memory accesses. This is particularly important in systems that
comprise a large number of cores since the number and bandwidth
of memory controllers is limited and thus, each memory controller
must serve many cores. Experiments show that MOMA improves the
system throughput significantly by avoiding a saturation of memory
controllers that would result when applying state-of-the-art task
mapping schemes. Our approach is therefore a necessary contribution
to the scalability of upcoming many core systems.

IX. ACKNOWLEDGEMENTS
This work was partly supported by the German Research

Foundation (DFG) as part of the Transregional Collaborative
Research Centre “Invasive Computing” (SFB/TR 89). This
work is supported in parts by the Baden Württemberg MWK
Juniorprofessoren-Programm. This work was supported in parts by
Intel Corp. and Intel Labs Braunschweig.

7

REFERENCES
[1] S. Borkar, “Thousand Core Chips: A Technology Perspective,” in Proc.

ACM/IEEE Design Automation Conf. (DAC), 2007.
[2] J. Jahn and J. Henkel, “Pipelets: Self-Organizing Software Pipelines for

Many Core Architectures,” in Proc. ACM/IEEE Des., Autom. and Test
in Europe (DATE), 2013.

[3] J. M. Bahi et al., “Dynamic load balancing and efficient load estimators
for asynchronous iterative algorithms,” IEEE Trans. Parallel Distrib.
Syst., vol. 16, pp. 289–299, April 2005.

[4] S. Kobbe et al., “DistRM: Distributed Resource Management for
On-Chip Many-Core Systems,” in Proc. IEEE/ACM/IFIP Int. Conf.
on Hardware/Software Codes. and Syst. Synth (CODES+ISSS), ser.
CODES+ISSS ’11, 2011.

[5] E. Carvalho et al., “Heuristics for Dynamic Task Mapping in NoC-
based Heterogeneous MPSoCs,” in IEEE/IFIP Int. Workshop on Rapid
System Prototyping (RSP), 2007.

[6] K. Klues et al., “Processes and Resource Management in a Scalable
Many-Core OS,” in USENIX Workshop on Hot Topics in Parallelism
(HotPar), 2010.

[7] H. Lee et al., “Dynamic scheduling of stream programs on embedded
multi-core processors,” in Int. Symp. on Hardw./Softw. Codes. and Syst.
Synth. (CODES+ISSS), 2012.

[8] D. Abts et al., “Achieving Predictable Performance through Better
Memory Controller Placement in Many-Core CMPs,” in Proc. Int.
Symposium on Computer Architecture (ISCA), 2009.

[9] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers,” in Proc. Int. Conf. on
High-Performance Computer Architecture (HPCA), 2010.

[10] http://www.intel.de/content/dam/www/public/us/en/documents/
product-briefs/xeon-phi-datasheet.pdf.

[11] William Thies and others, “StreamIt: A Language for Streaming Ap-
plications,” in Proc. Int. Conf. on Compiler Const. (ICCC), 2001.

[12] http://www.open-mpi.org/software/ompi/v1.6/.
[13] C. Lee et al., “A Task Remapping Technique for Reliable Multi-core

Embedded Systems,” in Proc. Int. Conf. on Hardware/Software Code.
and Syst. Synth. (CODES+ISSS), 2010.

[14] J. Stender et al., “Mobility-based runtime load balancing in multi-agent
systems,” in Proc. Int. Conf. on Software Engineering and Knowledge
Engineering (SEKE), 2006.

[15] C.-K. Luk et al., “Qilin: Exploiting Parallelism on Heterogeneous
Multiprocessors with Adaptive Mapping,” in Proc. IEEE/ACM Int.
Symp. on Microarch. (MICRO), 2009.

[16] M. A. Faruque et al., “ADAM: Run-time Agent-based Distributed
Application Mapping for On-chip Communication,” in Proc. ACM/IEEE
Design Automation Conf. (DAC), 2008, pp. 760–765.

[17] C. Chou et al., “Incremental Run-time Application Mapping for Ho-
mogeneous NoCs With Multiple Voltage Levels,” in Proc. Int. Conf. on
Hardware/Software Codes. and System Synth. (CODES+ISSS), 2007.

[18] C.-L. Chou et al., “Contention-aware Application Mapping for
Network-on-Chip Communication Architectures,” in IEEE Int. Conf.
on Computer Design (ICCD), 2008.

[19] M. Rajagopalan et al., “Thread scheduling for Multi-Core Platforms,”
in USENIX HotOS, 2007.

[20] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simul-
taneous Multithreaded Processor,” in ASPLOS, 2000.

[21] V. Nollet et al., “Centralized Run-time Resource Management in a
Network-on-Chip Containing Reconfigurable Hardware Tiles,” in Proc.
ACM/IEEE Design, Automation and Test in Europe (DATE), 2005.

[22] T. Li et al., “Efficient operating system scheduling for performance-
asymmetric multi-core architectures,” in Proc. of the ACM/IEEE Conf.
on Supercomputing (ICS), 2007.

[23] K. Lakshmanan et al., “Partitioned Fixed-Priority Preemptive Schedul-
ing for Multi-core Processors,” in ECRTS, 2009.

[24] J. Jahn et al., “Optimizations for Configuring and Mapping Software
Pipelines in Many Core Systems,” in Proc. ACM/IEEE Design Automa-
tion Conf. (DAC), 2013.

[25] J. Howard et al., “A 48-Core IA-32 Message-Passing Processor with
DVFS in 45nm CMOS,” in Proc. IEEE Int. Solid-Stat Circuits Confer-
ence (ISSCC), 2010.

[26] M. R. Garey and D. S. Johnson, Computers and intractability: A guide
to the theory of NP-completeness. W. H. Freeman and Co., 1979.

[27] P. Azad et al., Computer Vision - Principles and Practice. Elektor
Electronics, 2008.

[28] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, Sep. 2006.

[29] M. R. Guthaus et al., “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” in Proc. IEEE Workshop on Workload
Characterization (WWC-4), 2001.

[30] N. Melot et al., “Investigation of Main Memory Bandwidth on Intel
Single-Chip Cloud Computer,” in Proc. Intel MARC Symposium, 2011.

APPENDIX

A. Distributing cores and fusing stages [24]
In the following, we describe the algorithms to distribute cores

among applications and, given a number of cores for each application,
to fuse the stages so that the throughput of each application is
maximized, as proposed by [24]. These algorithms, however, do
not consider the bandwidth constraint of memory controllers, nor
the overhead when communicating stages are mapped to different
memory islands. For our model, this means that Bi → ∞ for all
i = 1, 2, . . . , V , and that eout

j,h = ein
j,h and oout

j,h = oin
j,h for all

h = 1, 2, . . . , N ′j stages in all j = 1, 2, . . . ,K pipelines. Under such
simplifications, the problem can be solved optimally by two dynamic
programming algorithms, where the first algorithm A1 considers all
possible fusions for each pipeline, and the second algorithm A2

decides how many cores are assigned to each application such that
the overall weighted system performance is maximized.

The first algorithm A1 builds table Rj(i, n), which stores the
minimum maximal response time for a sub-pipeline that considers
stages Sj

1 to Sj
i for pipeline Pj , using at most n cores. The initial

conditions for Rj(i, 0) and Rj(i, 1) are

Rj (i, 0) =∞ ∀i = 1 . . . N ′j

Rj (i, 1) = ein
j,1 + oin

j,i +
i∑

h=1

tj,h ∀i = 1 . . . N ′j .
(4)

Moreover, by defining function minmaxRFj(i, n) as

minmaxRFj (i, n) =

min
n−1≤`<i

{
max

{
Rj (`, n− 1) , ein

j,`+1 + oin
j,i +

i∑
h=`+1

tj,h

}}
,

(5)
the recursive function Rj(i, n) with n ≥ 2 is

Rj (i, n) =

{
Rj (i, n− 1) i < n

min {Rj (i, n− 1) ,minmaxRFj (i, n)} i ≥ n.
(6)

The algorithm is executed for all j = 1, 2, . . . ,K pipelines for
i = 1, 2, . . . N ′j and n = 1, 2, . . .max

{
N ′j , Q · V

}
. Each entry

Rj(N
′
j , n), contains the minimum maximal response time of pipeline

Pj using at most n cores.
Based on Rj(N

′
j ,max

{
N ′j , Q · V

}
), the second algorithm A2

decides how many cores are allocated to each application such
that the overall weighted system performance is maximized. The
algorithm builds a table G(j, n) to store the maximum weighted
system performance for the first j pipelines on at most n cores. When
there is no feasible solution, i.e. j > n, entries G(j, n) are set to −∞.
The initial conditions for G(1, n) are

G(1, n) =
w1

R1 (N ′1, n)
∀n = 1, 2, . . . , Q · V. (7)

Moreover, the recursive function for G(j, n) with j ≥ 2 is

G (j, n) =

−∞ j>n

max
j−1≤`<n

{
G (j − 1, `) +

wj

Rj(N′
j ,n−`)

}
j≤n

(8)

The algorithm is executed for all j = 1, 2, . . . ,K and n =
1, 2, . . . , Q · V . Entry G(K,Q · V) contains the maximum weighted
system performance for all pipelines using up to Q · V cores.

8

http://www.intel.de/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-datasheet.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-datasheet.pdf
http://www.open-mpi.org/software/ompi/v1.6/

