
Optimizations for Configuring and Mapping Software Pipelines
in Many Core Systems

Janmartin Jahn, Santiago Pagani, Sebastian Kobbe, Jian-Jia Chen, Jörg Henkel
Karlsruhe Institute of Technology (KIT), Germany

{ jahn, santiago.pagani, sebastian.kobbe, j.chen, henkel }@kit.edu

Abstract—Efficiently utilizing the computational resources of many core
systems is one of the most prominent challenges. The problem worsens
when resource requirements vary unpredictably and applications may be
started/stopped at any time. To address this challenge, we propose two
schemes that calculate and adapt task mappings at runtime: a centralized,
optimal mapping scheme and a distributed, hierarchical mapping scheme
that trades optimality for a high degree of scalability. Experiments on Intel’s
48-core Single-Chip Cloud Computer and in a many core simulator show
that a significant improvement in system performance can be achieved over
current state-of-the-art.

I. INTRODUCTION AND NOVEL CONTRIBUTION

While many core systems offer the potential of vastly increasing
computational performance as Moore’s Law continues, in practice there
are significant hurdles to actually utilize these resources and to profit
from scalability. One key issue is the mapping of applications to the
available cores. When considering dynamic runtime scenarios, i.e. when
applications may be started, stopped, or when their resource demands
(i.e. the computational demands of their tasks and the communication
requirements between them) may vary unpredictably at any time (e.g.
due to user interactions or changing input data), the problem of mapping
tasks is extended from finding mappings to also adapting them at
runtime. In such scnearios, it is crucial to adapt mappings to account for
such changes in order to maintain high system performance: Section II
shows an example how significantly changing resource demands of an
application may lead, for an established task mapping, to a degradation
of the system throughput of more than 50% compared to an adapted
mapping. The same problem may arise when applications are started or
stopped unpredictably (e.g. by the user). Such scenarios are increasingly
common and thus need to be addressed [16]. To tackle this challenge,
one solution is to employ so-called malleable applications that provide
the flexibility of using more or less cores dynamically (e.g. [5], [20]).
They can change their degree of parallelism at runtime so that a
system may re-distribute the cores among applications to increase its
performance [10]. Our approach focuses on software pipelines because
they are a well-established means to parallelize a large class of complex
applications. Especially stream-processing applications, among which
are very common image/video and networking applications, are well
suitable for software pipelining. Multiple approaches to extract software
pipelines (semi-)automatically from sequential C code by parallelizing
compilers [3], [13], [19] have been presented.
For the rest of this paper, we use the following definitions:

Software pipelines consist of multiple stages, each processing sub-
sequent iterations on a stream of input data. Each stage is an individual
task consisting of a working set, program code, and task state. The
output data of one stage forms the input data of its direct successor.
There is no further communication.

A malleable software pipeline can reduce the number of its stages
(thus the number of cores used) at runtime by fusing consecutive
stages so they are mapped to the same core (similar to fusing filters
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Fig. 1: Target architecture

in StreamIt [6]). Consequently, no on-chip communication is necessary
between them. Fused stages can be split through fissions until the initial
degree of parallelism is restored.

We use throughput as a performance metric because software-
pipelined applications often run continuously until they are stopped (thus
metrics like makespan are not applicable). We define the throughput of
an application as the number of iterations it completes per second, and
the throughput of a system as the averaged throughputs of all running
applications. A formal definition follows in Section IV.

In this paper, task migration is used to denote the transfer of the
execution of a task from one core to another. Task remapping, in
contrast, refers to the abstraction of deciding about task migrations based
on a system model (i.e. the underlying algorithm or heuristic). We target
systems with many cores, private, distributed memories and Network-
on-Chips. Figure 1 shows this exemplarily.
In this paper, our novel contributions are:

1) We present a centralized, optimal mapping scheme for malleable
software pipelines.

2) As an extension, we present a distributed, hierarchical mapping
scheme that trades the optimum for a high degree of scalability.

To illustrate the effectiveness of our schemes, we have implemented
them on Intel’s Single-Chip Cloud Computer (SCC) [9] and in a high-
level many core system simulator. Our centralized scheme requires
approx. 60ms for calculating optimal mappings for 48 cores, while our
distributed scheme calculates near-optimal mappings for 1024 cores in
less than 1ms1.

The rest of this paper is organized as follows: Section II presents
a motivational example, Section III discusses the state of the art,
and Section IV presents the system model. We define the mapping
problem in Section V and afterwards we present our centralized and
our distributed solution (Sections VII and VIII). Section IX details
our implementation, and Section X describes our experiments and
comparison to the state of the art.

II. MOTIVATION

This section discusses the importance of adapting task mappings in
dynamic runtime scenarios. Let us consider a simple example of a
software-pipelined computer vision application (object tracking) with
8 stages mapped to a system with 4 cores2. Figure 2 (a) shows how the
average runtime of each stage changes when adding multiple tracked
objects to the input scene. Figure 2 (b) shows that an established
(optimal) task mapping (Core 1: Stages 1-3, Core 2: Stages 4-5, Core

1Experiment conducted on a P45C core running at 800 MHz.
2For this example, we use 4 cores of Intel’s SCC [9].
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3: Stages 6-7, Core 4: Stage 8) achieves a throughput of approx. 20.13
iterations/second. Due to these changes, the average throughput drops
to 8.35 iterations/second. A possible solution to this problem is to
adapt the task mapping (Core 1: Stage 1, Core 2: Stage 2, Core 3:
Stages 3-4, Core 4: Stages 5-8), which achieves a throughput of 18.40
iterations/second. Consequently, adapting the established task mapping
based on observations about the (possibly unpredictable) resource
demands can significantly improve the throughput of a system. A more
complex example of a system with 128 cores running 35 instances of
real-world applications concurrently is discussed in Section X-C.

However, adapting such mappings at runtime is a challenging problem
because task mapping is NP-complete. Thus, calculating mappings for
larger systems at runtime may require an infeasibly high overhead or
may require heuristics that lead to suboptimal solutions.

III. RELATED WORK

The related work can be grouped into mapping schemes for software
pipelines and for parallel applications in general, assuming either
distributed or shared memories.

Mapping schemes specific to software-pipelined systems have been
recently proposed: [16] suggests calculating a set of optimal mappings
at design-time. This works well for a specific set of scenarios, but it
does not aim at capturing cases where application resource demands are
unknown at design time. This is, however, the case when they depend
on user interactions or on (unpredictable) properties of the input data.
Dynamic scheduling of stream-processing applications, which are a
superset of software pipelines, to embedded multi-cores with scratchpad
memories is proposed by [11]. The property deemed to be unpredictable,
and hence targeted by this approach, is merely the availability of cores,
while application resource demands are assumed to be static. With
similar assumptions, [4] incorporates user behavior in runtime task
mappings, but aims at minimizing communication energy and requires
that the number of tasks is less or equal to the number of cores.

Task mapping of general parallel applications assuming distributed
memories: [2] presents a heuristic runtime load balancing scheme for
asynchronous, iterative algorithms (AIAC) in grid computing systems.
Due to its focus, it does not take inter-task communication into account.
It therefore may achieve inferior performance when tasks communicate
heavily, as it is the case for many complex, real-world applications. In
[10], a distributed heuristic for (re-)mapping of malleable applications
using multiple agents is proposed. It relies on runtime observations and
on offline profiles. However, their approach for achieving a scalable
solution limits their decisions to local regions, which results in a lower
throughput of the system. As [2] and [10] are most similar to our
contribution, Section X compares them to our proposed schemes.

A statistical approach based on extreme value theory is presented
in [14]. It generates a large random set of task assignments and has
a runtime of 25 minutes to 2 hours, which we consider infeasible
for dynamic scenarios that require to update mappings at runtime. In
contrast to this, our restriction to (malleable) software pipelines allows
to calculate optimal mappings in polynomial time, and near-optimal
mappings in nearly constant time.

Task mapping for general parallel applications assuming shared
memories: [12] and [15] propose runtime load balancing for symmetric
multiprocessing systems. The authors of [17] propose to derive co-
schedules based on offline profiles, with an extension to support different
priority levels [18]. The focus of these schemes is on architectures with

few cores and they require a shared address space. They are thus not
directly applicable to many core systems with distributed memories.

To summarize, state-of-the-art task mapping schemes either achieve
inferior performance due to their broad scope, are not applicable to
systems with distributed memories, or do not target dynamic runtime
scenarios. However, it is important to address these scenarios for
systems with many cores and distributed memories.

IV. SYSTEM MODEL

In the following, we discuss the system model we use for malleable
software-pipelined applications. Each application k forms a pipeline
Pk with Nk stages. Every stage Sj is characterized by cj , ej and oj
that denote the time consumed (in each iteration) for computation, for
receiving the input data from its direct predecessor, and for transferring
the output data to its direct successor. Figure 3 illustrates this model.

c1
o1

c2

S1

Iter. 1:

Iter. 2:

e2

S2

o2e1
cN

eN

SN

oN

Iter. N:

c1 c2 cN

c1 c2 cN

o1 e2 o2e1 eN oN

o1 e2 o2e1 eN oN

Fig. 3: Software pipeline model

In order to decide about the mapping of applications, it is important
to model their throughput for a given mapping. To achieve this, we
require that each core belongs to at most one application (i.e. cores may
not be shared among applications). Furthermore, we need to determine
their maximum throughput, which is limited by their slowest stage. We
consequently denote the maximal response time Rk for pipeline Pk as:

Rk = max
1≤j≤Nk

{ej + cj + oj}. (1)

Therefore, the maximum throughput of pipeline Pk is defined as 1s
Rk

.
We introduce the malleability property to software pipelines by

defining the basic operation fusion (and the inverse operation fission),
in which multiple consecutive pipeline stages are combined, similar to
fusing filters in StreamIt [6].
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Fig. 4: Fusion of pipeline stages

A fusion of stages creates a new stage which combines the com-
putational requirements of the original stages but does not require
communication between them, as shown in Figure 4. This way, fusing
stages may reduce the maximal response time Rk of a pipeline.
Additionally, fusing stages changes the degree of parallelism of the
application, which then runs on a smaller number of cores.

V. PROBLEM DEFINITION

We divide the problem of mapping malleable software pipelines into:
1) How to distribute the cores of a system among the applications

(Section V-A) so that the overall system throughput is maximized.
2) How to assign the stages of an application to a given number of

cores (Section V-B), thus providing their fusions.

A. Global Problem: Optimizing System Throughput

Given a set of K weighted (weights express priority levels) applica-
tions P = {P1, P2, . . . , PK} with weights W = {w1, w2, . . . , wK},
each application Pk uses up to Mk cores and has a maximal response
time Rk. The objective is to maximize the overall weighted system
throughput by finding an optimal distribution of (up to) M available
cores to the individual applications.

2



Maximize

{
K∑

k=1

wk

Rk

}
| such that

K∑
k=1

Mk ≤M (2)

We present a centralized, optimal scheme in Section VII and a highly
scalable, distributed scheme in Section VIII.

To solve this problem, however, we need to solve the sub-problem
of fusing pipeline stages first:

B. Sub-Problem: Fusion of Pipeline Stages
The throughput of an application is affected by how the stages are

fused. Thus, we define a sub-problem that minimizes the maximal
response time of each pipeline Pk (with Nk stages) by fusing stages
for an optimal throughput when utilizing at most Mk cores.

We present an algorithm to solve this problem in Section VI.

VI. FUSION OF PIPELINE STAGES

In order to find an optimal solution to the problem of Section V-B, all
possible combinations of fusions need to be taken into consideration. An
exhaustive search would result in an exponential time complexity, which
may be unacceptable, especially for adapting mappings at runtime. We
therefore propose an algorithm based on dynamic programming that
derives optimal solutions for minimizing the maximal response time by
using m cores to execute pipeline Pk.

Let Pk,j be a sub-pipeline by considering only the pipeline stages
from stage S1 to stage Sj of pipeline Pk. The dynamic programming
defines a recursive function Rk(j,m) to store the optimal configurations
for the maximal response time minimization for Pk,j with (at most) m
cores. That is, let Rk(j,m) be the minimum maximal response time
for executing Pk,j on m cores. Moreover, we build table Fk(`, j) for
all `, j such that 1 < ` ≤ j ≤ Nk in which

Fk (`, j) = e` + oj +

j∑
h=`

ch. (3)

Then, the initial boundary conditions for Rk(j, 0) and Rk(j, 1) are:

Rk (j, 0) =∞ ∀j = 1 . . . Nk

Rk (j, 1) = Fk (1, j) ∀j = 1 . . . Nk
(4)

Furthermore, we define function minmaxRFk(j,m) as:

minmaxRFk (j,m) = min
m−1≤`<j

{max {Rk (`,m− 1) , Fk (`+ 1, j)}}.
(5)

The recursive function for Rk(j,m) with m ≥ 2 is defined as:

Rk (j,m) =

{
Rk (j,m− 1) j < m

min {Rk (j,m− 1) ,minmaxRFk (j,m)} j ≥ m
(6)

The dynamic programming starts by computing the resulting maximal
response times utilizing only one core for the first j = 1 . . . Nk stages.
Then, the programming computes the maximal response times for the
first j = 1 . . . Nk stages, on up to two cores. Since the programming
already stored the resulting maximal response times of using only one
core for the first j stages, it can easily choose whether to use one or
two cores (in one of the possible fusion combinations) for the same
j stages. The process is repeated once again for three cores, knowing
in advance if is optimal to use one or two cores for the first j stages,
so it only needs to compare the previous result with any new possible
fusion for the same j stages but now utilizing up to three cores. Thus,
iteratively, an optimal solution is achieved because all combinations
of stages and cores are considered, but the complexity is reduced since
optimal solutions are stored in tables and do not need to be recomputed.

The space/time complexity is O(N2
k ) for building the table Fk. The

time complexity for building an entry Rk(j,m) is O(j) = O(Nk).
The size of the table Rk(j,m) is O(MkNk). Therefore, the total time
complexity is O(MkN

2
k ). The maximal response time by using at most

Mk cores for pipeline Pk is stored in Rk(Nk,Mk). Algorithm 1 shows
the pseudo-code for this dynamic programming.

Algorithm 1 Maximal Response Time Minimization
Input: The times e, c, and o for the Nk stages of pipeline Pk , and the maximum

Mk cores available;
Output: The minimal maximal response time using at most Mk cores;
1: Initialize Fk(`, j) according to Eq. (3), ∀ (`, j) such that 1 ≤ ` ≤ j ≤ Nk;
2: for m = 0 to Mk do
3: for j = 1 to Nk do
4: if m ≤ 1 then
5: Build Rk(j,m) according to Eq. (4);
6: else
7: Build Rk(j,m) according to Eq. (6);
8: end if
9: end for

10: end for
11: return Rk(Nk,Mk);

The actual fusions that lead to the optimal result can be derived by
backtracking the dynamic programming table or by using an additional
tracking table TRk(Nk,Mk) of size O(MkNk). When building the
TRk(j,m) table, each cell holds the j∗ value of the sub-solution that
makes the programming optimal. For the initial condition m = 1,
TRk(j,m) is set to zero. When j < m, or when j ≥ m and
Rk(j,m−1) turned out to be minimal, then TRk(j,m) = j. In the case
where an additional core provides improvement, TRk(j,m) will be set
to the index ` from Equation 5 that made this improvement possible
and therefore TRk(j,m) 6= j.

The fusions that give an optimal maximal response time can be de-
rived from table TRk(Nk,Mk) as follows: starting from cell (j,m) =
(Nk,Mk), the table is traversed in the direction (TRk(j,m),m− 1).

If TRk(j,m) = j, this means that it is not possible to assign more
cores to the pipeline since no finer granularity can be achieved or that
no additional core may improve the throughput and the sub-solution
that uses one less core was already optimal.

If TRk(j,m) 6= j, an additional core provides improvement, so
if TRk(j,m) + 1 = j then stage Sj is mapped to one core and if
TRk(j,m) + 1 < j all stages between TRk(j,m) + 1 and j (both
inclusive) should be fused. Section S2 discusses a detailed example.

VII. CENTRALIZED SCHEME

With the dynamic programming of Section VI, we can decide how
to maximize the overall weighted system throughput in a centralized
manner. Suppose that Rk(Nk,m) for m = 1, 2, . . . ,min{Nk,M}
has been built. For notational brevity, if Nk < M , we define
Rk(Nk,m) = Rk(Nk, Nk) for any m ≥ Nk. Let G(k,m) be
the maximum centralized weighted system throughput for the first k
pipelines based on any arbitrary order of pipelines on at most m cores.
Moreover, when there is no feasible solution, i.e. k > m, the function
G(k,m) is defined to −∞. Then, we know that the initial (boundary)
condition for G(1,m) is:

G(1,m) =
w1

R1 (N1,m)
∀m = 1, 2, . . . ,M (7)

The recursive function for G(k,m) with k ≥ 2 is expressed in
Equation (8). The time complexity, provided that Rk(Nk,m) is known,
is O(KM2). Note that the last column of Rk, i.e. Rk(Nk,m) ∀m =
1, 2, . . . ,M , contains the application’s weighted throughput and thus
serves as its speed-up vector. Algorithm 2 shows a pseudo-code for
this dynamic programming.

G (k,m) =

−∞ k>m

max
k−1≤m′<m

{
G (k − 1,m′) + wk

Rk(Nk,m−m′)

}
k≤m

(8)
An additional tracking table TG(K,M) of size O(KM) allows for

easily deriving how many cores should be assigned to each pipeline.
When building the TG(k,m) table, each cell holds the m∗ value of
the sub-solution that makes the programming optimal. For the initial
condition k = 1, TG (k,m) is set to zero. When k > m, then

3



Algorithm 2 Maximizing Overall Weighted System Throughput
Input: The maximum number of available M cores. For every pipeline Pk , the

weights wk and tables Rk(Nk,m) for m = 1, 2, . . . ,M ;
Output: Maximum overall weighted system throughput for K pipelines, using

at most M cores;
1: for k = 1 to K do
2: for m = 1 to M do
3: if k = 1 then
4: Build G(k,m) according to Equation (7);
5: else
6: Build G(k,m) according to Equation (8);
7: end if
8: end for
9: end for

10: return G(K,M);

TG (k,m) = −1. In the case were k ≤ m, TG (k,m) will be set to
the value of m′ from Equation 8 that made this sub-solution optimal.

Once table TG(K,M) has been built, the number of cores for each
pipeline can be derived from it: Starting from the final cell (k,m) =
(K,M), the table is traversed in the direction (k − 1, TG (k,m)). If
TG (k,m) = −1, then there is no feasible solution for this set of
values. In any other case, cores between TG (k,m) + 1 and m (both
inclusive) should be assigned to application k. Section S3 shows a
detailed example. It should be noted that our proposed scheme is not tied
to the objective of maximizing the overall weighted system throughput:
Equation 8 could be modified, e.g. to balance the throughput among
applications, or to guarantee a minimum throughput.

VIII. DISTRIBUTED, HIERARCHICAL SCHEME

The scheme proposed in Section VII is designed in a centralized
manner. This requires global system knowledge and computes the
mapping for the entire system. This leads to a quadratic time complexity
(with the number of cores), which may be infeasible for a large number
of cores. To achieve a highly scalable solution (i.e. its overhead should
not grow significantly with a growing number of cores or applications),
this section (in combination with Section VI) proposes a distributed,
hierarchical scheme for which we group the pipelines into several
independent clusters. Clusters are grouped hierarchically into larger
clusters and so on, therefore constructing a tree, as shown on Figure 5.
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C 1
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P1 i i+1 jP P P

Ch+1
1 CK1

1

CK2
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Pj+1 g g+1 K0P P P Level 0

Level 1

Level 2
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Fig. 5: Distributed solution

There are K0 pipelines P1, P2, . . . , PK0 on level 0, and these nodes
are the leaves of the tree. The rest of the nodes are clusters and are
expressed as C`

i , where indexes ` and i represent the level of the cluster
in the tree and the index of the cluster in the level, respectively. All
clusters in level 1 (` = 1) are the adjacent parents of the pipelines.
There are L levels in the tree, where level L is the root of the tree, and
each level ` holds K` nodes.

With this distributed model, the solution from Section VI is utilized to
build the tables Rk(Nk,M) for every pipeline Pk, where M continues
to be the total amount of cores available in the system.

Each cluster C1
i (level 1) contains the information of the weights

wk and tables Rk(Nk,M) of its children (pipelines) and utilizes the
solutions of Sections VII to build the corresponding tables G(K∗,M),
where K∗ is the number of child nodes of the cluster. According to
this table, we record the best configuration for cluster C1

i by allocating

m = 1, 2, . . . ,M cores to its children pipelines, independently upon
the other clusters of the same level.

Similarly, the clusters C2
i (level 2) contain the information of table

G(K∗,M) of its child clusters C1
i (level 1). This applies likewise to all

upper levels. In this way, each level distributes cores among its children
based solely on this (limited) information. Consequently, the computa-
tional requirement is distributed hierarchically among the system. By
limiting the frequency of propagating the aforementioned tables, our
distributed scheme largely reduces the computational overhead, but is
unable to achieve optimal mappings if the tables change more frequently
than they are propagated.

We denote G`
i (k,m) as the table for the modified version of the

dynamic programming in Section VII. Considering that w∗1 , R∗1, N∗1 are
the parameters of the first child (pipeline) of node C1

i , node C`−1
1∗ is

the first child of node C`
i , value K∗`−1 is the number of children of

node C`
i , and value K∗`−2 is the number of children of node C`−1

1∗ and
node C`−1

k , then the initial conditions of G`
i (1,m) are:

G`
i (1,m) =

w∗1
R∗1(N∗1 ,m)

∀m = 1, 2, . . . ,M when ` = 1

G`
i (1,m) = G`−1

1∗ (K∗`−2,m) ∀m = 1, 2, . . . ,M when ` ≥ 2,
(9)

the value of G`
i (k,m) is set to −∞ whenever k > m, the recursive

function when ` = 1 and k ≤ m is:

G`
i (k,m) = max

k−1≤m′<m

{
G`

i (k − 1,m′) + wk
Rk(Nk,m−m′)

}
, (10)

the recursive function when ` ≥ 2 and k ≤ m is:

G`
i (k,m) = max

k−1≤m′<m

{
G`

i (k − 1,m′) +G`−1
k (K∗`−2,m−m′)

}
,

(11)
and finally, the result is found in cell G`

i (K
∗
`−1,M).

It is important to notice that even though the root node makes
decisions that affect every pipeline, this is still a distributed and scalable
scheme, since every node only contains the partial information of its
children.

IX. SYSTEM DETAILS

In the following, we discuss the components of our schemes and their
implementation details. We have implemented both schemes on Intel’s
Single-Chip Cloud Computer (SCC) and in a high-level system simula-
tor detailed in Section X-A. Both schemes employ several components
written in C++ that communicate by exchanging network messages:

A. Components

The centralized scheme employs application heads and a centralized
controller. Each application denotes one of its cores to form its
application head (this core may execute a stage). The application head
registers and signs-off the application with the centralized controller
on starting and stopping of the application. To register an application,
the application head sends a message including a unique identifier
of the application (4 bytes), its number of stages (4 bytes), and an
initial Rk table of Section VI (4 bytes × Nk stages × Mk cores).
During runtime, application heads re-compute their Rk table when the
values of ei, ci or oi for one of their stages change and send this to
the centralized controller. The centralized controller (re-)computes the
optimal distribution of cores and sends a list of cores to each application.
Based on this list, the application heads fuse and migrate their stages.
The values ei, ci, and oi are obtained by comparing the CPU tick
counter before and after the corresponding operations are performed,
thus they are updated once per iteration.

The distributed scheme employs application heads (see above)
and cluster heads: for each cluster, a cluster head receives the Rk

tables (4 bytes for each entry) from each of its children, which may
be either cluster heads themselves, or application heads. However,
instead of calculating global mappings, cluster heads only calculate core
distributions for their children and propagate the combined Rk tables
to their parent (see Section VIII).
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Fig. 6: Schematic overview of our implementation

B. Implementation of our Schemes

Figure 6 gives an overview of our implementation, which is divided
into a compile-time and a run-time part. At compile-time, initial Rk

tables are derived from profiling. Partitioning the application into a
software pipeline defines its finest degree of parallelism. At runtime,
our implementation is split into the application- and the OS-layer.

The application layer contains the components of Section IX-A and
a checkpointing-based implementation of task migration (see below).
Each core that is assigned to one application executes the same
executable file, while its parameters control which of its stages are
executed. A pseudo-code of this main procedure is shown in Section S1.

The OS layer provides the communication infrastructure (to allow
stages to communicate via an MPI-like interface, orthogonal to their
physical location and fusion) and supports task migrations.

On the SCC, our components are implemented as daemons for Intel’s
3.1.4 ubuntu-based linux. The components of both schemes communi-
cate via sockets and separate program- and control communication by
two logical channels. To measure the communication overhead of our
schemes, we log the communication volume in the control channel. For
obtaining the computational overhead of the distributed scheme, we
average core distribution/fusion calculations in each cluster-/application
head over 1,000,000 times by comparing CPU ticks before and after.

C. Implementation of Task Migration

Task migration is carried out on application level through checkpoint-
ing after each iteration, with a lightweight support by the middleware
(to start executables as needed). When the controlling scheme (both
our centralized and distributed schemes) chooses to change the fusions
or re-distributes cores among applications, the respective stages are
notified by the middleware: When the corresponding stage reaches
a checkpoint, it saves its state and requests the middleware at the
destination core to start its executable file if the destination core formerly
belonged to a different application. It then sends its state to the newly
started executable, which then continues the execution of the (fused)
stage procedure. The corresponding overheads of these operations are
evaluated and discussed in Section X-E.

X. EXPERIMENTAL RESULTS

A. System Setup

Our experiments have been conducted on Intel’s Single-Chip Cloud
Computer (SCC) [9] and using a high-level many core simulator. The
SCC is a platform that integrates 48 x86 cores in 24 tiles (two cores
each) on a single chip. The individual P54C cores (45nm process) run at
800 MHz, are connected via a 2 GHz network-on-chip with a bisection
bandwidth of 2TB/s. Each core has 16 KB of instruction- and 16 KB
of data cache, and 256 KB of unified instruction/data L2 cache. It runs
a single-core Ubuntu Linux (kernel 3.1.4) on each core.

Our high-level many core simulator is written in C++, executes task
traces collected on the SCC, and simulates the network-on-chip inter-
connect. The simulator delivers accurate information on the application

Name Stages Source
automotive 21 see Section X-B
h264ref 4 SPEC CPU 2006 [8]
lame 4 MiBench [7]
PGP 5 MiBench [7]
sphinx3 22 SPEC CPU 2006 [8]

TABLE I: Benchmark applications
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Fig. 7: Comparison of the achieved system throughputs

C
or

es Applications
4 8 16 32 64 128

4 0.00(0.01)(0.02)(0.04)(0.09)(0.19)
8 0.01 0.01 (0.03)(0.06)(0.14)(0.30)

16 0.01 0.02 0.05 (0.10)(0.23)(0.46)
32 0.01 0.03 0.07 0.15 (0.32)(0.72)
64 0.02 0.05 0.12 0.27 0.49 (1.10)

128 0.05 0.11 0.22 0.51 1.00 1.92
256 0.11 0.25 0.56 1.12 2.19 4.14
512 0.29 0.69 1.39 2.81 5.73 11.33

1024 0.93 1.88 4.32 9.21 17.89 37.32 # Applications# Cores

Our centralized scheme
~37s runtime

Our distributed scheme
~0.82ms runtime
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Fig. 8: Computational overhead of our schemes. Infeasible app./core
combinations in brackets. Only one column for our distributed scheme
as the runtime does not change significantly with the # of applications.

/ system throughputs and on the communication volumes / overheads
(algorithm runtimes have been collected on the SCC). It runs on a six-
core AMD OpteronTM8431 CPU (2.4 GHz) with 64 GB DDR3 RAM.
The SCC allows measuring the computational overhead accurately, but
as it integrates 48 cores, we cannot analyze the system throughputs
and the communication overhead for larger systems. However, we
measured the computational overhead on the SCC even for (virtually)
large systems because these computations do not demand to dispose of
the cores physically.
Measurements conducted on the SCC:
• Computational overhead for up to 1024 cores.
• Throughput of the centralized scheme for up to 48 cores.
• Fusion/fission overheads.

Experiments conducted using our simulator:
• Communication overhead.
• Throughput of our centralized and of our distributed schemes.
For the experiments, we spawn the benchmark applications listed in

Table I multiple times so that the total number of stages in the system
exceeds the number of cores by at least a factor of 3 (we chose this
number arbitrarily to establish a considerable system load).

B. Benchmark Scenario

Table I shows an overview of the benchmark applications and their
number of stages. The applications have been manually parallelized to
form malleable software pipelines. We chose this set of applications
because they are most suitable to form software pipelines. The imple-
mentation details of how we adapted the state-of-the-art schemes of [2],
[10] to compare them against our schemes can be found in Section S4.

The automotive application is a vision-based application that takes its
algorithms from the IVT library [1]. It performs stereo vision, image
enhancement, object recognition (based on scale-invariant feature trans-
form (SIFT) and Harris corner detection), morphological operations, and
pattern matching algorithms to identify and track objects in a continuous
stream of color stereo video data (648x480 pixels at 30fps). The other
applications have been taken from the respective benchmark suites.
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Carried State –KB- Overhead -ms-

Application Min Max Avg σ Old Core New Core

automotive 1 32 19 15.21 0.63 22

h264ref 13 53 27 22.73 1.07 76

lame 9 10 9 1.32 0.18 19

PGP 1 27 12 9.11 0.30 66

SPHINX3 12 22 17 4.21 0.51 44

[8]

[8]

[7]

[7]

[KB] [ms]

TABLE II: Overheads of fusion/fission operations

C. Achieved System Throughput

In the following, we compare the throughput achieved by the dis-
tributed scheme with the centralized scheme (thus against optimal
mapping) and with two state-of-the-art runtime remapping schemes,
DistRM [10] and AIAC [2]. Figure 7 shows the average system
throughput over 50 runs when running 7 instances of each benchmark
application (35 applications, or 392 stages in total) on 128 cores,
connected by a NoC mesh as featured by the SCC. To show how
each scheme gradually improves the mapping of stages to cores, we
initially start all stages on a single core and let the corresponding
schemes improve the system throughput incrementally. After this is
achieved, we randomly stop 25% of the applications at t = 10 seconds.
While the centralized (thus optimal) scheme achieves an increased
throughput of roughly 13.7%, the average system throughput drops
for the other schemes from roughly ca. 17-29 iterations/second to
ca. 9-17 iterations/second because without adapting the mapping, the
cores that formerly executed the stopped applications are now idle.
The schemes then improve the throughput by adapting the mapping of
stages to cores. Our distributed scheme achieves a system throughput
of 94.78% compared to the optimal (centralized) scheme. On average,
the distributed scheme increases the throughput by 11.3% and 60.6%
over [10] and [2], respectively.

D. Computational and Communication Overheads

Figure 8 shows how the computational overhead of our centralized
scheme grows with a growing number of cores and applications. Up
to a considerable problem size (e.g. 64 cores, 64 applications), optimal
mappings can be calculated in less than 0.5s, which may be sufficiently
fast for certain systems. However, this overhead is significantly larger
for larger systems as the runtime grows quickly beyond 35 seconds.

The distributed scheme has a constant time complexity as each cluster
head on level 1 C1

h only calculates the optimal distribution of the cores
to its children (which does not grow with the problem sizes). Thus, its
computational overhead is small (less than 0.1ms for 1024 cores).

Figure 9 compares the total communication overhead of our cen-
tralized and of our distributed schemes. This overhead includes status
updates and notifications, the updates of the ei, ci, and oi values, as well
as the propagation of all tables and speed-up vectors. As this overhead
merely reaches around 365.3 KiB/s (0.025% of the total communication
for a system with 1024 cores, 275 applications) for our centralized
scheme and roughly 138 KiB/s (0.009%) for our distributed scheme,
we consider it as negligible.

Cores 16 32 64 128 256 512 1024 

Applications 5 10 20 35 70 140 275 

Stages 56 112 224 392 784 1568 3080 

App. Comm [MiB/s] 28.3 56.6 98.9 198.1 367.3 792.4 1455.0 

Our centralized scheme [KiB/s] 0.64 2.27 5.53 15.2 39.2 178.5 365.3 

Our distributed scheme [KiB/s] 0.69 1.58 3.34 6.79 19.0 54.2 138.0 
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Fig. 9: Comparison of communication overheads

E. Fusion/Fission (i.e. Task Migration) Overhead
Table II summarizes the overhead for fusions/fissions of two stages

of each application (collected on Intel’s Single-Chip Cloud Computer).
When the fusion/fission operation incurs an old core (i.e. the application
is already running on this core before this operation), the overhead
is limited to transferring the carried state of the stage and is thus
very small. Otherwise, the executable file of the application needs to
be started by the middleware, which takes considerably more time.
However, our experiments show that this is only the case in less than
5% of conducted fusion/fission operations. Hence, the overhead of our
proposed schemes is small and thus, we find that our centralized scheme
is well suitable for managing smaller many core systems, while our
distributed schemes is well suitable for systems with hundreds of cores.

XI. CONCLUDING REMARKS

In this paper, we show how a high system throughput can be achieved
and maintained even in large many core systems despite unpredictable,
significant variances in the demand for both computational as well
as for communication resources. This is achieved by optimizing the
configurations (fusion of stages) and the distribution of cores among the
applications at runtime. Additionally to proposing an optimal scheme,
we show how optimality can be sacrificed to maintain near-optimal
throughputs even for large systems with hundreds of cores.
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SUPPLEMENTAL MATERIAL

S1. PIPELINE PROCEDURES

Each application corresponds to a single executable file. Two parameters,
FirstStage and Fusions, controls which of its stages are executed. Both param-
eters are supplied from the command line when the application is started on a
core, but may be changed by an application head during runtime to change the
fusions/fissions of stages.

Example 1 Pseudo-code of a Pipeline Procedure
This is the main (entry point) procedure for an application which is executed
on each core that is assigned to the application. StageFunction is the individual
function that executes the functionality of stage i.
Input:

FirstStage First stage to be executed on this core
Fusions Number of stages to be executed on this core

1: while true do
2: if FirstStage > 1 then
3: data = ReceiveData( FirstStage− 1 );
4: end if
5: for i = FirstStage to Fusions do
6: if Task Migration Triggered (send state) then
7: SendState( Destination )
8: continue
9: end if

10: if Task Migration Received (receive state) then
11: ReceiveState( )
12: continue
13: end if
14: data = StageFunction( data )
15: end for
16: if FirstStage+ Fusions < Nk then
17: SendData( FirstStage+ Fusions+ 1, data );
18: end if
19: end while

The main pipeline procedure forms the entry point which is started on each
core that is assigned to an application. Example 1 illustrates this: For each
iteration, an iteration starts with receiving the required input data (if it is not
the first stage) (lines 2-4). Then, all stages that are fused on the current core
are executed sequentially (lines 5-15). Finally, the output data is sent to the
succeeding stage, if applicable (lines 16-18).

We carry out our application-layer task migration in this loop: When one or
more stages are migrated to a different core, they save and transmit their state.
The middleware supports this when our schemes decide to assign a new core
to an application (i.e. this core was not already assigned to this application) by
starting the

S2. EXAMPLE OF FUSING PIPELINE STAGES

Given the pipeline k shown in Figure S-1 with Nk = 4 stages and having
available up to Mk = 4 cores to assign to it, we first proceed to build table
Fk(l, j) according to Equation (3), as stated in Algorithm 1:

Fk(1, 1) = 60 Fk(2, 2) = 110 Fk(3, 3) = 110
Fk(1, 2) = 150 Fk(2, 3) = 60 Fk(3, 4) = 140
Fk(1, 3) = 100 Fk(2, 4) = 90
Fk(1, 4) = 130 Fk(4, 4) = 70

50
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50
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20
100

50
080

10
80 20 20

20

Fig. S-1: Pipeline example

The next step is to compute the initial conditions for the table Rk(j,m)
according to Equation (4), which in other words means to compute the maximal
computational requirements for a sub-pipeline with j stages using up to m cores.
Since this are initial conditions, the tracking table TRk(j,m) for m = 0, 1 has
no previous value for j∗, and is therefore filled with zeros.

From now on, since m ≥ 2, the table Rk(j,m) is build according to Equation
(6). In this particular example, when m = 2 the solution for every sub-pipeline
chooses to use the result from Rk(1, 1) and to fuse the rest of the stages together
in one core, thus, the tracking table TRk(j, 2) will be filled with j∗ = 1 for
any j.

The resultsare shown in Table S-I. The optimal solution can be derived from
table TRk(j,m): Starting from cell (j,m) = (4, 4) and traverse the table in
the direction (j∗,m− 1), one can derive that the optimal solution fuses stages
S2 and S3, and leave stages S1 and S4 as they are.

Rk(4, 4): Maximal response

j

m
1

1

2

2

3

3

4

4

60 150 100 130

60 110 60 90

60 110 60 70

60 110 60 7070

TRk(4, 4): Tracking

j

m
1

1

2

2

3

3

4

4

0 0 0 0

1 1 1 1

1 2 3 3

1 2 3 44

3

1

0

TABLE S-I: Example tables from Algorithm 1

R1(3, 6)

m

1

2

3

4

5

6

R1(3,m)

130

90

70

70

70

70

R2(5, 6)

m

1

2

3

4

5

6

R2(5,m)

120

110

100

90

80

80

R3(4, 6)

m

1

2

3

4

5

6

R3(4,m)

300

300

80

40

40

40

TABLE S-II: Example tables of different pipelines

S3. EXAMPLE OF CONSTRUCTING TABLES

Example: Given the pipelines R1, R2 and R3 shown in Table S-II, with
weights w1 = w2 = w3 = 10000 and having up to M = 6 available in the
system, in order to find the maximal overall system throughput we first proceed
to compute the initial conditions for the table G(k,m) according to Equation
(7). Since this are initial conditions, the tracking table TG(k,m) for k = 1 has
no previous value for m∗, and is therefore filled with zeros.

From now on, since k ≥ 2, the table G(k,m) is build according to Equation
(8).

The fully completed results are shown in Table S-III. Looking at table
TG(k,m), starting from cell (k,m) = (3, 6) and traversing the table in the
direction (k − 1,m∗), one can derive that the optimal solution will assign one
core to pipeline R1, one core to pipeline R2 and four cores to pipeline R3.

S4. ADAPTION OF THE STATE-OF-THE-ART SCHEMES OF [2], [10]

This section details how we adapted the state-of-the-art schemes of [2]
and [10] in order to achieve a fair comparison to our proposed schemes.

G(3, 6): Overall Performance

k
m

1 2 3

1

2

3

4

5

6

76.92 −∞ −∞

111.11 160.26 −∞

142.86 194.44 193.59

142.86 226.19 227.78

142.86 233.76 285.26

142.86 242.86 410.25

TG(3, 6): Tracking

k
m

1 2 3

1

2

3

4

5

6

0 -1 -1

0 1 -1

0 2 2

0 3 3

0 3 2

0 3 22

1

0

TABLE S-III: Example tables from algorithm 2
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A. AIAC [2]
AIAC exchanges workload between physically neighboring cores to balance

the computational load evenly. To adapt this scheme for software-pipelined
applications in many core systems, we exchange workload by migrating pipeline
stages when the computational load is not balanced. This is achieved by
comparing the load of adjacent cores and migrating a pipeline stage i when
the difference of the summed computational demands among all stages on each
core exceeds ci. To achieve a fair comparison, we relax the assumption that only
consecutive stages may be mapped to the same core. For our implementation of
AIAC, a core may execute any stage from any application.

B. DistRM [10]
DistRM [10] distributes cores among applications, but relies on the applica-

tions to themselves decide how to distribute their tasks accordingly. Therefore, we
use our optimal fusion algorithm from Section VI to achieve a fair comparison.
Consequently, only the number of cores assigned to each application differs
between DistRM and our schemes. Fusions of pipeline stages are carried out
identically. We also adapt DistRM by using the speed-up vectors according to
Section VI. As DistRM remains in local optima if the speed-up of an application
does not increase with another core (even if this was the case for a larger
number of additional cores), we report marginal improvements (we choose an
ε = 5 ∗ 10−4) as long as the number of cores does not exceed the number of
stages of the corresponding application. Using the described adaptions, we can
achieve a fair comparison with DistRM.
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