
Faculty of Computer Science, Electrical Engineering and Mathematics

Department of Computer Science

Master Thesis

Easy-to-use on-the-fly binary program acceleration

on many-cores

Author:

Marvin Damschen

First reviewer:

Jun.-Prof. Dr. Christian Plessl

Second reviewer:

Prof. Dr. Friedhelm Meyer auf der Heide

August 28, 2014

Abstract

This thesis introduces Binary Acceleration At Runtime (BAAR), an easy-to-use on-the-

fly binary acceleration mechanism which aims to tackle the problem of enabling existent

software to automatically utilize accelerators at runtime. It is able to achieve a speedup

of up to 4 without any hints and 5.77 with hints, when comparing execution of code

compiled with the Intel C++ Compiler at O2 on an Intel Xeon E5-2670 to execution

using BAAR utilizing an Intel Xeon Phi 5110P accelerator card.

BAAR bases on the LLVM Compiler Infrastructure and has a client-server architecture.

The client runs the program to be accelerated in an environment which allows program

analysis and profiling. Program parts which are identified as suitable for the available

accelerator are exported and sent to the server. The server optimizes these program parts

for the accelerator and provides RPC execution for the client. The client transforms its

program to utilize accelerated execution on the server for offloaded program parts.

This thesis makes three main contributions: Firstly, a server backend for BAAR to utilize

an Intel Xeon Phi accelerator card for executing remote calls is presented. It requires

LLVM IR to be transformed into Xeon Phi binaries. Secondly, a mechanism to automat-

ically identify function calls suitable for remote execution on the accelerator is designed

and implemented. Finally, BAAR is extended to perform automatic parallelization and

vectorization on offloaded code using LLVM Passes.

The implementation of BAAR is evaluated in detail. Its practicality for real-world exam-

ples is shown based on stencil codes. The insights gained during evaluation are used to

describe future directions of research, e.g., offloading more fine-granular program parts

than functions, a more sophisticated communication mechanism or introducing on stack

replacement.

iii

Acknowledgements

I would like to express my gratitude to my advisor Jun.-Prof. Dr. Christian Plessl for

his support throughout the work on this project and his valuable professional advice. I

also want to thank Tobias Kenter from the Custom Computing Group for his constructive

criticism.

My special thanks goes to the Paderborn Center for Parallel Computing, PC2, for pro-

viding access to all the technical resources I needed. My heartfelt thanks to Axel Keller

for his swift and helpful technical support.

I express my deepest appreciation to Katharina Kalisch for her continuous support for all

of my endeavors.

v

Declaration Of Authorship

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text and that this work has not been

submitted for any other degree or professional qualification except as specified.

Paderborn, August 28, 2014

Marvin Damschen

vii

Contents

Abstract iii

Acknowledgements v

Declaration Of Authorship vii

1. Preface 1

1.1. Motivation . 1

1.2. Related Work . 2

1.3. Our Approach . 3

1.4. Goals Of This Thesis And Document Structure 5

2. Introduction 7

2.1. Automatic Parallelization . 7

2.1.1. Multi-Threading . 7

2.1.2. Vectorization . 8

2.2. The LLVM Compiler Infrastructure . 8

2.2.1. Overview . 8

2.2.2. LLVM Immediate Representation . 9

2.2.3. Pass And Pass Manager . 10

2.2.4. Execution Engine . 11

2.2.5. Polly . 11

2.3. The BAAR On-The-Fly Acceleration Environment 12

2.3.1. BAAR Client . 12

2.3.2. BAAR Server . 17

2.4. Intel Xeon Phi . 18

3. Implementation Of The Xeon Phi Backend 21

3.1. Introduction . 21

3.2. Running The Server On The Xeon Phi . 22

ix

Contents

3.3. Preparations For Xeon Phi Support . 23

3.4. Native Xeon Phi Support . 25

3.4.1. Introduction . 25

3.4.2. Generating C/C++ Code From LLVM IR 25

3.4.3. Initialization Of The ExtCompilerBackend 26

3.4.4. Performing Function Calls With The ExtCompilerBackend 28

4. Automatic Identification Of Suitable Function Calls 31

4.1. Gathering Candidates By Profiling . 31

4.2. Scoring Functions For Suitability . 32

4.3. Runtime Decisions Based On Score And Argument Size 34

5. Optimizing The Remote Part On Server Side 39

5.1. Server Side Optimization . 39

5.2. Parallelization . 40

5.3. Vectorization . 41

6. Evaluation 47

6.1. Abilities And Limitations Identified . 47

6.1.1. Alias Analysis . 47

6.1.2. Data Dependencies . 49

6.2. Performance . 50

6.2.1. Program Analysis And Acceleration . 52

6.2.2. Function Execution . 56

6.3. Runtime Decision . 62

7. Conclusion And Future Directions 65

Appendix A. Contents Of The Attached Data Medium 69

Appendix B. Building The BAAR Environment 71

B.1. Building LLVM Including Polly With CMake . 71

B.1.1. Host Build . 71

B.1.2. Cross-Building LLVM Including Polly For The Intel Xeon Phi 73

B.2. Building BAAR . 75

B.2.1. Host Build . 75

B.2.2. Cross-Building BAAR For The Intel Xeon Phi 76

Appendix C. Starting The BAAR Environment 77

x

Contents

Bibliography 79

xi

List Of Figures

1.1. The program is analyzed and profiled during execution to identify parts suitable

for offloading. Once enough information is gathered, suitable parts are exported

and the program is adapted to call these parts remotely. 3

1.2. The exported module (remote part of the program) is sent to the server, where it

is transformed and optimized. Afterwards, the server is responsible for handling

calls of the adapted original program (local part) to the remote part. 4

2.1. Simple vectorization example . 8

2.2. Hello World in C and LLVM IR code side-by-side (both shortened for brevity) . 9

2.3. BAAR Client implementation overview . 13

2.4. BAAR Server implementation overview . 17

3.1. Overhead when placing BAAR Server on CPU 22

3.2. BAAR Server with server backends implementation overview 23

3.3. High level view on the ExtCompilerBackend initialization process 26

6.1. Distribution of time taken for acceleration initialization 54

6.2. Raw execution times for jacobi 2d with N=1000 (logarithmic scale) 57

6.3. Raw execution times for jacobi 2d with STEPS = 10000 (logarithmic scale) . . 58

6.4. Execution times for fdtd 2d with STEPS = 10000, N = 2000 61

xiii

List Of Listings

2.1. Simple scalar loop . 8

2.2. Vectorized loop . 8

2.3. Hello World in C . 9

2.4. Hello World in LLVM IR . 9

2.5. Definition of variadic function callAcc in client runtime 13

2.6. Function declaration of an offloaded function with the C signature unsigned

testfunc(short arrArg[][10], unsigned int arrArgSize) after RPCAccelerate

was run on it (comments added) . 15

2.7. Excerpt from SocketClient class source code showing argument marshalling in

a heavily shortened form (with added comments) 16

3.1. Definition of ExtCompilerBackend::buildShellScript(..), generating the shell

script to call an external compiler (comments added) 27

4.1. Excerpt of client runtime code showing how candidate functions are gathered

(shortened, added comments) . 33

4.2. Excerpt of AccScore Pass implementation (shortened, added comments) 35

4.3. Conceptual scheme of a function body after RPCAccelerate was run on it 36

4.4. Excerpt of an offloaded function’s declaration having the C signature

void testfunc(double* fin, int elements) after the extended

RPCAccelerate Pass was run on it (shortened, comments added) 38

5.1. optimizeModule(..) defined in AbstractServer showing the Passes needed for

paralellization . 42

5.2. Final optimizeModule implementation in AbstractServer (commented, shortened) 45

6.1. Matrix multiplication example which fails alias analysis 48

6.2. Example containing a SCoP with data dependencies 49

6.3. Two dimensional Jacobi stencil code used for performance evaluation 51

6.4. FDTD stencil code for a square matrix . 61

xv

List Of Tables

6.1. Time taken for program Module analysis and alteration 53

6.2. Time taken initializing the acceleration with all optimizations 54

6.3. Time taken for optimization . 55

6.4. Time taken for callAcc calling jacobi 2d with STEPS = 10000 and full opti-

mization . 59

6.5. function score
bytes to transfer for jacobi 2d and several values of N and STEPS 63

6.6. Average speedup for jacobi 2d and several values of N and STEPS when com-

paring offloaded to local execution . 63

xvii

1. Preface

1.1. Motivation

Modern computer systems supply multiple diverse computing cores. Current graphic cards can

be utilized for general purpose computations and several instruction set extensions to the x86

architecture, especially for single instruction multiple data (SIMD) operations, are available.

These techniques offer a huge potential for optimizing applications. However, to exploit the

full performance these heterogeneous architectures provide, programs have to be specifically

optimized and frameworks like, e.g., OpenCL or vendor-supplied APIs have to be used. Fur-

thermore, existent software has to be adapted to the new developments in computer technology.

Without adaptation, it misses the possible performance increase new instruction set extensions

and accelerators provide, but it is unreasonable to expect that any software, which could benefit

from these new developments, will be adapted to utilize any available instruction set extension or

accelerator. The rise of multi-core over single-core processors in the past decade has shown how

cumbersome the optimization of software for new computer architectures can be for software

developers.

Experienced software developers are able to exploit the full potential of their systems by manually

optimizing their code. However, to manually optimize for a broad range of steadily advancing

computer architectures is time and resource consuming, it can quickly become unmanageable.

Therefore, automatic tools to optimize software for instruction set extensions and accelerators are

needed. Compiler suites supply invaluable tools for developers which aid optimizing software for

new technology. Though when dealing with closed-source legacy software, developers relying on

a certain library and users relying on a certain program cannot fulfill their needs for optimized

software by employing compiler suites. The possibilities to optimize compiled software are

generally scarce. A widely used approach to cope with this problem is just-in-time compilation.

Most Java Virtual Machines perform just-in-time compilation of Java bytecode and therefore

feature adaptive optimization, but only in a limited extent as the target platform is the same

as the platform running the virtual machine. Most notably, accelerators are not utilized by this

1

1. Preface

approach. To exploit the full performance of modern computer systems with existing software,

a more general approach than just-in-time compilation is needed.

1.2. Related Work

Optimizing existent software for new technology has previously been studied. Several projects

try to tackle this problem in various ways.

The Intel SPMD Program Compiler (ispc) project [22] follows a static approach. It is a compiler

for a C-based programming language with single program multiple data (SPMD) extensions. ispc

is designed to enable programmers to write programs which exploit vector units and multiple

cores of current CPUs in a familiar language, without the need of directly writing intrinsics. In

contrast to our approach, ispc requires a programmer to rework available source to use the ispc

language. Furthermore, once the source is compiled into a binary there is no way of adapting

the binary to changing environments.

KernelGen [19] is a project which follows a more dynamic, but also more specialized approach

than ispc. KernelGen consists of a compiler pipeline, as well as a runtime environment. It

supports standard C and Fortran code as input. The code is compiled into an object file which

contains CPU code and GPU kernels for compute intensive parts in a preliminary representation.

At runtime, the GPU kernels are automatically parallelized and JIT-compiled with the help

of runtime information. Similar to our approach, KernelGen tries to tackle the problem of

accelerating legacy programs without manually adapting them. However in contrast to our

approach, KernelGen requires the source code to be available and it is specialized on NVIDIA

GPUs.

The sambamba project [24] aims to parallelize and dynamically adapt programs to the available

resources at runtime using adaptive dispatch between sequential and parallel function defini-

tions. C/C++ code is statically analyzed during compilation and linked in intermediate form

to a runtime environment resulting in a fat binary. The runtime environment can access the

information gathered at compile time, as well as instrument the code dynamically. The informa-

tion is used to dynamically adapt the program using just-in-time compilation to execute most

efficiently in the current environment. sambamba creates binaries which can dynamically adapt,

but does not incorporate accelerators. Similar to classic just-in-time compilation, the adaptation

is limited to the target the program is currently running on. Our approach aims to support any

resource available, including accelerators.

2

1.3. Our Approach

…
int main()
{
…

callAcc(“heavyFunc”);
…
}
…

…
int main()
{
…

heavyFunc();
…
}
…

heavyFunc() {
…
…
…

}

Figure 1.1.: The program is analyzed and profiled during execution to identify parts suit-

able for offloading. Once enough information is gathered, suitable parts are

exported and the program is adapted to call these parts remotely.

1.3. Our Approach

Our approach is to profile and analyze running programs during execution in ways similar to

just-in-time compilation techniques. Though instead of directly optimizing heavy parts of the

program for the same processing unit the program is currently running on, we extract them into

a module which can be processed further to optimized code for a suitable target. Our goal is to

split the program into a remote part – the optimized code in the module – and a local part – an

altered version of the program which calls the remote part instead of the original unoptimized

code – as depicted in Figure 1.1. The optimization of the module as well as the alteration of the

original program happen during execution, transparent to the user. The target on which the

remote part is executed can be an accelerator in the same system the program is running on, it

can also be a remote server communicating with our local system. Furthermore, the architecture

of the target does not have to be known in detail to our local system. The optimization of the

module takes place on the target system (server) and it provides previously defined interfaces

to call procedures from our local system (client) once it is done. Communication between server

and client can be handled over shared memory if running on the same system, or network

otherwise. A sample setup is depicted in Figure 1.2.

This approach differs from the approaches presented in Section 1.2, because neither does it re-

quire the source code to be available nor is the acceleration target fixed in any way. Our approach

is open to any combination of host architecture, target architecture and communication mech-

anism and is therefore not bound to any specific use case. It can be used to optimize programs

to utilize a graphic card in the same system, it can also be used to offload heavy computations

3

1. Preface

Remote part

heavyFunc()

return value

Figure 1.2.: The exported module (remote part of the program) is sent to the server,

where it is transformed and optimized. Afterwards, the server is responsible

for handling calls of the adapted original program (local part) to the remote

part.

from a desktop computer to a super computer. However, our approach requires programs in

a format which is suitable for analysis, profiling and adaptation in terms of optimization and

transformation. A suitable format for our needs is the LLVM immediate representation (LLVM

IR). The LLVM compiler infrastructure (LLVM) [17] is an extensive set of modular and reusable

compiler and toolchain technologies. LLVM IR is a code representation used for compiler trans-

formations and analysis within LLVM. It is safe to assume programs in the form of LLVM IR,

even when source code is unavailable, as the feasibility of transforming binaries into LLVM IR

has been shown [9]. LLVM IR gives us the possibility to make use of powerful LLVM tools

to analyze and transform our program. Furthermore, we can export the parts of our program

to be optimized in form of LLVM IR and send them to the server to be analyzed and trans-

formed further. Additionally, we can make use of the LLVM backends to transform our code in

LLVM IR into binaries for several target architectures. The LLVM compiler infrastructure is a

fundamental element to realize our approach.

Finding a suitable representation for program code throughout our approach is just one of the

several problems which have to be tackled for a successful realization. To be able to accelerate

programs, they have to be analyzed first. Therefore, profiling metrics and approaches have to

be explored to enable the implementation of sophisticated means to analyze programs during

execution. To know which parts of the program consume much time and resources is not enough

however, a model of the expected speedup in respect to general characteristics of the target ar-

chitecture when offloading parts to a server is also necessary. Without it, we would possibly

offload code which is not suitable for the target architecture the server provides. Furthermore, a

suitable protocol for client-server communication has to be defined to ensure correct execution

while minimizing delays when offloading and optimizing code; implementations of communica-

4

1.4. Goals Of This Thesis And Document Structure

tion mechanisms should always exploit the advantages of their medium. Once the server receives

the module, containing the exported program parts to be accelerated, it has to process the con-

tained LLVM IR to make it most suitable for the target architecture by employing LLVM tools

and possibly target-specific compilers, e.g., this can mean that the code has to be distributed

to several threads and operations have to be transformed to utilize instruction set extensions.

At the end of this process, a target-specific binary has to be employed by the server to execute

incoming calls from the client.

1.4. Goals Of This Thesis And Document Structure

The main goals of this thesis are to realize our approach of an easy-to-use on-the-fly acceleration

framework for binary programs and to study its prospects as well as its limitations. The existing

implementations of acceleration client and server will be thoroughly introduced in the following

chapter and be used as a basis to extract and offload code in the form of LLVM IR. This basis

is incrementally extended in the remainder of this thesis.

Chapter 3 deals with the design and implementation of a mechanism to transform LLVM IR

code into binaries for the Intel Xeon Phi processor family [15]. The Intel Xeon Phi will be the

target architecture for the acceleration server throughout this thesis.

On the basis of the Intel Xeon Phi as an acceleration target, the possibilities of profiling and

analyzing running programs are explored in Chapter 4. The acceleration client is extended to

automatically identify function calls suitable for accelerated remote execution.

The Intel Xeon Phi requires highly parallelized and vectorized code to exploit its full potential.

Therefore, parallelization and vectorization are crucial for the offloaded code to perform well.

Chapter 5 discusses the problem of applying these optimizations automatically. Furthermore,

the acceleration server is extended to perform automatic parallelization and vectorization on the

code it receives from the client.

After acceleration client and server were extended to automatically identify, offload and optimize

function calls to be accelerated on the Intel Xeon Phi, a proof-of-concept version of our approach

of an easy-to-use on-the-fly acceleration framework for binary programs is ready to be evaluated.

Chapter 6 discusses the evaluation of the implementation, its performance and the function call

identification mechanism. In this chapter the practicality of our approach is demonstrated and

valuable insights gained during evaluation are discussed. Additionally, opportunities for further

developing our approach are pointed out.

Chapter 7 concludes this thesis. It discusses the insights gained in previous chapters and explores

5

1. Preface

future directions of our approach of an easy-to-use on-the-fly acceleration framework for binary

programs.

The following chapter extensively introduces the fundamentals needed for the topics discussed

in the remainder of this thesis.

6

2. Introduction

2.1. Automatic Parallelization

To exploit the full performance of modern multiprocessor systems, sequential code needs to be

parallelized. Manually parallelizing sequential programs is time consuming and error-prone how-

ever. Automatic parallelization are optimizations performed by a compiler which aim to relive

programmers from this task. As most of the execution time of a program is generally spent in

loops, automatic parallelization mainly focuses on these control structures. Automatic paral-

lelization faces very difficult challenges, e.g., the number of iterations of a loop may be unknown

at compile time, pointers as well as indirect addressing complicates dependence analysis and re-

source accesses need to be coordinated. The most commonly applied automatic parallelization

techniques are multi-threading and vectorization, which will also be the central optimizations

performed to accelerate programs on a many core processor in this thesis.

2.1.1. Multi-Threading

Automatic multi-threading is an optimization that tries to split up the iterations of a loop

to execute them in separate threads. These threads can then be distributed among multiple

processors at runtime, allowing parallel execution of formerly sequentially executed iterations.

It may not always be safe to execute a loop in multiple threads as the iterations may depend

on each other. Additionally, the computations performed by the loop may not be heavy enough

so that the overhead imposed by maintaining multiple threads may exceed the time saved.

Therefore, automatic multi-threading requires a comprehensive analysis of the program to be

parallelized.

Automatic multi-threading is commonly referred to as automatic parallelization or simply paral-

lelization when used in context. Automatic parallelization techniques other than multi-threading

are treated as special cases and denoted explicitly. In the following, the same terminology will

be used. Automatic multi-threading will simply be referred to as parallelization throughout this

7

2. Introduction

1 for (int i = 0; i < 1024; i++)

2 A[i] = B[i] + C[i];

Listing 2.1: Simple scalar loop

1 for (int i = 0; i < 1024; i=i+4)

2 A[i:i+3] = B[i:i+3] + C[i:i+3];

Listing 2.2: Vectorized loop

Figure 2.1.: Simple vectorization example

thesis.

2.1.2. Vectorization

Automatic vectorization tries to optimize programs to make use of the single instruction multiple

data (SIMD) extensions available in modern processors wherever possible. For this purpose,

scalar operations working on a single pair of operands are transformed into vector operations

working on multiple pairs of operands at the same time.

Figure 2.1 gives an idea of the concept of vectorization. Listing 2.1 shows a for-loop, which

iterates over all elements of arrays B and C to pairwise add them. The result is stored in array

A. This scalar code operates on one pair of elements at a time. Listing 2.2 shows a vectorized

version of the same loop. This version operates on four elements at a time. Consequently, i

is increased by four in every iteration. Assuming the hardware provides a SIMD unit able to

process four elements at a time, the performance of the loop is drastically improved.

Similar to parallelization, automatic vectorization may only be applied when no dependencies

exist which could alter the result. To guarantee that vectorization can safely be applied, thorough

program analysis is crucial.

In the remainder of this thesis, automatic vectorization will simply be referred to as vectorization.

2.2. The LLVM Compiler Infrastructure

This section introduces the compiler infrastructure LLVM. It is a fundamental part of the real-

ization of our approach of on-the-fly binary program acceleration.

2.2.1. Overview

LLVM [11, 17] is an umbrella project consisting of numerous low-level toolchain tools and li-

braries. LLVM was formerly an acronym for Low Level Virtual Machine, today it is the brand of

8

2.2. The LLVM Compiler Infrastructure

1 int main(int argc , char *argv []) {

2

3

4

5

6

7

8 printf("Hello World!\n");

9

10

11 return 0;

12 }

Listing 2.3: Hello World in C

1 @.str = private unnamed_addr constant [14 x i8]

c"Hello World !\0A\00", align 1

2

3 ; Function Attrs: nounwind uwtable

4 define i32 @main(i32 %argc , i8** %argv) #0 {

5 %1 = alloca i32 , align 4

6 %2 = alloca i32 , align 4

7 %3 = alloca i8**, align 8

8 store i32 0, i32* %1

9 store i32 %argc , i32* %2, align 4

10 store i8** %argv , i8*** %3, align 8

11 %4 = call i32 (i8*, ...)* @printf(i8*

getelementptr inbounds ([14 x i8]* @.str ,

i32 0, i32 0))

12 ret i32 0

13 }

Listing 2.4: Hello World in LLVM IR

Figure 2.2.: Hello World in C and LLVM IR code side-by-side (both shortened for brevity)

the umbrella project. One of its well-known sub-projects is the Clang C, C++ and Objective-C

compiler, which generates binaries performing similar to binaries generated by GCC while pro-

viding a very modular and accessible design. However, LLVM is far more than just the host of

Clang. An LLVM-based compiler follows the three phase approach of classical compiler design,

consisting of frontend (programming language support), optimization and backend (instruction

set support) [8]. From this point of view, Clang is just a frontend and it shares the optimization

and backend phases with several other frontends. This three phase design is implemented very

cleanly in LLVM and is not only used for static compilers like Clang, but also for interpreters

and just-in-time compilers implemented within LLVM. This results in a very modular framework

and high code reuse between different compilers as well as the other tools. A crucial part of

LLVM which enables this clean implementation of the three phase design and high reusability

of any of LLVM’s modules is the LLVM Immediate Representation.

2.2.2. LLVM Immediate Representation

The LLVM Immediate Representation (LLVM IR) can be seen as the most important part of the

LLVM design, it is a key factor which differentiates LLVM from other compiler implementations.

LLVM IR is the interface to any mid-level analysis or transformation. Therefore, any frontend

has to emit and any backend has to accept code in form of LLVM IR. LLVM IR is a low-

9

2. Introduction

level language, representing code in a RISC-like instruction set [21] with crucial higher-level

information added. This allows the representation of arbitrary programs and permits extensive

optimizations, supporting sophisticated analyses and transformations.

LLVM IR uses a load-store architecture, values are transferred only via load and store instruc-

tions using typed pointers between memory and registers. The LLVM instruction set overloads

opcodes and tries to avoid multiple opcodes for the same operations. Therefore, the instruction

set consists of just over 30 opcodes. These capture the key operations of ordinary processors.

However, LLVM does not introduce machine specific constraints. It provides an infinite set of

typed virtual registers and there are no pipelines or low-level calling conventions. Type informa-

tion, as a high-level feature in LLVM IR, is stored language independently and allows high-level

transformations on this low-level code. Figure 2.2 shows the ”Hello World” program in C and

LLVM IR code side-by-side to give an idea of how LLVM IR code looks like. LLVM IR is a more

low-level language than C, initialization of the stack frame is explicitly visible in the code.

The primary code representation of LLVM IR is Static Single Assignment (SSA) form, each

virtual register is written exactly once and every use of a register has a preceding definition. To

keep the code compact, memory locations in LLVM are not in SSA form. The SSA form simplifies

data flow optimizations by providing a compact definition-use graph. LLVM IR explicitly defines

the control flow graph of any function. Functions consist of basic blocks, and every basic block

is a sequence of instructions. The last instruction of each basic block is a single terminating

instruction, which explicitly defines succeeding basic blocks.

LLVM IR defines equivalent representations in textual, binary, and compiler internal in-memory

form. Conversion between these representations is possible without any information loss. The

extensive transformations and optimizations available on LLVM IR, as well as its forms of

representation make it a well fitting code representation for the aims of this thesis.

2.2.3. Pass And Pass Manager

Another central aspect of the LLVM design is the concept of a Pass [7]. Passes are units where

all the compiler logic happens in LLVM. Any analysis or transformation of LLVM IR code

happens inside a Pass. Dead code elimination, e.g., is implemented in a transformation pass

called dce. Analysis passes gather information about the code they are running on and provide

this information to other passes.

Passes are managed and run by an infrastructure which is accessible through the Pass Manager

class. Passes are added to the Pass Manager, the execution of the Passes can then be initiated

on an LLVM IR Module or function using it. The Pass Manager optimizes Pass execution by

10

2.2. The LLVM Compiler Infrastructure

avoiding recomputation of analysis results as much as possible and scheduling the Passes to run

efficiently by pipelining Passes together.

Our approach uses Passes to analyze the original program and to transform it into the local

part. Furthermore, program optimization in the server relies heavily on LLVM Passes.

2.2.4. Execution Engine

The LLVM Execution Engine [4] is a library for running LLVM IR code. It provides a portable

interpretation-only execution, as well as extensive just-in-time compilation features for supported

targets. It uses the same code generation backends as the LLVM compiler, but can optionally

use some faster components.

The Execution Engine supports recompilation of program parts during execution, which allows

changing the program at runtime. It is an important part of the client-side of our approach

and will enable us to build an environment to profile, analyze and alter the program during

execution.

2.2.5. Polly

Polly [13] is an LLVM subproject which integrates a state-of-the-art polyhedral optimization

infrastructure into LLVM. Polyhedral optimizations are optimizations which are based on the

polyhedral model [12], a formalism mostly used for the automatic parallelization of suitable

programs. Polly is build around CLooG and Isl1, well-known and advanced libraries used in

the polyhedral optimization community. Polly accepts LLVM IR as input and is therefore

programming language independent. Through the use of LLVM IR, language constructs like

C++ iterators, pointer arithmetic and goto based loops are supported.

Polly operates on Static Control Parts (SCoP), maximal sets of consecutive statements where

loop bounds and conditionals are affine functions of the surrounding loop iterators and the

parameters [10]. SCoPs are detected by semantically analyzing regions, subgraphs of the control

flow graph which are connected to the remaining graph by an entry and an exit edge only. With

the help of LLVM’s powerful program analysis Passes, Polly is able to successfully recover loop

bounds, conditions and array subscripts from the LLVM IR. No syntactic restrictions are imposed

on the program source code. Because Polly detects SCoPs by checking low-level code for SCoP

semantics, Polly’s optimizations are not limited to for-loops as many polyhedral optimization

tools are. Arbitrary control flow structures can be valid SCoPs. This is the case when they

1http://polyhedral.info

11

http://polyhedral.info

2. Introduction

can be rewritten as a well-structured set of for-loops and if-conditions with affine expressions

in lower and upper bounds and in the operands of the comparisons. Any memory access that

behaves like an array access with affine subscripts is allowed.

Polly will be used to parallelize the code offloaded to the accelerator in this thesis. It can detect

parallel loops exposed during polyhedral optimization and automatically generate thread-level

parallel code using GNU OpenMP2 runtime calls.

2.3. The BAAR On-The-Fly Acceleration Environment

BAAR was initiated during my time as a student assistant in the Computer Engineering Group

at the University of Paderborn. This section thoroughly describes the status quo of the on-the-

fly acceleration infrastructure BAAR in its state before the extensions described in the following

chapters were made. BAAR stands for ”Binary Acceleration At Runtime” and is our design of

an easy-to-use on-the-fly binary program accelerator.

2.3.1. BAAR Client

Overview

The client program is responsible for providing an environment to execute, observe and analyze

programs present in the form of LLVM IR. The client is run from the console. On startup, the

form of communication with the server – either shared memory or sockets – and the program to

run has to be specified. The program is parsed into an in-memory representation and used to

initialize an instance of the LLVM Execution Engine. The Execution Engine is then used to run

the program in parallel to the main thread of the client to be able to alter the running program

concurrently.

While the program is running, the variadic function callAcc is declared in it. callAcc is

a wrapper function for an accelerated function call. Its arguments are an encoded form of the

function signature of the to be called function and an indefinite number of additional arguments,

completing the function call in conformance to the signature. callAcc is defined in the client

runtime source file, externally accessible and outside of any class as shown in Listing 2.5. The

callAcc definition in the client runtime just delegates the function call to an instance of a

subclass of the AbstractClient class which handles the function call in a remote procedure call

fashion. Which subclass the instance belongs to is determined by the command line arguments at

2https://gcc.gnu.org/projects/gomp/

12

https://gcc.gnu.org/projects/gomp/

2.3. The BAAR On-The-Fly Acceleration Environment

delegates communication to

runs

AbstractClient

+ callAcc(retTypeFuncNameArgTypes : string, ... :)

ShmemClient SocketClient

RPCAccelerate

llvm::FunctionPass

+ runOnFunction(F : Function) : bool

llvm::Pass

ClientMain

+ callAcc(retTypeFuncNameArgTypes : string, ... :)
+ exportFunctionsIntoFile(.. :)
+ runExeEngine(.. :)
+ declareCallAcc(.. :)

Figure 2.3.: BAAR Client implementation overview

startup. Currently, it is either an instance of a class implementing communication over sockets

(SocketClient) or an instance of a class implementing communication over shared memory

(ShmemClient).

After the declaration of callAcc, compute intensive functions which should be executed by

the BAAR Server are exported into an LLVM IR module, the remote part (see Section 1.3).

Which functions to export is currently hardcoded, it is a goal of this thesis to choose functions

by profiling and analyzing the running program. Once all chosen functions are exported, the

connection to the server is established over the communication mechanism specified at client

start and the remote part is transferred.

1 extern "C" void callAcc(const char *retTypeFuncNameArgTypes , ...) {

2 // obtain list of arguments following retTypeFuncNameArgTypes

3 va_list args;

4 va_start(args , retTypeFuncNameArgTypes);

5

6 AccClient ->callAcc(retTypeFuncNameArgTypes , args);

7

8 va_end(args);

9 }

Listing 2.5: Definition of variadic function callAcc in client runtime

13

2. Introduction

Each function exported has to be altered for the original program to form the local part (see

Section 1.3). This procedure is implemented in an LLVM Pass, which is explained in detail

in the following section. Note that the user program is running concurrently in the Execution

Engine while all of these steps happen. Figure 2.3 gives an overview of the modules the client

implementation consists of.

RPCAccelerate Pass

The implemented LLVM Pass, named RPCAccelerate, is run on every function of the original

program which were previously exported. This process transforms the program into the local

part. The aim is to delegate every call to a function exported to the remote part to the server. It

would be costly to wrap every call to such a function in the original program with the callAcc

function, therefore the function definition itself is altered.

First, the function body is cleared completely. Afterwards, the Pass encodes the function sig-

nature into a string to pass as the first argument to the callAcc function. To support any

possible return type without having to overload callAcc for every type, a variable of the func-

tions return type is defined in the body of the function. It is passed to callAcc as a second

argument and functions as a container for the return value. Now the call to callAcc is inserted,

having the function signature as the first argument, the return value container as the second

argument, and all the arguments of the function being processed as the rest of the arguments.

Finally, a return is inserted into the function, either returning the value of the return value

container or void. An exemplary output of the RPCAccelerate Pass when run on a function

with the C signature unsigned testfunc(short arrArg[][10], unsigned int arrArgSize)

is shown in Listing 2.6.

Communication

callAcc delegates the communication to an instance of a subclass of the AbstractClient class.

Currently, there are two subclasses available ShmemClient, for handling communication over

shared memory, and SocketClient, for handling communication over TCP/IP sockets. Both

implementations are responsible for connecting to the server and sending the remote part. Ad-

ditionally, they have to handle function calls by marshalling function name and arguments, as

well as unmarshalling the result and arguments altered during the call.

Marshalling and unmarshalling of values is performed with type information available in the first

argument of the callAcc call, the encoded function signature. Currently, primitive data types

as well as arrays of any dimension with elements of a primitive data type are supported. Pointers

14

2.3. The BAAR On-The-Fly Acceleration Environment

1 @.str3 = private unnamed_addr constant [31 x i8]

c"10;32: testfunc :14;10;16:10;32\0A\00", align 1 // encoded

signature

2

3 ; Function Attrs: nounwind uwtable

4 define i32 @testfunc ([10 x i16]* %arrArg , i32 %arrArgSize) #0 {

5 %functionReturnValuePtr = alloca i32 // return value container

6

7 call void (i8*, ...)* @callAcc(i8* getelementptr inbounds ([30 x

i8]* @.str3 , i32 0, i32 0), i32* %functionReturnValuePtr , [10 x

i16]* %arrArg , i32 %arrArgSize) // call client

runtime callAcc

8

9 %functionReturnValue = load i32* %functionReturnValuePtr

10 ret i32 %functionReturnValue // return value from

container

11 }

Listing 2.6: Function declaration of an offloaded function with the C signature unsigned

testfunc(short arrArg[][10], unsigned int arrArgSize) after

RPCAccelerate was run on it (comments added)

15

2. Introduction

1 for (const auto& currArg : argTypes) { // iterate over type information

2 switch (currArg) { // marshall argument according to type

3 case llvm::Type:: FloatTyID:

4 // floats are promoted to doubles by variadic function callAcc

5 case llvm::Type:: DoubleTyID:

6 sprintf(msg , ":%la", va_arg(args , double));

7 // add marshalled argument to message , move to next

8 break;

9 case llvm::Type:: IntegerTyID:

10 switch (* intBWiterator ++) {

11 // integers are marshalled according to their bitwidths

12 default: // other cases omitted

13 sprintf(msg , ":%x", va_arg(args , int));

14 // add marshalled argument to message , move to next

15 break;

16 }

17 break;

18 default:

19 error("ERROR , LLVM TypeID " + currArg + " in function \"" +

funcName + "\" is not supported");

20 }

21 }

Listing 2.7: Excerpt from SocketClient class source code showing argument marshalling

in a heavily shortened form (with added comments)

are always assumed to point to the first element of an array and are therefore treated as arrays.

Arrays are transferred to and from the server as a whole. There is currently no mechanism

to detect which elements of an array are actually read or altered. Furthermore, the argument

following an array argument has to be an integer indicating the total number of elements in the

array. A heavily shortened excerpt from the SocketClient class source code showing how some

of the primitive data types are marshalled into a string to be send over a socket is displayed

in Listing 2.7. When communicating over shared memory, the values are written to the shared

memory area directly, without changing the representation.

16

2.3. The BAAR On-The-Fly Acceleration Environment

starts

ServerMain

AbstractServer

parseIRToEngine(ir buffer : const char*) : llvm::ExecutionEngine*
initCommunication()
handleCommunication()
cleanupCommunication()
unmarshallCallArgs(buffer : char*, ... :)
+ AbstractServer()

ShmemServer SocketServer

Figure 2.4.: BAAR Server implementation overview

2.3.2. BAAR Server

Overview

The server program is responsible for optimizing and executing code for the client. It is run

from console, command line arguments specify which type of communication mechanism to use.

Currently, communication over sockets and over shared memory is available. At startup, the

server initializes the communication to enable the client to connect. Upon client connection,

the client sends its remote part. The server accepts the remote part, verifies it to be correct

LLVM IR code and initializes its backend with it. So far, the only backend available is running

the code in an LLVM Execution Engine directly, without any prior optimization. It is a goal of

this thesis to design and implement a modular way to perform optimizations and add further

backends to the server. Once the backend is initialized, the server accepts remote procedure

calls from the client and performs them. After any performed call, the result and potentially

altered arguments are sent back to the client. Upon client disconnect, the communication is

shut down cleanly.

Communication

The communication mechanisms are implemented in subclasses of the AbstractServer class,

as depicted in Figure 2.4. If communication over sockets is chosen at startup, an instance of

the SocketServer is initialized to handle the communication. Upon initialization, it creates a

TCP/IP socket and the server starts listening on it. For every incoming client connection, a

new thread is forked from the main thread to handle the communication with the client.

17

2. Introduction

In the case of communicating over shared memory, an instance of the ShmemServer class is instan-

tiated. It allocates a shared memory region upon initialization. Furthermore, two semaphores

are allocated. One semaphore is used to signal events for the other communication party to wait

on, the second is used to force the order of the protocol during communication. Currently, the

server supports one client only in shared memory mode.

Upon client disconnect, the corresponding socket is closed and the shared memory as well as

semaphores are freed, respectively.

While accepting and performing remote procedure calls from the client, values are marshalled

and unmarshalled with type information from the remote part the client sent. Similar to the

client, the server supports any combination of primitive data types as well as arrays of any

dimension with elements of a primitive data type as arguments. Furthermore, any value return

type is supported. Arrays are always transferred as a whole. Listing 2.7 displays a heavily

shortened excerpt from the SocketClient class source code, showing how some of the primitive

data types are marshalled into a string. Marshalling of arguments on the server side is a very

similar procedure.

The BAAR Client and Server will be heavily extended in the following chapters.

2.4. Intel Xeon Phi

The Intel Xeon Phi coprocessor is the first product based on the Intel Many Integrated Core

(Intel MIC) architecture [15]. It is a symmetric multiprocessor on-a-chip with up to 61 cores and

a clock rate of up to 1.24 GHz per core. After its release in 2013, it quickly gained prominent

use in the world’s fastest supercomputers [6]. The Intel Xeon Phi Codename Knights Corner

is available in the form of a PCI Express extension card, connecting the coprocessor chip to an

Intel Xeon-based host system.

The x86-based coprocessor cores provide a subset of the Intel 64 instruction set [14]. There is no

support for MMX, AVX or SSE instructions, but the newly introduced Intel Initial Many Core

Instructions (IMCI) for 512-bit wide vector computations are supported. The vector processing

unit executing IMCI instructions aims to support very high computational throughput for single

and double precision calculations. The instruction pipeline follows a superscalar in-order design.

Each core supplies four independent thread contexts and can execute two instructions per clock

cycle.

To fully exploit the performance of the Intel Xeon Phi coprocessor, programs have to be vector-

ized and parallelized. The 512-bit wide vector units of the coprocessor support the execution of

18

2.4. Intel Xeon Phi

operators on many pairs of operands at once. Furthermore, the many cores on the coprocessor

with the ability to execute two instructions per clock cycle offer massive performance for par-

allel programs. To utilize one core for over 90%, at least two threads have to be executed on

it. Depending on the specific Xeon Phi product available, there are between 57 and 61 cores

available. This means, to fully exploit the coprocessor performance, over 100 threads executing

vectorized code have to be run. Fortunately, the Intel Xeon Phi supports well known software

frameworks like OpenMP, MPI and OpenCL which aid parallelization.

Extensive information on the Intel Xeon Phi coprocessor its architecture and programming

interface can be found in [15]. The coprocessor will be the target accelerator for executing the

offloaded code throughout this thesis.

19

3. Implementation Of The Xeon Phi

Backend

3.1. Introduction

The Intel Xeon Phi was chosen as the first accelerator to function as a target for the imple-

mentation of our approach to on-the-fly binary program acceleration. This choice was made,

because its x86 based architecture allows porting of existent software just by recompiling it in

many cases and its support of well known software frameworks like OpenMP makes us confident

that its highly parallel architecture can effectively be utilized in our context. Therefore, code

generation, optimization and estimation of speedups will focus on the Intel Xeon Phi throughout

this thesis.

With the use of the LLVM Execution Engine, running programs in form of LLVM IR is very

easy on targets for which a backend is available in LLVM. For the Intel Xeon Phi this is not the

case at this writing. Furthermore, the Intel Compilers are currently the only compilers which

can generate binaries for the Xeon Phi which utilize the powerful vector instructions introduced

with the IMCI instruction set. However, the Intel Compilers do not support LLVM IR in any

way. Therefore, to be able to offload code in the form of LLVM IR onto the Xeon Phi, a way

of generating Xeon Phi binaries from LLVM IR code has to be designed and implemented.

Intel announced to release a Xeon Phi backend to LLVM with the next generation of Xeon Phi

accelerators, which are expected to arrive in the second half of 2015. This means that it would

be wise to allow an easy transition to Intel’s backend in the implementation of our approach.

A notable feature of the Intel Xeon Phi coprocessor is that it runs a dedicated Linux operating

system on the card itself. This gives us the choice of putting the acceleration server on the host

CPU or on the accelerator itself. The following Section 3.2 discusses how we placed the server

on the accelerator itself and why.

21

3. Implementation Of The Xeon Phi Backend

Client

Computer System with Accelerator

Accel

Server

marshalled
function call

marshalled
function call

result result

CPU Accelerator

Figure 3.1.: Overhead when placing BAAR Server on CPU

3.2. Running The Server On The Xeon Phi

For implementing support for the Intel Xeon Phi as a target for the BAAR Server, the first

choice to make is where to place the server. For many accelerators, the only feasible way

would be to run the server on the host CPU, which typically does not share memory with the

accelerator. In this case, the server would accept the LLVM IR module, perform optimizations

and then generate a binary for the accelerator. Afterwards, the server would execute the binary

on the accelerator and function as a proxy to run remote procedure calls from the client on the

accelerator. This approach introduces a lot of data transfers. The program is transferred from

the client to the server and from the server to the accelerator. More critically, any argument to a

call has to take the detour over the server to get to the accelerator performing it and any result

or altered argument has to take the detour back to the client. This introduces overhead, which

could be avoided if the client could talk directly to the accelerator. This problem is depicted in

Figure 3.1.

The Intel Xeon Phi coprocessor runs a dedicated Linux operating system, which can communi-

cate to other systems directly, without taking a detour over the host CPU. Most importantly for

our approach, it supports TCP/IP communication over sockets and can be contacted by other

systems in the same network. Furthermore, the Intel Xeon Phi architecture supports a subset

of the well known Intel 64 instruction set, which enables straight forward porting of existent

software. These features enable us to place the BAAR Server directly onto the coprocessor and

let it communicate with BAAR Client instances, possibly running on different systems in the

same network, over TCP/IP sockets. Arguments sent from the client to the server would then

directly be available for executing the remote procedure call without any further copying. This

saves a lot of overhead, but introduces the problem of porting the BAAR Server and all of its

22

3.3. Preparations For Xeon Phi Support

dependencies to the Xeon Phi. As the Intel Compilers are only available on the host CPU, the

whole software has to be cross-compiled. Because placing the server on the Xeon Phi results in a

very clean software architecture and saves a lot of overhead, we choose this approach and tackle

the problem of cross-compiling the BAAR Server and its dependencies, most notably LLVM, for

the Intel Xeon Phi.

3.3. Preparations For Xeon Phi Support

So far, the only way for the BAAR Server to execute LLVM IR code was to instantiate an LLVM

Execution Engine with the code and pass function calls to it. As the Xeon Phi is not supported

as an LLVM code generation target and the Intel Compilers are currently the only way to get

efficient binaries for it, we have to add an additional way for the server to execute LLVM IR.

Several ways of execution may be added in the future. Therefore, a modular design is needed,

allowing to choose which way to use at server startup.

starts

delegates function calls to

ServerMain

+ ParseCommandLineOptions(argc : int, argv : char**)

AbstractServer

parseIRToBackend(ir buffer : const char*) : AbstractBackend*
handleCall(backend : AbtractBackend*, marshalledCall : char*, ... :)
initCommunication()
handleCommunication()
cleanupCommunication()
unmarshallCallArgs(buffer : char*, ... :)
+ start()
+ end()
+ AbstractServer(backendType : backendTypes)

ShmemServer SocketServer

AbstractBackend

+ callEngine(F : llvm::Function*, ArgValues : const std::vector<llvm::GenericValue>&)
+ AbstractBackend(Mod : llvm::Module*&)

JITBackend

+ JITBackend(Mod : llvm::Module*&)

InterpreterBackend

+ InterpreterBackend(Mod : llvm::Module*&)

Figure 3.2.: BAAR Server with server backends implementation overview

In the following, the ”ways of execution” will be called server backends. Which server backend

to use should be selectable via command line options; furthermore, any combination of com-

munication mechanism and server backend should be supported. To cleanly implement this,

23

3. Implementation Of The Xeon Phi Backend

the command line interface of the BAAR Server is rewritten using the LLVM Command Line

Library1, and additionally the server does not directly instantiate an LLVM Execution Engine

anymore. An abstract class AbstractBackend is introduced which is the parent class of any

server backend. It is initialized with the remote part in LLVM IR and offers interfaces to parse

function names to receive function objects, as well as an abstract interface to perform function

calls. The abstract interface and the initialization of the class is implemented in child classes,

one child class for every implemented server backend. This design is depicted in Figure 3.2.

The JITBackend is one implementation of the AbstractBackend class; on instantiation, it just

instantiates an Execution Engine with the LLVM IR code received from the BAAR Client. It

implements the previous behavior of the server, therefore any function call is directly passed to

the Execution Engine. As the just-in-time capabilities of the Execution Engine are not available

for the Xeon Phi, a second server backend using the Execution Engine is implemented. The

InterpreterBackend class implements the AbstractBackend class similar to the JITBackend

class. In contrast to the JITBackend class however, the InterpreterBackend class instantiates

the Execution Engine explicitly without just-in-time capabilities. This leads to very poor per-

formance and lacks the ability to call native functions2. The InterpreterBackend is helpful for

testing the offload mechanism on new targets where native code generation is not yet available,

as is the case for the Intel Xeon Phi. Once the system as depicted in Figure 3.2 is cross-compiled

to the Xeon Phi, initial tests can be run on it. Note that the JITBackend can be cross-compiled

for the Xeon Phi, but fails to run LLVM IR due to the lack of machine code generation.

Several preparations have to be made to cross-compile BAAR to the Xeon Phi. First, LLVM

has to be cross-compiled as the BAAR heavily depends on its libraries. It is recommended to

use cross-platform make3 (CMake) to do so. Intel provides CMake toolchain files to ease cross-

compilation. The whole process is described in Appendix B.1.2. Once LLVM is available in

cross-compiled form, BAAR itself can be cross-compiled. So far, BAAR was built in the LLVM

source tree using the LLVM makefile system4. To support cross-compilation, the old makefiles

are discarded and CMake files are implemented. Additional to cross-compilation, using CMake

to build BAAR has several advantages: the project can be moved out of the LLVM source tree

and be built with a precompiled LLVM distribution, required and optional dependencies can be

checked before compilation, the architecture for which the project is build can be detected simply

and specific operations can be performed. Being able to detect the architecture is especially

important for having a single source base from which builds for several architectures should be

1http://llvm.org/docs/CommandLine.html
2Calling native functions is possible when LLVM is built with libffi which is introduced in Section 3.4.4
3http://www.cmake.org/
4http://llvm.org/docs/MakefileGuide.html

24

http://llvm.org/docs/CommandLine.html
http://www.cmake.org/
http://llvm.org/docs/MakefileGuide.html

3.4. Native Xeon Phi Support

compiled. Cross-compiling the offload mechanism is explained in detail in Appendix B.2.2.

Once the whole project is cross-compiled for the Xeon Phi, the server can be run on it with

the InterpreterBackend. To test the basic setup, LLVM and the BAAR also have to be built

for the host machine, a standard x86 desktop computer in our case. The required steps are

thoroughly explained in Appendix B.1.1 and Appendix B.2.1, respectively. Afterwards, simple

calculations can already be offloaded from the BAAR Client on the host to the BAAR Server

on the Xeon Phi. They must not reference any native functions and perform very poorly, but

the general setup already works.

3.4. Native Xeon Phi Support

3.4.1. Introduction

As it is now possible to run the BAAR Server on the Intel Xeon Phi in interpretation mode,

the next step is to extend it to generate native code for this target. Several problems have to

be solved for this. As currently the only way to get well-performing code for the Intel Xeon

Phi is to use the Intel Compilers, the offloaded LLVM IR code has to be transformed into a

representation the Intel Compilers accept. Additionally, the Intel Compilers are not available

on the Xeon Phi itself. Thus, the compiler on the system hosting the Xeon Phi accelerator

card has to be utilized. The BAAR Server on the Xeon Phi has to tightly cooperate with the

host system to obtain native code for the accelerator. Another problem is to combine the type

information from the LLVM IR code with the native functions available as void pointers to be

able to perform arbitrary function calls.

3.4.2. Generating C/C++ Code From LLVM IR

The Intel Compilers support compilation of C/C++ and Fortran code, therefore the offloaded

code has to be transformed from LLVM IR representation to one of these languages. LLVM

itself provided a Pass which transformed LLVM IR code to C code until the release of version

3.1 in May 2012 [3]. Unfortunately, it was removed due to lack of maintenance. As the Intel

ispc project (see Section 1.2) is an LLVM based compiler which also targets the Intel Xeon Phi

architecture, this project copes with the same problem our project faces: generated LLVM IR

code has to be transformed to be compiled with the Intel Compilers. For this, the ispc team chose

to revive and adapt the LLVM C backend for internal use. Fortunately, ispc is an open source

project. This enables us to integrate the LLVM C backend in its ispc adapted and updated form

25

3. Implementation Of The Xeon Phi Backend

Client

Computer System with Xeon Phi

Xeon Phi

Server

Host CPUAccelerator Card

Intel Compilers1. IR Code
2. C Code

3. Xeon Phi Binary

Figure 3.3.: High level view on the ExtCompilerBackend initialization process

into our project. Only minor modifications have to be made to resolve dependencies to the rest

of the ispc project and integrate it cleanly. The result of these modifications is an independent

software module which provides an interface to generate a *.cpp file from LLVM IR code.

3.4.3. Initialization Of The ExtCompilerBackend

The next step towards a native Xeon Phi server backend is to write a subclass for the

AbstractBackend class which implements the initialization and the abstract function call in-

terface using the modified ispc C backend. This subclass is called ExtCompilerBackend, as

it will support more targets than our setup of the Xeon Phi eventually. The initialization is

implemented in the constructor of the ExtCompilerBackend class. It gets LLVM IR code as an

argument and directly transforms it into C/C++ code, which is written into a *.cpp file. For

compiling the *.cpp file into native Xeon Phi code, the compiler of the system hosting the Xeon

Phi accelerator card must be utilized. This involves the following steps:

1. Copy *.cpp file from Xeon Phi to host system

2. Initialize build environment and cross-compile code into shared object file

3. Copy shared object file from host system to Xeon Phi

A high level view on the initialization process is depicted in Figure 3.3. On a lower level, a shell

script to perform these steps using Unix tools is generated at runtime in the buildShellScript

member function of ExtCompilerBackend. buildShellScript is the only Xeon Phi specific

part of the ExtCompilerBackend class. To generalize this server backend to be able to call

external compilers in different setups, buildShellScript is extended to call the standard system

compiler locally in the case of the server not running on the Xeon Phi. On which system the

26

3.4. Native Xeon Phi Support

1 std:: string ExtCompilerBackend :: buildShellScript(const std:: string

&export_name) { // export_name is the name of the exported C++ code

2 #ifdef _K1OM_ // when running on Xeon Phi , generate the following script

3 return std:: string("#!/ bin/sh\n"

4 // get remote host

5 "remote_host=${SSH_CONNECTION %%’ ’*} \n"

6 // copy C++ code to host of Xeon Phi

7 "scp "+export_name+".cpp $remote_host :. \n"

8 // initialize build environment (setup specific)

9 "ssh $remote_host ’module add intel/compiler

gcc /4.8.1 cmake /2.8.10.2 && "

10 // execute Intel Compilers remotely

11 "icc -w -mmic -o "+export_name+".so -shared

-fPIC "+export_name+".cpp && "

12 // copy Xeon Phi binary from host to accelerator

13 "scp "+export_name+".so ’\"$(hostname):.\"’

\n’");

14 #else // when not running on Xeon Phi , generate the following script

15 return std:: string("#!/ bin/sh\n"

16 // just run local standard C++ compiler

17 "c++ -w -o "+export_name+".so -shared -fPIC

"+export_name+".cpp \n");

18 #endif

19 }

Listing 3.1: Definition of ExtCompilerBackend::buildShellScript(..), generating the

shell script to call an external compiler (comments added)

server is running on is determined by a preprocessor macro which the CMake scripts define when

configuring the build. The function with this generalized behavior is shown in Listing 3.1.

The shell script generated by buildShellScript is executed by the constructor using a system

call, immediately after generating the *.cpp file. Details on this process and how to start the

acceleration server on the Xeon Phi can be found in Appendix C. Once the native code is available

on the Xeon Phi in the form of a shared object file, the ExtCompilerBackend constructor loads

this file dynamically into memory. It will provide the functions to call for executing remote

procedure calls for the client.

27

3. Implementation Of The Xeon Phi Backend

This concludes the initialization of the ExtCompilerBackend class. The steps taken to obtain

native Xeon Phi code from LLVM IR may seem cumbersome, they provide efficient code and ful-

fill our demands however. Once LLVM gains support for Xeon Phi code generation, this process

can simply be replaced by running the BAAR Server with the already existent JITBackend.

3.4.4. Performing Function Calls With The ExtCompilerBackend

After the initialization of the ExtCompilerBackend, the server is ready to accept calls from

the client. On arrival of a call, arguments are parsed into LLVM data types. The whole type

information is available in LLVM’s form of representation in the LLVM IR code the client sent

for initializing the acceleration. This means that for executing the call, the gap from the call

information – available in LLVM data types – to the native function – available as a symbol

in the shared object – has to be bridged. As the function signature is only known at runtime

and the ExtCompilerBackend is written in C++, a statically typed language, a foreign function

interface is needed. A foreign function interface allows to call functions in a language which

were written in another, it abstracts from calling conventions. A calling convention is a set

of assumptions made by a programming language’s compiler on where to find arguments on

function entry and where to put the result. [23] In our case, we call a native function available

as a void pointer in C++ with type information available in LLVM IR. For this purpose we will

use libffi5, a widely used foreign function interface library. LLVM can also optionally be built

with libffi, allowing the Execution Engine to call native functions when interpreting LLVM IR

without the availability of just-in-time compilation. Therefore, the Execution Engine provides

functions to transform values and types in LLVM IR into libffi representations. These functions

can perfectly be utilized for the ExtCompilerBackend. The whole process of executing a call

works as follows in the ExtCompilerBackend:

1. Load function as a symbol from the shared object, results in an untyped (void) pointer

to the function

2. Convert type information and values in LLVM IR into libffi representation

3. Call the function with libffi

4. Convert the result in libffi representation into LLVM IR and return it

With this mechanism in place, the BAAR Server provides native code generation for the Xeon

Phi from LLVM IR code. As BAAR now supports offloading LLVM IR code onto a real acceler-

ator, the next step is to automate the decision which parts of the code to offload. The following

5http://sourceware.org/libffi/

28

http://sourceware.org/libffi/

3.4. Native Xeon Phi Support

chapter deals with this problem.

29

4. Automatic Identification Of Suitable

Function Calls

So far, the functions to be offloaded to the BAAR Server for acceleration were hardcoded.

This chapter deals with the problem of extending the client to automatically identify functions

suitable for the accelerator. The following two sections deal with detecting compute intensive

functions and estimating their suitability for the accelerator. Once these steps are finished, it

is safe to assume that the functions can be optimized to run efficiently on it. However, some

remote calls to these functions on the server may still cause slowdowns when more time is spent

to transfer arguments and results between client and server than is saved by being able to

perform the computations more efficiently. Therefore, the third section investigates in trading

off heaviness of computations against the size of arguments and results.

4.1. Gathering Candidates By Profiling

As a first step towards identifying function calls suitable to be offloaded to the Intel Xeon Phi,

a set of candidate functions is chosen. This set should only contain promising candidates to

reduce processing power needed for the following heavier analysis. However, any function which

would be identified as suitable for the accelerator in the following analysis steps should also be

contained in the candidate set. As functions offloaded to the accelerator are parallelized with

polyhedral optimization, candidate functions should contain loops with high iteration counts.

Loops with high iteration counts result in very frequently executed basic blocks. Therefore,

the LLVM Pass BlockFrequencyInfo is run on every function defined in the running program

module. The information gathered by this analysis Pass is used to calculate the expected

number of times any basic block is executed per entry to the currently analyzed function. If the

maximum number of times a basic block is executed reaches a defined threshold, the function

containing this basic block is added to the list of candidates for acceleration. The threshold can

be defined with a command line argument on BAAR Client startup, its default value is set to

31

4. Automatic Identification Of Suitable Function Calls

100 so that functions containing loops are quickly added to the candidates set. How this process

is implemented is shown in Listing 4.1.

Once the maximum basic block frequency of any defined function in the program module is calcu-

lated, the gathering of candidates for acceleration finishes. The candidates are more thoroughly

analyzed as described in the following section.

4.2. Scoring Functions For Suitability

The set of candidate functions for acceleration, as described in the previous section, is further

analyzed to determine their suitability for the accelerator more precisely. The idea is to deter-

mine a score for every function in the set. This score should give an abstract value of suitability.

It is not necessary to estimate the speedup, the only information we need is whether a function

is expected to run faster when offloaded. By default, a function with a score greater than zero is

offloaded to the accelerator and further optimized by the BAAR Server. This threshold can be

configured with a command line parameter. The score is additionally used to make runtime de-

cisions based on its value and actual parameters to determine whether to execute a call remotely

or locally. This procedure is explained in the following section.

For scoring the candidate functions, a new Pass called AccScore is introduced. It is run sep-

arately on every candidate function. At first, it utilizes Polly’s SCoPDetection Pass to check

if the function contains at least one SCoP (see Section 2.2.5). SCoPs are the entities Polly’s

polyhedral optimizations are performed on. As the code has to be parallelized to run efficiently

on the Intel Xeon Phi and we rely on polyhedral optimization for this, static control parts are

crucial for getting speedups when offloading functions. Therefore, a function without any static

control part is assigned a score of zero and not further analyzed or offloaded.

A function containing at least one static control part is further analyzed. The AccScore iterates

over every detected static control part and in every static control part over every contained

loop nest. For every loop nest, the total numbers of floating point and integer operations

are determined separately. These two counts can be weighted by command line arguments, the

standard weight is one for both counts. The weighted counts are added and the result multiplied

to the innermost basic block frequency of the current loop nest to give a weighted estimate of total

floating point and integer operations performed when the current loop is executed. To determine

the innermost basic block frequency, the LLVM Passes LoopInfo and ScalarEvolution are

utilized. The weighted estimate of total floating point and integer operations defines the loop

nest’s score. The static control part’s score is the sum of loop nest scores, and the function’s score

32

4.2. Scoring Functions For Suitability

1 // instantiate Pass Manager for the running program module

2 llvm:: FunctionPassManager BlockFreqAnalysisPM(ProgramMod);

3 // add prerequisites for BlockFrequencyInfo Pass to Pass Manager

4 BlockFreqAnalysisPM.add(llvm:: createLoopSimplifyPass ());

5 // instantiate BlockFrequencyInfo Pass and add to Pass Manager

6 llvm:: BlockFrequencyInfo* BFIPass = new llvm:: BlockFrequencyInfo ();

7 BlockFreqAnalysisPM.add(BFIPass);

8

9 // instantiate list for candidates

10 std::list <llvm:: Function*> accelerationCandidates;

11 // iterate over any function in the running program

12 for (llvm:: Module :: iterator I = ProgramMod ->begin(); I !=

ProgramMod ->end(); I++) {

13 if (I->getName ().compare("main") == 0) // do not try to accelerate

main

14 continue;

15 // run Passes on current function

16 BlockFreqAnalysisPM.run(*I);

17

18 // get maximum absolute basic block frequency of function ’s basic

blocks

19 unsigned maxBBFreq = 0;

20 for (llvm:: Function :: iterator J = I->begin(); J != I->end(); J++) {

21 auto currFreq = BFIPass ->getBlockFreq(J).getFrequency () /

BFIPass ->getBlockFreq(J).getEntryFrequency ();

22 if (maxBBFreq < currFreq)

23 maxBBFreq = currFreq;

24 }

25

26 // if function contains a basic block executed more frequently than

threshold , add function to candidates

27 if (maxBBFreq > BBFreqThreshold)

28 accelerationCandidates.push_back (&(*I));

29 }

Listing 4.1: Excerpt of client runtime code showing how candidate functions are gathered

(shortened, added comments)

33

4. Automatic Identification Of Suitable Function Calls

is the sum of static control part scores. The implementation of the function scoring is shown in

Listing 4.2, Equation 4.1 gives a more concise representation of how the score is calculated.

scoreloop = (cIOPs · IOPsloop + cFLOPs · FLOPsloop) · innerBBFreqloop

scorefunction =
∑

SCoP∈function

∑
loop∈SCoP

scoreloop (4.1)

The score is immediately used to drop candidates which cannot be parallelized (score equals zero)

or which contain loops with too few compute intensive operations (low score, e.g., initializations

of arrays). The scores of the remaining candidate functions are stored. These functions will

be offloaded. The score will further be used to insert runtime decisions into these functions to

determine whether to offload or to locally execute a certain call. The insertion of the runtime

decisions is explained in the following section.

4.3. Runtime Decisions Based On Score And Argument

Size

Despite the fact that the chosen functions from the candidate set are considered as suitable for

the accelerator, it can still make sense to perform certain calls to these functions locally. This

is the case, when the time taken to transfer arguments to and results from the accelerator is

bigger than the time saved by running optimized code on it. Therefore, it makes sense to be

able to make the decision whether to execute a call to an offloaded function locally or remotely

at runtime, depending on the size and type of the arguments.

So far, the RPCAccelerate Pass run by the BAAR Client just clears the definition of offloaded

functions and inserts an appropriate call to the accelerator. This means that any call to an

offloaded function is executed remotely. Thus, the RPCAccelerate Pass has to be extended

to insert a runtime decision based on score and actual arguments. Conceptually, the resulting

function body of a function called func after the extended RPCAccelerate Pass was run on it

should conceptually look like shown in Listing 4.3.

This means, the previously determined score of func is compared to the weighted size of the

total bytes transferred in a remote call between client and server. If the score is bigger than

the weighted number of bytes, the call is executed remotely. If this is not the case, the old

function body is executed locally. Instead of comparing the score to the weighted total bytes

transferred, this can also be seen as comparing the fraction of the score over the weighted total

bytes transferred to a constant c as shown in Equation 4.3. From this point of view, the weight

c gives a threshold of how many score points per bytes transferred a function call has to have

34

4.3. Runtime Decisions Based On Score And Argument Size

1 // get information gathered by Polly’s SCoPDetection Pass

2 polly :: ScopDetection &SCoPDetect = getAnalysis <polly :: ScopDetection >();

3 if (SCoPDetect.begin() == SCoPDetect.end())

4 score = 0; // set function score to zero if no SCoP could be detected

5 else {

6 // get information gathered by LLVM’s LoopInfo Pass

7 LoopInfo &LoopInf = getAnalysis <LoopInfo >();

8 // iterate over detected SCoPs

9 for (auto Region = SCoPDetect.begin(); Region != SCoPDetect.end();

Region ++) {

10 unsigned long regionScore = 0;

11 // iterate over loop nests in current SCoP

12 for (LoopInfo :: iterator Loop = LoopInf.begin(); Loop !=

LoopInf.end(); Loop ++) {

13 // calculate execution count of loop nest’s innermost basic

block

14 unsigned long LoopInnermostTotalTripCount =

getInnermostTotalTripCount (** Loop);

15

16 unsigned totalLoopFLOPs = 0;

17 unsigned totalLoopIOPs = 0;

18 // count IOPs and FLOPs for current loop nest

19 for (const auto& Block : (*Loop)->getBlocks ()) {

20 // determine OP counts of current basic block (Visitor

pattern)

21 visit(Block);

22 totalLoopFLOPs += lastBB_FLOPs;

23 totalLoopIOPs += lastBB_IOPs;

24 }

25 // calculate current loop nest’s score

26 unsigned long loopScore = LoopInnermostTotalTripCount *

(IOPsWeight*totalLoopIOPs + FLOPsWeight*totalLoopFLOPs);

27 // accumulate to get region (SCoP) score

28 regionScore += loopScore;

29 }

30 // accumulate to get function score

31 score += regionScore;

32 }

33 }

Listing 4.2: Excerpt of AccScore Pass implementation (shortened, added comments)

35

4. Automatic Identification Of Suitable Function Calls

1 bytesTransferred = argumentSize + resultSize

2 if (funcScore > c*bytesTransferred)

3 callAcc(func , arguments);

4 else

5 oldfunc(arguments);

Listing 4.3: Conceptual scheme of a function body after RPCAccelerate was run on it

to be offloaded.

funcScore > c · bytesTransferred (4.2)

⇔
funcScore

bytesTransferred
> c (4.3)

To achieve this behavior, the RPCAccelerate Pass is extended to insert two new basic blocks in

front of the old function body instead of clearing the function. The first basic block, now the first

of the function, is filled with operations to calculate the total argument size in byte. The total

size of primitive arguments can be calculated directly by the RPCAccelerate Pass. The size

of arrays has to be calculated at runtime. For this, the existing limitation that the argument

after an array is an integer indicating the total number of elements is exploited. For every

array, instructions are inserted to multiply the argument following the array in the argument

list to the size of the element type. Further instructions are inserted to add the array sizes

and the size of the primitive arguments. The result of these instructions is the total size of

arguments in bytes. To finish the size calculation, instructions to add the result type size and

the total array size a second time is inserted to obtain the total number of bytes which have to

be transferred between BAAR Client and Server during a remote call. The total array size is

added twice, as the communication mechanism currently always transfers arrays to and from the

server completely. Note that a more intelligent communication mechanism would only transfer

changed array entries back to the client after the call. In this case, the total number of bytes

which have to be transferred between client and server could be reduced significantly in many

cases. After the size calculation, the result is multiplied by the weight c, which can be set by

a command line argument. By default, the weight is set to zero to force any function call to

be executed remotely. After the argument size calculation, the first basic block ends with a

conditional branch. In the case of the weighted size being smaller than the function score, the

following – still empty – basic block is executed. In the opposite case, the function is executed

locally by branching to the old function body.

The second basic block of the function is the true branch in the scheme in Listing 4.3. It is filled

36

4.3. Runtime Decisions Based On Score And Argument Size

with the exact same instructions, with which the initial RPCAccelerate Pass implementation

filled the cleared out function body. These instructions call the callAcc function to execute a

remote call of the current function. Additionally, the return of the remotely calculated result is

ensured. This basic block is executed in the case that the weighted total bytes to be transferred

are smaller than the function score. An exemplary output of the extended RPCAccelerate Pass

is shown in Listing 4.4. This concludes the extension of the RPCAccelerate Pass. The extensions

to the BAAR Client described in this section enable it to make the decision whether to execute

the function call locally or remotely at runtime.

This chapter described the automatic detection of suitable function calls for remote execution

on the accelerator in three sections: Section 4.1 introduced the gathering of candidate functions

which are further analyzed and scored as discussed in Section 4.2. Finally, Section 4.3 described

how the score is used to insert operations which allow the BAAR Client to make the decision

whether to execute remotely or not per call. So far, remote execution on the BAAR Server is

unlikely to achieve any speedups as the server does not optimize the offloaded code at all. The

following chapter tackles this problem.

37

4. Automatic Identification Of Suitable Function Calls

1 // encoded function signature

2 @.str1 = private unnamed_addr constant [23 x i8]

c"0: testfunc :14;3:10;32\0A\00", align 1

3

4 ; Function Attrs: nounwind uwtable

5 define void @testfunc(double* %fin , i32 %elements) #0 {

6 // calculate total array size (only one array argument)

7 %arrayNumElementsArgExt = sext i32 %elements to i64

8 // double 8 byte wide , multiply element count by 16 to count array

twice

9 %arraySizeInByte = mul i64 16, %arrayNumElementsArgExt

10 %totalArraySizeInByte = add i64 0, %arraySizeInByte

11 // add return type size (0 byte), total array size and total

non -array argument sizes (4 byte) to get total argument size

12 %totalArgSizeInBytes = add i64 %totalArraySizeInByte , 4

13 // compare score total argument size

14 %1 = icmp uge i64 2107023936 , %totalArgSizeInBytes

15 // branch to remote call if score >= total argument size , to original

function body otherwise

16 br i1 %1, label %3, label %4

17

18 // remote call

19 ; <label >:3 ; preds = %0

20 call void (i8*, ...)* @callAcc(i8* getelementptr inbounds ([22 x i8]*

@.str1 , i32 0, i32 0), double* %fin , i32 %elements)

21 ret void

22

23 // original function body

24 ; <label >:4 ; preds = %0

25 // ...

Listing 4.4: Excerpt of an offloaded function’s declaration having the C signature

void testfunc(double* fin, int elements) after the extended

RPCAccelerate Pass was run on it (shortened, comments added)

38

5. Optimizing The Remote Part On

Server Side

The general idea for the optimization of offloaded code in our approach is that the client only

knows the characteristics of the accelerator the server provides. With these characteristics, e.g.,

vector width, number of hardware threads or communication speed, the client chooses parts of

the running program to offload. The client itself does not optimize the code in any way however,

this is the server’s task. The server knows the accelerator in detail, it knows its architecture,

its current load and possibly communicates with vendor specific libraries to utilize it. The

additional information the server has, is important for optimization. In contrast to the client,

the server can perform time consuming optimizations without impairing the overall progress.

Simultaneously, the client runs the original program and still makes progress. Once the server

is done, the client transforms the original program into the local part and makes use of the

accelerated remote execution.

So far, the BAAR Server did not perform any transformations on the offloaded IR code. Fur-

thermore, no mechanism to notify the client once the remote execution can be utilized was

available. The following sections explain the implementation of these parts.

5.1. Server Side Optimization

Once the offloaded LLVM IR code is received on the server side, the BAAR Server uses LLVM

libraries to parse the textual representation into an in-memory form. The result is an LLVM

IR Module, it is verified and can be transformed and analyzed with Passes afterwards. For this

purpose, a new function optimizeModule(..) is defined in the AbstractServer class (See Fig-

ure 3.2) to be available for any communication and backend combination. optimizeModule(..)

is immediately called after verifying the Module. This function will eventually take care of

the whole optimization of the Module. After the return of optimizeModule(..), the server

backend is initialized with the optimized Module in the same fashion as implemented previ-

39

5. Optimizing The Remote Part On Server Side

ously. To enable the BAAR Client to run the original program code while the server opti-

mizes the module and use the remote part once the server is done, the server has to notify

the client when it is ready. This is implemented by letting the client simply wait for a mes-

sage from the server in a separate thread. More specifically, implementations of the abstract

initializeAccelerationWithIR(..) function declared in the AbstractClient class is re-

quired to return only when the server signals to be ready or an error occurrs from now on.

Respective implementations for different communications mechanism have to ensure this be-

havior and handle errors in a reasonable way. The currently available implementations for

communication over shared memory and sockets are extended to fulfill the new requirements.

For our chosen accelerator, the Intel Xeon Phi, it is crucial to have many threads (optimally more

than a hundred) running vectorized code. Therefore, the offloaded code has to be parallelized

and vectorized in the optimizeModule(..) function by the server. The implementation of these

optimizations and the specifics to enable good results on the Intel Xeon Phi are explained in

the following sections.

5.2. Parallelization

Parallelization is performed before vectorization to first use exploitable parallelism to distribute

calculation among as many threads as possible. The Intel Xeon Phi provides up to 61 cores, each

able to run four threads in parallel. Therefore, distributing the calculation among many threads

is crucial. Polly can detect SCoPs in the offloaded LLVM IR code, models them in polyhedral

representation and generates code with more parallelism exposed. Using Polly’s OpenMP code

generation, this parallelism is exploited on the thread level. Polly’s OpenMP code generation

transforms loop bodies in detected SCoPs into subfunctions and inserts OpenMP library calls

into the function to distribute execution of iterations among a number of threads. The number

of threads used by the OpenMP library can be defined by the OMP NUM TREADS environment

variable, which we will set to 240 for the Xeon Phi with 61 cores. This ensures enough resources

to be available for the operating system. The code generated by Polly’s OpenMP code generation

has to be linked to an OpenMP library implementation to be able to be run. Polly inserts

OpenMP library calls for the GNU implementation of the OpenMP library, GOMP1. So far,

GOMP is not available for the Xeon Phi. Fortunately, the Intel OpenMP library implementation

running on the Xeon Phi is binary compatible to GOMP. Therefore, IR code parallelized with

Polly’s OpenMP backend can be run by the server on the Xeon Phi without any modifications.

Parallelization on the server side is enabled by implementing the so far empty optimizeModule(..)

1https://gcc.gnu.org/projects/gomp/

40

https://gcc.gnu.org/projects/gomp/

5.3. Vectorization

function in the AbstractServer class. Polly’s code generation passes require some analyses and

simplifications to be performed previously. Thus, the following Passes [5] are run before Polly:

• Alias Analysis, a class of Passes which analyze pointers. An alias analysis Pass tries to

determine if two pointers may point to the same object in memory. As Polly introduces ad-

ditional parallelism, this is a crucial analysis. The specific LLVM alias analysis Passes run

by the server are the TypeBasedAliasAnalysisPass and the BasicAliasAnalysisPass

• Promote Memory To Register, a Pass that promotes memory references to register

references. This is especially important in unoptimized code, where simple variable uses

are often present as a sequence of loads and stores. As memory accesses complicate

parallelization considerably and may even cause it to fail, this is an important Pass

• Loop Simplify, a Pass that transforms natural loops into a simpler form. It simplifies

following analyses and transformations and makes them more effective. This Pass is a

requirement for Polly’s code generation Passes

• Induction Variable Simplification, a Pass that analyzes and transforms induction

variables and derived computations into simpler forms, making subsequent analyses and

transformations simpler. An additional requirement for Polly’s code generation Passes

All of these Passes are added to a Pass Mangager instantiated in the optimizeModule(..)

function. Afterwards, Polly’s code generation Pass can be run. Polly provides a command line

argument to enable the code generation to emit OpenMP parallelized code. After Polly’s Passes,

additional Passes to simplify the control flow graph and to try to combine instructions are run

on the Module. Finally, the resulting Module is verified and the optimization finishes. After the

optimization, the backend can be initialized as described in Section 3.3. For testing purposes,

the whole parallelization process can be disable with a command line argument when starting

the server. The resulting optimizeModule(..) function is shown in Listing 5.1.

If Polly is available and its requirements are known, running its Passes and using it for paral-

lelization on suitable code is as easy as described in this section. Getting Polly to run on the

Xeon Phi takes some effort however. Cross-building LLVM with Polly is described extensively

in Section B.1.2

5.3. Vectorization

After parallelization, vectorization is performed on the offloaded LLVM IR code. LLVM supplies

two powerful vectorization passes: The Loop Vectorizer and the SLP Vectorizer. [1] The Loop

41

5. Optimizing The Remote Part On Server Side

1 void AbstractServer :: optimizeModule(llvm:: Module *Mod) {

2 llvm:: PassManager AutoParVectPasses;

3

4 if (! DisablePolly) {

5 // polly preparation passes

6 AutoParVectPasses.add(llvm:: createTypeBasedAliasAnalysisPass ());

7 AutoParVectPasses.add(llvm:: createBasicAliasAnalysisPass ());

8 AutoParVectPasses.add(llvm:: createPromoteMemoryToRegisterPass ());

9 AutoParVectPasses.add(llvm:: createLoopSimplifyPass ());

10 AutoParVectPasses.add(polly :: createIndVarSimplifyPass ());

11 // polly passes

12 AutoParVectPasses.add(polly :: createCodeGenerationPass ());

13 // cleanup passes

14 AutoParVectPasses.add(llvm:: createGlobalOptimizerPass ());

15 AutoParVectPasses.add(llvm:: createCFGSimplificationPass ());

16 AutoParVectPasses.add(llvm:: createInstructionCombiningPass ());

17 }

18

19 // run parallelization and verify resulting IR code

20 AutoParVectPasses.run(*Mod);

21 llvm:: verifyModule (*Mod , llvm:: PrintMessageAction);

22 }

Listing 5.1: optimizeModule(..) defined in AbstractServer showing the Passes needed

for paralellization

42

5.3. Vectorization

Vectorizer provides features which allow complex loop vectorization. It supports numerous pow-

erful features like vectorizing loops with trip counts only known at runtime, inserting runtime

checks to determine if pointers point to overlapping regions, vectorizing accumulation variables

(e.g., sums), flattening if statements, vectorizing mixed types and more. The superword-level

parallelism vectorizer, short SLP Vectorizer, focuses on combining similar independent instruc-

tions into vector instructions. It works on memory accesses, arithmetic operations, comparison

operations and PHI-nodes. Both vectorizers can be forced to emit vector instructions of a cer-

tain vector width with a command line argument. This is important for targets which are not

supported for code generation in LLVM, as is the case for the Intel Xeon Phi.

To enable vectorization on the server side, the optimizeModule(..) function in the AbstractServer

class is extended. For the vectorization passes to run effectively, some preparations have to be

made. Most importantly, the vectorization passes rely on target-specific information about avail-

able vector instructions, e.g, vector width and cost, which have to be gathered. For this, the

LLVM class TargetMachine has to be instantiated for the current target. The TargetMachine

class provides interfaces to all target-specific information, giving a complete machine description.

It also provides an interface to conveniently add all necessary target-specific analysis passes to

a Pass Manager. Getting an instance of the TargetMachine for the desired target requires a

sequence of steps. First, the target triple, giving a description of the desired target has to be

made accessible. It can be created from a string representation or, as in our case, be obtained

from the LLVM IR Module. The LLVM TargetRegistry class provides a library of available

targets, it is used to look up the respective Target instance for our target triple. The Target

instance can then be used to create a target machine instance, information like special sub-target

features and additional options can be provided in this process.

The very first Passes the optimizeModule(..) function adds to the Pass Manager now are

the target and data layout specific analysis passes obtained from the Module, TargetTriple

and TargetMachine class instances. Obtaining all of these class instances and Passes fails when

LLVM does not support the desired target. This is the case for our desired target, the Intel

Xeon Phi. To overcome this, the 64bit x86 target is used to provide the information we need

for vectorization. For this, the x86 target has to be compiled without just-in-time compilation

support for the Xeon Phi, as cross-compilation fails otherwise. This process is described in

Appendix B.1.2. Building the x86 target with just-in-time compilation support fails for the

Xeon Phi, because it makes use of assembler instructions the Xeon Phi does not support. To get

512bit vector instructions suitable for the Xeon Phi eventually, command line arguments to set

the vector width provided by the vectorization passes have to be used when starting the BAAR

Server.

43

5. Optimizing The Remote Part On Server Side

Similar to Polly’s code generation Passes, the vectorization Passes require some analyses and

simplifications to be performed previously. In fact, the vectorization Passes need all the prepa-

ration Passes listed in Section 5.2 but the Induction Variable Simplification Pass to be run as a

prerequisite.

Once these steps are finished, all the preparations for the Loop Vectorizer and SLP Vectorizer

Passes are made and the Passes can be run on the LLVM IR Module. Similar to the paralleliza-

tion with Polly, Passes to simplify the control flow graph and to try to combine instructions

are run as a cleanup procedure for the Module afterwards. It is also possible to disable the

whole vectorization process with a command line argument. The resulting implementation of

optimizeModule(..) is shown in Listing 5.2.

It is important to note that the vector instructions inserted by the vectorizers have to be sup-

ported by the LLVM backend for the desired target. For our target, the Intel Xeon Phi, we take

a detour over the C backend which’s output is compiled with the Intel Compilers. Therefore,

the C backend has to support vector instructions. Fortunately, the ispc team extended the C

backend to support vector instructions in a flexible way. For any vector instruction, a function

call for the specific instruction is emitted. The definitions of these functions are implemented in

target-specific header files. Optimally, a function definition of this kind consists of one intrinsic

for the desired target only. If the target architecture does not support an LLVM vector instruc-

tion natively, the respective function definition may consist of several lines of code. There are

also header files for generic x86 targets, which implement the LLVM vector instructions with

loops due to the lack of a vector unit. The Intel Xeon Phi is also supported by the header files

provided by ispc. This gives us a way to get native Xeon Phi code not only from scalar, but

also from vectorized LLVM IR code without any extra effort over the implementation described

in Section 3.4.

This finishes the description of the optimizations performed on the server side of BAAR. The

previous chapters extended BAAR to be able to automatically identify, offload and optimize

functions to run them natively and efficiently on the Intel Xeon Phi. The following chapter

deals with the evaluation of these extensions and BAAR in general.

44

5.3. Vectorization

1 void AbstractServer :: optimizeModule(llvm:: Module *Mod) {

2 llvm:: PassManager AutoParVectPasses;

3 // prepare target -specific analyses

4 TargetLibraryInfo *TLI = new

llvm:: TargetLibraryInfo(Triple(Mod ->getTargetTriple ()));

5 AutoParVectPasses.add(TLI);

6 AutoParVectPasses.add(new llvm:: DataLayout(Mod ->getDataLayout ()));

7

8 // obtain TargetMachine instance

9 llvm:: Triple ModuleTriple(Mod ->getTargetTriple ());

10 llvm:: TargetMachine *Machine = 0;

11 if (ModuleTriple.getArch ())

12 Machine = GetTargetMachine(Triple(ModuleTriple));

13 llvm::OwningPtr <llvm:: TargetMachine > TM(Machine);

14

15 if (TM.get()) // add target -specific analysis Passes

16 TM->addAnalysisPasses(AutoParVectPasses);

17 else

18 std::cout << "INFO: " << "No TargetMachine detected\n";

19

20 // [...] Polly Passes omitted here , see previous section

21

22 if (! DisableVectorization) {

23 // vectorization preparation passes

24 AutoParVectPasses.add(llvm:: createTypeBasedAliasAnalysisPass ());

25 AutoParVectPasses.add(llvm:: createBasicAliasAnalysisPass ());

26 AutoParVectPasses.add(llvm:: createPromoteMemoryToRegisterPass ());

27 AutoParVectPasses.add(llvm:: createLoopSimplifyPass ());

28 // vectorization passes

29 AutoParVectPasses.add(llvm:: createLoopVectorizePass ());

30 AutoParVectPasses.add(llvm:: createSLPVectorizerPass ());

31 // cleanup passes

32 AutoParVectPasses.add(llvm:: createCFGSimplificationPass ());

33 AutoParVectPasses.add(llvm:: createInstructionCombiningPass ());

34 }

35 AutoParVectPasses.run(*Mod); // run optimizations

36 llvm:: verifyModule (*Mod , llvm:: PrintMessageAction); // verify result

37 }

Listing 5.2: Final optimizeModule implementation in AbstractServer (commented,

shortened)

45

6. Evaluation

With the extensions made as described in the previous chapters, BAAR was developed to be a

prototype of an easy-to-use on-the-fly binary program accelerator targeting the Intel Xeon Phi

many-core coprocessor. This chapter discusses the very first evaluation of BAAR. Section 6.1

discusses BAAR’s abilities and limitations to score and offload certain functions. Section 6.2

introduces a class of well-fitting computations and thoroughly evaluates the performance of

BAAR when executing an example of this class. Section 6.3 evaluates BAAR’s mechanism to

identify function calls to execute remotely.

6.1. Abilities And Limitations Identified

BAAR automatically identifies functions containing SCoPs with heavy computations. These

functions are then automatically parallelized, vectorized and compiled for the Intel Xeon Phi.

Functions containing SCoPs can therefore utilize the computational power of the Intel Xeon Phi

through BAAR, without any assistance by the user. As BAAR relies on Polly for parallelization,

SCoPs are a requirement for functions accelerated with it, however. Additionally, as BAAR is

still in a proof-of-concept state, it introduces its own limitations, e.g., global values are only

copied once to the accelerator at the current state and are not kept in sync with the local part

running on the client. This section explains important limitations which were identified during

evaluation.

6.1.1. Alias Analysis

As already mentioned in Section 5.2, it is crucial to know whether two pointers involved in a

calculation may point to the same value when introducing additional parallelism. Only if all

pairs of pointers involved in a calculation point to separate memory regions, it can be guaranteed

that the calculation produces the same result after parallelization and vectorization were applied.

Therefore, the alias analysis gives conservative results. If it cannot be proven that two pointers

do not alias under any circumstance, it is assumed that they do alias. This causes parallelization

47

6. Evaluation

1 #define N 100

2 void matmul(double A[N][N], int elementsA , double B[N][N], int

elementsB , double C[N][N], int elementsC) {

3 for(int i = 0; i < N; i++)

4 for(int j = 0; j < N; j++) {

5 C[i][j] = 0;

6 for(int k = 0; k < N; k++)

7 C[i][j] = C[i][j] + A[i][k] * B[k][j];

8 }

9 }

Listing 6.1: Matrix multiplication example which fails alias analysis

and vectorization to fail in many cases which may seem clearly parallelizable to the programmer.

An example which seems easily parallelizable but fails LLVM’s Basic Alias Analysis Pass is

shown in Listing 6.1. It shows a simple multiplication of two matrices, the result is stored in

a third matrix. Although matrix A and B are obviously only read and the calculation could

correctly be parallelized to run on a separate thread for any tuple (i, j), Polly is not able to

generate parallelized code for this example. For BAAR this means that instead of running

the example on up to N · N = 10000 threads on the Intel Xeon Phi, offloading fails and the

calculation is executed on a single thread on the client’s CPU.

A common workaround to simplify alias analysis is to define the variables in question as global

variables, LLVM’s Basic Alias Analysis Pass identifies global variables as not aliasing directly.

However, neither is the frequent use of global variables good programming practice nor will

this workaround produce correct results when used with BAAR in its current state. Another

workaround is to just instruct Polly to ignore possible aliasing during optimization with the

-polly-ignore-aliasing command line argument. This is not a general solution for BAAR,

as it also ignores aliasing in cases where two pointers do in fact alias. In these cases, the cal-

culations may produce incorrect results. However, the command line argument allows BAAR

to correctly identify, score and offload the function shown in Listing 6.1. Unfortunately, this

simple example seems to trigger a bug1 2 in the current version of Polly’s OpenMP code gen-

eration. As interesting as the example in Listing 6.1 may be for evaluating the performance of

BAAR, the bug currently prevents any parallelization attempt using Polly. Performance eval-

uation is performed on an example of stencil computation in Section 6.2, which works without

1http://llvm.org/bugs/show_bug.cgi?id=17207
2http://llvm.org/bugs/show_bug.cgi?id=20010

48

http://llvm.org/bugs/show_bug.cgi?id=17207
http://llvm.org/bugs/show_bug.cgi?id=20010

6.1. Abilities And Limitations Identified

1 void seidel(double A[N][N], int elementsA) {

2 for (int t = 0; t < STEPS; t++)

3 for (int i = 1; i < N-1; i++)

4 for (int j = 1; j < N-1; j++)

5 A[i][j] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]

6 + A[i][j-1] + A[i][j] + A[i][j+1]

7 + A[i+1][j-1] + A[i+1][j] + A[i+1][j+1]) /9.0;

8 }

Listing 6.2: Example containing a SCoP with data dependencies

any workarounds.

In conclusion, BAAR relies on sophisticated alias analysis. As the very vivid LLVM project pro-

vides the alias analysis Passes for our project, BAAR will directly profit from any developments

made in LLVM.

6.1.2. Data Dependencies

Parallelization as well as vectorization add new levels of parallelism and involve changes in the

order of operations within the optimized loops. Therefore, these optimizations require the result

of the calculation to remain the same when the order of operations changes. Listing 6.2 shows

an example where this is not the case. E.g., for calculating A[1][1], A[1][0] is needed which

has to be calculated already. More generally, A[i][j] depends on A[i][j-1], which defines a

fixed order of operations. This kind of data dependency is called read-after-write and prevents

the loop nest to be safely parallelized or vectorized.

When running the example shown in Listing 6.2 with BAAR, the AccScore Pass correctly decides

to analyze this function more thoroughly as Polly’s SCoPDetection Pass properly detects the

SCoP. However at its current state, the AccScore Pass does not include the analysis of data

dependencies in the function scoring process. Thus, the function is falsely treated as if it

could be parallelized, gets a high score and is chosen to be offloaded. Succeeding function calls

are executed remotely and as the code cannot be parallelized nor vectorized, the same single

threaded code is run on the server. In our case, the server is running on an Intel Xeon Phi which

is optimized for highly parallel code. Therefore, offloading this function causes considerable

slowdowns.

To prevent BAAR to offload SCoPs which cannot be parallelized, the AccScore Pass has to be

49

6. Evaluation

extended to include data dependency analysis. A possible way to implement this is to use Polly’s

Dependences Pass, which itself utilizes Isl’s data dependency analysis. It is run on SCoPs and

provides an integer indicating which kinds of data dependencies were detected. This information

could easily be integrated in BAAR’s AccScore Pass.

This section discussed limitations identified during evaluation which are important to resolve

for making BAAR more generally usable. The following section deals with evaluating the per-

formance of functions which were automatically offloaded and optimized by BAAR.

6.2. Performance

To evaluate and analyze execution time and possible speedups, stencil codes [20] are chosen to

be run with BAAR. Stencil codes are a class of computations on arrays. Elements are updated

by operating on the element itself and elements in its environment in a fixed pattern, the stencil.

Stencil codes are run on arrays iteratively. Listing 6.2 shows an example of a stencil code with

data dependencies. In contrast to this example, stencil codes often offer a great opportunity to

exploit data parallelism and the number of operations per array element can nicely be tuned

by changing the number of iterations and the size of the array. Therefore, stencil codes are

promising candidates to achieve good performance with BAAR while allowing the analysis of

the execution. As a representative for the stencil codes, the two dimensional Jacobi stencil [18] is

chosen from the PolyBench/C3 benchmark collection to conduct a detailed evaluation of BAAR.

The Jacobi method is a popular algorithm for solving Laplace’s differential equation on a square

domain, which is important for many fields of science, e.g., fluid dynamics or in the study of heat

conduction. The main computation of the stencil code is exactly the same as in the PolyBench/C

counterpart, the tunability parameters and memory allocations have been simplified to ensure

SCoP detection by Polly and compatibility with BAAR. The function is shown in Listing 6.3,

a program simply initializing an array to pass as the function argument and performing two

calls to jacobi 2d is run with the BAAR Client. To ensure that both calls are offloaded, the

Execution Engine executing the program is not run in parallel but after the server signals it is

ready to accept calls. The whole procedure is run in several variations in respect to the size

of the problem (N, STEPS) and optimizations performed on the server side. For all variations,

the whole procedure of starting the program with the client, offloading the function, initializing

the server and performing the calls is executed ten times. For any execution elapsed times are

measured in µs, average values are rounded.

3http://www.cs.ucla.edu/~pouchet/software/polybench/

50

http://www.cs.ucla.edu/~pouchet/software/polybench/

6.2. Performance

1 void jacobi_2d(double A[N][N], int elementsA) {

2 double (*B)[N][N] = (double (*)[N][N]) malloc(sizeof(double)*N*N);

3

4 for (int t = 0; t < STEPS; t++) {

5 for (int i = 1; i < N - 1; i++)

6 for (int j = 1; j < N - 1; j++)

7 (*B)[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][1+j] +

A[1+i][j] + A[i-1][j]);

8 for (int i = 1; i < N-1; i++)

9 for (int j = 1; j < N-1; j++)

10 A[i][j] = (*B)[i][j];

11 }

12

13 free((void*)B);

14 }

Listing 6.3: Two dimensional Jacobi stencil code used for performance evaluation

Elapsed times are measured by BAAR Client and Server using std::chrono::high resolution clock,

the clock with the smallest tick period provided by the C++11 standard library [16]. The server

sends measured times taken to execute client requests to the client. The client gathers all times

measured by client or server and stores them in a file for easy post-processing. The measured

times are the following:

• Analysis, the time taken by the client for estimating basic block frequencies, building

the candidate set and scoring the functions

• Acceleration Initialization, this time is also measured on the client-side. It includes

the time taken to declare callAcc in the program module, export the chosen functions

to an LLVM IR Module, sending the Module to the server and waiting for the server to

signal readiness to execute remote calls

• Optimization, the time taken by the server to optimize the LLVM IR code the client

sent during the initialization process, measured on the server side

• Backend Initialization, this also happens during acceleration initialization on the server

side. It is the time taken to initialize the chosen server backend. This measure is especially

interesting when using the ExtCompiler server backend

• Alteration, the time taken to run the RPCAccelerate Pass on the offloaded functions

and recompile them using the Execution Engine

51

6. Evaluation

• Execution Accelerator, measured time the native function call takes on the accelerator

• Execution CallAcc, time taken to execute a remote call on the client-side. This is

essentially the time taken on the accelerator plus time taken for argument marshalling

and unmarshalling as well as sending and receiving receiving the data

Additional to the time measuring, the BAAR Client is extended by command line arguments

to disable parallel execution of the program to be accelerated and to run the program several

times for automated evaluation. Not running the program to be accelerated in parallel, but only

after acceleration, ensures that the program is readily accelerated when times are measured and

avoids potential timing issues during automated measuring runs.

During evaluation, the client is run on the computer system hosting the Xeon Phi accelerator

card. Potentially, it could be run on any system which is able to initiate a TCP/IP connection

to the Xeon Phi. The host system features an Intel Xeon E5-2670 CPU with 16 cores at 2.6

GHz and 64 GB of RAM. The operating system is Scientific Linux 6.4 using the Intel Many

Core Platform Stack in version 2.1.6720 to operate the Intel Xeon Phi. The server is run on the

Xeon Phi itself, as explained in Section 3.4. The specific Intel Xeon Phi card used for evaluation

is the Intel Xeon Phi 5110P with 60 cores at 1.053 GHz and 8 GB of RAM.

To be able to rate the quality of the execution times measured when running the program with

BAAR, they are put in relation with execution times measured when running the program on

the system’s CPU hosting the Xeon Phi accelerator card. For this, the program is extended

to measure the time taken to call the jacobi 2d function shown in Listing 6.3 using C++11’s

std::chrono::high resolution clock, the same system clock used to measure elapsed times

with BAAR. The program is compiled using the Intel C++ Compiler in version 14.0.0 with

GCC 4.8.0 compatibility on optimization level O2 (optimization for speed) and no additional

compiler flags. The resulting highly optimized binary is executed on an Intel Xeon E5-2670, a

high-end workstation processor and by far the most commonly used processor in systems listed

in the TOP500 Supercomputer list [6] as of June 2014.

The performance of function execution and achievable speedups is evaluated in Section 6.2.2.

This evaluation is conducted on the jacobi 2d example in detail, and additionally on a finite-

difference time-domain stencil to show that BAAR is not limited to a single example.

6.2.1. Program Analysis And Acceleration

The times taken for program analysis are measured for the jacobi 2d function shown in List-

ing 6.3 for different values of N and STEPS, however only the measurements for N = 1000 and

52

6.2. Performance

STEPS = 10 are discussed in the following, as changing these constants in the program results

in the same program analysis and optimization, as well as the same initialization of the backend

on the server side.

Analysis

Value

Procedure
Analysis Alteration

Average 2054 µs 11555 µs

Minimum 1990 µs 5985 µs

Maximum 2163 µs 12997 µs

Table 6.1.: Time taken for program Module analysis and alteration

Table 6.1 lists average, minimum and maximum values for the time taken for analyzing the

program module and altering it on the client-side. The values are taken from a set of ten complete

time measurements of the whole process of offloading and running the program with BAAR.

Analyzing the program module includes identifying the jacobi 2d function as a candidate and

scoring it as discussed in Chapter 4. Alteration includes running the RPCAccelerate Pass to

transform the original program into the local part with callAcc calls and runtime decisions, as

well as recompiling functions altered by RPCAccelerate. Analysis and alteration are executed

by the client, which is running the original program in parallel. Therefore, the time spent in

these processes should be as low as possible to avoid delaying its computations. Analysis took

2054 µs and alteration 11555 µs on average. To conclude the analysis of time the client has to

invest to be able to call functions remotely, the initialization process of the acceleration still has

to be taken into account.

Acceleration Initialization

Table 6.2 lists the time taken for initializing the acceleration after the program has been ana-

lyzed. It includes optimization and initializing the ExtCompilerBackend which both happens

solely on the server side. The remaining time is spent in communication between client and

server. On average, the total procedure of initializing the acceleration measured from client-side

took 3347507 µs. Subtracting the average measured times for optimization and server backend

initialization, this results in 12524 µs on average the client has to spend communicating with the

server. Overall, the client has to invest roughly 27 ms on average to be able to call jacobi 2d

53

6. Evaluation

0 500 1000 1500 2000 2500 3000 3500

ExtCompilerBackend

JITBackend

Time taken in ms

Analysis

Communication
Optimization

Backend Initialization
Alteration

Figure 6.1.: Distribution of time taken for acceleration initialization

remotely on the server running on the Xeon Phi. In general, the aim is to accelerate heavy

computations taking from seconds to several days. Furthermore, these processes are run only

once by the client. Thus, requiring the client to invest some ten ms for a considerable speedup

for all of the following calls to accelerated functions is reasonable.

Value

Procedure
Total Optimization Backend Init.

Average 3347507 µs 823365 µs 2511618 µs

Minimum 3103219 µs 818483 µs 2271782 µs

Maximum 3786403 µs 840576 µs 2949265 µs

Table 6.2.: Time taken initializing the acceleration with all optimizations

As Figure 6.1 illustrates, the majority of the time of initializing the acceleration on the server

side is spend in initializing the ExtCompilerBackend, taking 2511618 µs on average and almost

exactly 75% of the total time. This long period of time is spend in server backend initialization

due to the unavailability of a native Xeon Phi LLVM backend. Therefore, getting a Xeon Phi

binary for the offloaded LLVM IR code is a time consuming process as explained in Chapter 3. It

requires transforming the LLVM IR code into C code and communicating with the host CPU to

compile the C code into a native Xeon Phi binary. When the Xeon Phi LLVM backend becomes

available, the time spend on initializing the server backend will drastically be improved without

requiring changes in BAAR. Once this is the case, instead of using the ExtCompilerBackend,

the JITBackend can be used. The JITBackend simply instantiates an Execution Engine. On an

54

6.2. Performance

Intel Core i7-3517U x86 laptop processor initializing the JITBackend with the exact same code

used in the previous measures takes 3025 µs 4, 0.12% of the ExtCompilerBackend on the Xeon

Phi, on average. Assuming this value for backend initialization in our setup, the time taken for

optimization almost solely determines the time taken for initializing the acceleration as depicted

in Figure 6.1. Once the native backend is available, it can be expected that the distribution of

time taken for the acceleration initialization will look very similar to this.

Optimization

For analyzing the optimization phase of the acceleration initialization further, Table 6.3 lists the

time taken for variations of the optimization phase to compare. ”None” means only the target-

specific analysis passes are enabled and run on the offloaded IR code. ”Polly” adds preparation,

optimization and cleanup Passes needed for Polly’s OpenMP code generation. ”Polly + Vec-

torization” adds vectorization to ”Polly”, i.e., full optimization. The measures show that with

analysis Passes only, the optimization phase already takes 70.31% of the time full optimization

takes on jacobi 2d. The measured times taken for the optimization phase includes initializa-

tion of the Pass Manager and target-specific Passes. Possibly, the optimization phase could be

sped up when the initialization of the Pass Manager and target-specific Passes would directly

be performed when the server is started. However, this could potentially limit the flexibility of

BAAR in the future. The current concept allows a server to provide multiple accelerators, a

client can choose a specific accelerator by specifying the respective target in the LLVM IR code

sent to the server. Therefore, the target on the server side is determined by reading it from the

LLVM IR code when initializing the acceleration. If a server with multiple accelerators is even a

practical use case for BAAR and whether limiting the flexibility could improve the performance

are interesting questions for future research.

Value

Optimization
None Polly Polly + Vectorization

Average 578905 µs 785964 µs 823365 µs

Minimum 577123 µs 781985 µs 818483 µs

Maximum 585322 µs 793622 µs 840576 µs

Table 6.3.: Time taken for optimization

”Polly” already takes 95.46% of the time taken for full optimization on average. Polly transforms

4ten measurements, min: 3003 µs, max: 3064 µs

55

6. Evaluation

the LLVM IR into a polyhedral representation, utilizes isl and CLooG to perform polyhedral

optimizations and transforms the result back into LLVM IR. Therefore, this optimization is more

time consuming than LLVM Passes optimizing LLVM IR directly. When compared to Polly, the

LLVM vectorization Passes are much more lightweight, adding only 37411 µs on average to the

time taken for optimization with Polly only, resulting in 823365 µs in total for full optimization.

Whether the time taken for optimization is acceptable depends on the use case. On the one

hand the client is not impaired by the optimizations run on the server and a long time taken for

optimization is reasonable for a great speedup of long running calculations. On the other hand

however, the optimizations should finish quickly so that the client profits from the acceleration

as soon as possible, certainly before the program finishes. Future research could explore the

possibility to cache the resulting code when the client disconnects to have it readily available

when it reconnects in another program run. This could be implemented by calculating a hash

value from the LLVM IR code the client sends to the server and mapping the code resulting

from optimization to this value. When a new client connects, the server would have to check

whether an optimized code was already mapped to the hash value calculated from the LLVM IR

code the client sends. This extension has the potential to effectively speed up the acceleration

initialization for clients which want to accelerate code known to the server.

6.2.2. Function Execution

When analyzing the times taken for executing a jacobi 2d function call, the second call to the

function is considered. The first call with the ExtCompilerBackend takes roughly 300 ms more

than the second call5. The main reason is that the function has to be loaded from the shared

object file on the hard drive into main memory on the first call. As the server already has

the offloaded code in memory when using the JITBackend and native code is generated during

acceleration initialization, the first and second call performances are still subject to caching but

the calls perform more similarly.

The following section deals with the raw execution time of a jacobi 2d call, i.e., the time taken

on the respective processing unit to execute the function call natively. Especially times taken for

marshalling and unmarshalling of arguments are not considered. Analyzing the raw execution

times gives insights on how well the optimizations improve the code and how jacobi 2d scales

on the Xeon Phi. Afterwards, the total time taken for a remote call using callAcc is considered

to see how much overhead BAAR adds, where it could be improved and if the mechanism can

be used in practice at all.

5E.g., for STEPS=10 and N=1000 with full optimization the first call takes 360 ms on average over ten

measures (min: 349 ms, max: 393 ms), the second 19 ms (min: 17 ms, max: 21 ms)

56

6.2. Performance

1000

10000

100000

1e+06

1e+07

1e+08

10 100 1000 10000

E
x
ec

u
ti

on
ti

m
e

in
µ

s

STEPS

Xeon E5, icpc O2
Xeon Phi, single threaded

Xeon Phi, Polly OMP only
Xeon Phi, Polly OMP + Vectorization

17693

148942

1501133

14748382

142933

1330548

om
itted

om
itted

21762

67622

550628

5917847

19035

67040

551824

6380133

1.00

0.12

0.81 0.93

1.00

0.11

2.20 2.22

1.00

2.73 2.72

1.00

2.49 2.31

Figure 6.2.: Raw execution times for jacobi 2d with N=1000 (logarithmic scale)

Raw Execution Time

Figure 6.2 shows raw execution times for jacobi 2d with N = 1000, STEPS ∈ {10, 100, 1000, 10000}

on the Xeon E5 and Xeon Phi. As N is fixed, only the number of operations on the data changes,

not the data size. With STEPS = 10, utilizing the Xeon Phi does not result in any speedup,

even with full optimization jacobi 2d takes a few milliseconds longer on the Xeon Phi than the

heavily optimized code on the Xeon E5. As the Xeon Phi’s architecture is optimized for highly

parallel code, it is no surprise that running unoptimized single-threaded code on the Xeon Phi

results in a massive slowdown when compared to the optimized code on the Xeon E5. The Xeon

Phi takes roughly 8 times longer, with STEPS = 100 almost 9 times. The fully optimized code

however utilizes all the cores the Xeon Phi has by running 240 threads using OpenMP. Main-

taining and synchronizing this many threads creates some overhead though. Therefore, with

STEPS = 10 there are too few operations to exploit the advantage of the increased parallelism

on the Xeon Phi. When increasing STEPS, the overhead for maintaining the threads becomes

more and more negligible. With STEPS = 100, this already results in a speedup of 2.22 when

comparing the fully optimized code on the Xeon Phi to the optimized code on the Xeon E5. Note

that this is a comparison of heavily optimized code generated by the Intel Compilers running on

the high end CPU Intel Xeon E5 with automatically parallelized and vectorized code by BAAR

utilizing LLVM libraries and a detour over C code on the Intel Xeon Phi. With STEPS = 1000

57

6. Evaluation

1024

4096

16384

65536

262144

1.04858e+06

1000 2000 4000

E
x
ec

u
ti

on
ti

m
e

in
m

s

N

Xeon E5, icpc O2
Xeon Phi, Polly OMP only

Xeon Phi, Polly OMP + Vectorization

14748382

106352344

424843593

5917847

45506477

121956255

6380133

27207689

106173492

1.0

1.0

1.0

2.49 2.31

2.34

3.91

3.48
4.00

Figure 6.3.: Raw execution times for jacobi 2d with STEPS = 10000 (logarithmic scale)

and STEPS = 10000, the speedup ranges between 2.31 and 2.72 on average. The execution

without vectorization is always on par with the fully optimized code, for N = 1000 this example

does not profit from vectorization. Also, as the speedup of 2.72 was measured with STEPS =

1000, it seems we cannot achieve a higher speedup without altering N. Next, we will increase N

to see how this example scales with an increased data size and to try to achieve an even higher

speedup.

Figure 6.3 shows raw execution times for jacobi 2d with STEPS = 10000, N ∈ {1000, 2000, 4000}

on the Xeon E5 and Xeon Phi. With N = 2000, the speedup of the parallelized and vectorized

code on the Xeon Phi over the heavily optimized code on the Xeon E5 is 3.91. It rises to 4 in

these measurements when N is doubled to 4000. This means the raw execution time is over 5

minutes less on the Xeon Phi (1 min 46 s) compared to the Xeon E5 (7 min 5 s). The measure-

ments also show that the vectorization profits from data sizes bigger than N = 1000. Setting

N = 2000, the speedup with vectorization and parallelization compared to parallelization only

is 1.67. However, with N = 4000 the speedup drops to 1.15. The exact reasons for this have

to be clarified in future research. It can be an issue of data alignment, which was not taken in

consideration at the current state of BAAR. The C backend taken from Intel’s ispc supports

several parameters. Potentially, the parameters chosen for BAAR are not optimal.

Overall, the speedup of up to 4 without any hints, when comparing parallelized and vectorized

58

6.2. Performance

execution of this example on the Xeon Phi to heavily optimized code on the Xeon E5 is a

promising result for the practicality of BAAR. Especially when considering that the Xeon E5 is

a high end processor, which potential clients may not have available. However, so far only the

raw execution time was considered. To evaluate BAAR, the overhead imposed by marshalling

and unmarshalling the call during callAcc has to be taken into account.

callAcc

Table 6.4 is based on the same set of measurements as Figure 6.3 but considers the full callAcc

call for calling jacobi 2d remotely instead of just the raw execution time. It lists the average,

minimum and maximum time taken for the callAcc call, the speedup compared to heavily

optimized execution on the Xeon E5, as well as the amount of time spent on the actual function

call on the Xeon Phi (raw execution time). The data shows that from the previously calculated

speedup of 4, when just comparing raw execution times with N = 4000 and STEPS = 10000,

only a speedup of 2.17 remains when considering the full callAcc call. When increasing STEPS

for a fixed N, the share of the communication on callAcc decreases so that the speedup of

the callAcc call is closer to the speedup of the raw execution time. It is evident however,

that the simple communication mechanism currently implemented in BAAR heavily impairs the

execution of remote calls.

Value

N
1000 2000 4000

Average 12406 ms 49945 ms 195859 ms

Minimum 11562 ms 47984 ms 193814 ms

Maximum 13165 ms 52912 ms 201101 ms

Speedup 1.19 2.13 2.17

Spent in raw 51.43 % 54.48 % 54.21 %

execution (avg.) (6380 ms) (27208 ms) (106173 ms)

Table 6.4.: Time taken for callAcc calling jacobi 2d with STEPS = 10000 and full

optimization

Almost 46 % of the time is spent in communicating with the client, which mostly consists of

marshalling and unmarshalling the arguments. As the task manager shows, during callAcc

when not executing the function call, a single core on either side is working at full capacity.

This is due to the simple design of the communication mechanism over sockets (SocketClient

59

6. Evaluation

and SocketServer, respectively). When marshalling or unhmarshalling an array, every single

element is sequentially transformed into its string representation and concatenated to a string

representing the whole array. The resulting string is concatenated to a string which eventually

contains all arguments in their respective string representations. For BAAR in its current proto-

type form, it had the advantages of being straight forward to implement and being transparent

to the endianness of the accelerator. However, it is currently the limiting factor for achieving

better speedups. It leaves much room for improvement, e.g., the elements of an array could per-

fectly be marshalled in parallel, marshalling of arguments on the client-side could be interleaved

with unmarshalling on the server side and vice versa. Using sockets as a means of commu-

nication is appealing because they are universally usable. For BAAR however, more suitable

alternatives exist. A promising alternative for future research is the Message Passing Interface

(MPI), a standard for exchanging messages in distributed systems. It supports much better

performing mechanisms to transfer values than transforming them into a string representation.

Furthermore, it transparently supports shared memory systems. This could additionally make it

an alternative to the shared memory communication mechanism implemented in ShmemClient

and ShmemServer, which is not evaluated in this thesis.

Finite-Difference Time-Domain

Additional to the Jacobi stencil, function execution is evaluated with the finite-difference time-

domain (FDTD) stencil [25]. FDTD is a widely used modeling technique in computational

electrodynamics. This stencil code is also part of PolyBench/C, a simplified version without

tunabililty parameters is shown in Listing 6.4.

While jacobi 2d was accelerated by BAAR without any hints, BAAR Client and Server have

to be started with the --polly-ignore-aliasing command line argument to enable Polly to

detect the SCoPs in this code. Otherwise, parallelization fails because the alias analysis cannot

prove that there is no aliasing (see Section 6.1.1).

Figure 6.4 shows average execution times for fdtd 2d with STEPS = 10000 and N = 2000

over ten runs and achieved speedups compared to execution of code compiled with the Intel

C++ Compiler at O2 on an Intel Xeon E5-2670. On the Xeon E5, the execution took 217337

ms on average6. Considering only the raw execution times taken by executing the code with

BAAR, the speedups are 2.36 with parallelization only as well as 5.77 with parallelization and

optimization. When comparing these results to the measurements taken for the jacobi 2d

example, the speedup with parallelization only is very similar. Enabling vectorization in addition

6min: 216034 ms, max: 217582 ms

60

6.2. Performance

1 void fdtd_2d(double ex[N][N], int elements_ex , double ey[N][N], int

elements_ey , double hz[N][N], int elements_hz , double _fict_[STEPS],

int elements__fict_) {

2 for(int t = 0; t < STEPS; t++) {

3 for (int j = 0; j < N; j++)

4 ey[0][j] = _fict_[t];

5 for (int i = 1; i < N; i++)

6 for (int j = 0; j < N; j++)

7 ey[i][j] = ey[i][j] - 0.5*(hz[i][j]-hz[i-1][j]);

8 for (int i = 0; i < N; i++)

9 for (int j = 1; j < N; j++)

10 ex[i][j] = ex[i][j] - 0.5*(hz[i][j]-hz[i][j-1]);

11 for (int i = 0; i < N - 1; i++)

12 for (int j = 0; j < N - 1; j++)

13 hz[i][j] = hz[i][j] - 0.7 * (ex[i][j+1] - ex[i][j] +

14 ey[i+1][j] - ey[i][j]);

15 }

16 }

Listing 6.4: FDTD stencil code for a square matrix

0

50000

100000

150000

200000

250000

Xeon E5, icpc O2 Xeon Phi, Polly OMP only Xeon Phi, Polly OMP + Vectorization

T
im

e
ta

ke
n

in
m

s

Raw Execution Time
callAcc Overhead

1.0

2.04

5.77

1.35

2.36

Figure 6.4.: Execution times for fdtd 2d with STEPS = 10000, N = 2000

61

6. Evaluation

to parallelization gives the execution on BAAR another speedup of 2.44, resulting in a speedup

of 5.77 in total. With the jacobi 2d example, the highest speedup achieved was 4, the effect

of vectorization was much smaller. This stresses that future research should try to improve the

parameters used for vectorization in BAAR and investigate in requirements for more reliable

results.

When considering the full time taken for executing callAcc on fdtd 2d, BAAR takes 160742

ms7 on average with parallelization only and 106564 ms8 with parallelization and vectorization.

From the previously achieved speedups of 2.36 and 5.77 only 1.35 and 2.04 remain, respectively.

This underlines that the simple communication mechanism impairs the execution and should

urgently be improved.

This section concludes the evaluation of BAAR’s performance. The following section evaluates

the quality of the runtime decision whether to offload a certain function call or not.

6.3. Runtime Decision

Section 6.2.2 discussed the performance of BAAR based on the jacobi 2d function shown in

Listing 6.3, as well as the fdtd 2d function shown in Listing 6.4. The evaluation showed that

marshalling and unmarshalling of arguments is currently the major limiting factor for achieving

higher speedups by inappropriately utilizing one CPU core at full capacity. However, even with

a better performing communication mechanism in place, the overhead imposed by callAcc will

always be system dependent. Therefore, the runtime decision whether to offload a certain call

or to run it locally, can be influenced by command line parameters. As discussed in Section 4.3,

the runtime decision is equivalent to:

function score

bytes to transfer
> c, where c is set by a command line argument (0 if unset)

This section aims to gain insights on whether the runtime decision in its current form is well

designed, how to choose the command line parameter c as well as how the decision can be

improved.

Table 6.5 lists calculated values for function score
bytes to transfer when running jacobi 2d with BAAR for

several values of N and STEPS. The weights for floating point and integer operations is unset

and therefore defaults to one. Thus, the function score approximates the total number of

operations executed when calling jacobi 2d. Consequently, when increasing STEPS for a fixed

7min: 159758 ms, max: 162014 ms
8min: 105639 ms, max: 107707 ms

62

6.3. Runtime Decision

N by multiplying it by ten, function score
bytes to transfer is also multiplied by ten. Altering STEPS does not

change the bytes transferred, but only the number of operations. For a fixed STEPS, the number

of operations is directly proportional to N2, as is the size of the array. As the array and its

number of elements are the only two arguments to jacobi 2d, the bytes to transfer is mostly

determined by the size of the array. Therefore, when multiplying N by two for a fixed STEPS,

function score
bytes to transfer should only marginally change. This is correctly mirrored by the values calculated

by BAAR shown in Table 6.5.

STEPS

N
1000 2000 4000

10 29.88011 29.94002 29.97001

100 298.8011 299.4002 299.7001

1000 2988.011 2994.002 2997.001

10000 29880.11 29940.02 29970.01

Table 6.5.: function score
bytes to transfer

for jacobi 2d and several values of N and STEPS

To be able to choose a reasonable value for c, the values of function score
bytes to transfer have to be matched

with the actual speedups achieved by BAAR compared to the execution on the Intel Xeon

E5. Table 6.6 lists the speedups. As for STEPS ∈ {10, 100, 1000} and N ∈ {1000, 2000, 4000}

the speedups are less than one because a huge amount of time is spent on marshalling and

unmarshalling, c has to be greater than 2997 (function score
bytes to transfer for N = 4000, STEPS = 1000). For

STEPS = 10000 and N ∈ {1000, 2000, 4000}, the speedups are all greater than one. Thus, it is

reasonable to choose 2997 < c ≤ 29880 for this example and setup.

STEPS

N
1000 2000 4000

10 < 0.001 0.005 0.005

100 0.024 0.046 0.047

1000 0.227 0.420 0.424

10000 1.189 2.125 2.173

Table 6.6.: Average speedup for jacobi 2d and several values of N and STEPS when

comparing offloaded to local execution

To obtain a more generally applicable or a more precise value for c, more measurements with

63

6. Evaluation

examples other than jacobi 2d would have to be performed. The result would still be specific

to the simple socket communication mechanism, client CPU and accelerator. Thus, future

research is needed to introduce a mechanism to automatically determine a fitting value for c for

a specific setup. A first approach could be to have two small benchmarks. One for evaluating the

communication performance by simply sending a small array there and back between server and

client, marshalling and unmarshalling it as needed. The second benchmark would run a simple

kernel on the client CPU and in optimized form on the accelerator. With the function score

and bytes to transfer of these benchmarks, a system specific value for c could automatically be

determined. Additionally, it would be interesting to introduce self-adaptation. As a first step a

simple approach could be used to gain valuable insights. E.g., when offloading a function f with

function score
bytes to transfer = c1 > c, f could be run on the client CPU and accelerator in parallel. Should

the accelerator return the result before the call on the client CPU finishes, cancel it and proceed

steadily. Should the client CPU finish the calculation first however, set c = c1 to require future

calls to have a higher function score
bytes to transfer value.

64

7. Conclusion And Future Directions

This thesis introduced BAAR, our approach of tackling the problem of enabling existent soft-

ware to automatically utilize accelerators. Important extensions to the mechanism were made

to achieve a proof-of-concept implementation. BAAR is capable of automatically detecting

functions suitable for acceleration, offloading them as well as automatically parallelizing and

vectorizing them. Whether to utilize the Intel Xeon Phi is decided at runtime per function call.

This whole process is transparent to the user. The evaluation could show BAAR’s practicality

by achieving a speedup of up to 4 without any hints, when comparing execution of a real-life ex-

ample compiled with the Intel C++ Compiler at O2 on an Intel Xeon E5-2670 to execution using

BAAR utilizing an Intel Xeon Phi 5110P accelerator card. With hints, even a speedup of 5.77

could be achieved. This points out the performance possible when alias analysis is improved.

In its proof-of-concept state, BAAR can already achieve great results for idempotent functions

containing SCoPs with a high compute intensity, as was shown on the basis of stencil codes.

The evaluation has shown that BAAR has a high potential to be more generally applicable and

achieve better performances.

To make BAAR more widely applicable, several problems require further research:

• It would be very interesting to evaluate the performance of BAAR with different com-

binations of client system and server system. E.g., the BAAR Client is easily portable

to the ARM architecture with only minor alterations in the build scripts as the ARM

architecture is already supported by LLVM. This leads to an interesting setup consisting

of several BAAR Clients running on low-power ARM-based systems sharing an Intel Xeon

Phi accelerator for their calculations provided by the BAAR Server. The server already

supports multiple clients when communicating over sockets, so the current state of BAAR

already supports this setup

• The server should be extended to provide several targets to the clients, not only one

target throughout its whole lifetime. This would lead to many attractive directions for

further research. It would increase the potential for increased performance to have several

targets with different characteristics the client can choose from. Additionally, it would be

65

7. Conclusion And Future Directions

interesting to investigate in criteria other than performance. Maybe the BAAR Server can

provide a target to the client which can perform a certain calculation much more power

efficient, during calculation the client can standby and save power. It is also thinkable to

switch the target when requirements change

• So far, the functions supported by BAAR have to be idempotent. Global variables are

only copied once to the server upon acceleration initialization and pointers are always in-

terpreted as arrays, a mechanism to keep global variables in sync between client and server

as well as an extension to support arbitrary values pointed to are needed. Additionally,

system calls are not supported, yet. This problem could be tackled by two approaches.

Firstly, system calls could be wrapped into a call which sends the system calls to the client

and the response back. Secondly and maybe more interestingly, the granularity at which

program parts are offloaded could become finer. At this point, functions are offloaded,

but it is thinkable to offload at the granularity of SCoPs. These are less likely to contain

system calls and additionally this approach could lead to a performance increase because

parts of the function which cannot profit from execution on the accelerator are executed

on the client system. However, it has to be further researched whether this approach leads

to an increased amount of data which has to be transferred between client and server

• The constant c which is compared to function score
bytes to transfer of a certain function call to make

the decision whether it should be run remotely or locally, is currently set by the user at

server start or defaults to zero. Section 6.3 already discussed how c can automatically be

determined. This would increase the usability of BAAR. Additionally, making c variable

and self-adapting has been discussed, which can potentially increase the performance of

BAAR and should therefore be considered for future research

• Currently, only the size of the arguments of a certain call are used as runtime information.

Especially alias analysis could profit from utilizing runtime information and increase the

applicability of BAAR

Several future directions of research could improve the performance of BAAR drastically:

• The evaluation has shown that the communication mechanism is currently the weak point

of BAAR when trying to achieve great speedups. Section 6.2.2 already discussed that a

communication mechanism between client and server which utilizes MPI could drastically

improve the performance of an offloaded call. Especially argument marshalling would

profit from a more sophisticated mechanism than currently implemented

• When having arrays as arguments, they are always transferred to and from the server as

a whole for every call. Ideally, a more intelligent mechanism would only copy elements to

66

the server which are used by the code executed on it and copy back elements which were

altered. Additionally, it could make sense to cache arrays for subsequent calls

• At this point, a function which is called before the acceleration is initialized is executed

locally by the client, even when the initialization finishes while the call is still executing.

This situation could be improved by introducing on stack replacement. With on stack

replacement, the running function call would be suspended once the acceleration finishes,

the remote execution of this call for the current state of execution would be setup and

the call would be continued by running it remotely on the accelerator. Especially long

running function calls could greatly profit from this extension to BAAR

• On a more technical level, BAAR would greatly profit from a native LLVM backend for

the Intel Xeon Phi. It would enable us to drop the detour over C code and improve the

quality of vectorization. Such a backend is scheduled to arrive with Intel’s next generation

Xeon Phi products code named ”Knights Landing” in the second half of 20151. BAAR

would directly profit from a native Xeon Phi backend by enabling the already implemented

JITBackend to be used

In sum, this thesis successfully introduced and implemented a new approach for easy-to-use

on-the-fly binary program acceleration on many-cores. Valuable insights were gained during

evaluation and numerous future directions of research were discussed.

1http://lists.cs.uiuc.edu/pipermail/llvmdev/2013-July/063697.html

67

http://lists.cs.uiuc.edu/pipermail/llvmdev/2013-July/063697.html

Appendix A. Contents Of The

Attached Data Medium

The attached data medium includes the complete commented source code of BAAR in its states

before and after the extensions of this thesis were implemented. Every example used during

evaluation and time measurements made are also incorporated. Furthermore, snapshots of all

referenced websites are enclosed. In addition, a digital copy of this thesis is included.

69

Appendix B. Building The BAAR

Environment

This chapter thoroughly explains how to build BAAR with LLVM and Polly for an x86 system

and how to cross-build it for the Intel Xeon Phi. This process may seem tedious, but please

note that most of the dependencies are needed for Polly which provides the automatic paral-

lelization for BAAR. If you do not need automatic parallelization, consider to remove Polly as

a dependency. This would greatly simplify the build process, as only LLVM and BAAR itself

need to be build then, which are mostly self-contained.

B.1. Building LLVM Including Polly With CMake

This section briefly describes the steps needed to build LLVM with Polly as a requirement for

BAAR. Details on the LLVM-specific CMake variables and more information can be found in

the LLVM documentation [2]. Note that a host build of LLVM has to be available for the host

cross-building LLVM for the Intel Xeon Phi.

B.1.1. Host Build

Building LLVM with Polly on an x86 machine is straight forward. Create a directory for the

source code, it will be called $LLVM SRC in the following. Afterwards, run the following commands

to obtain the correct version of the source code:

1 $ git clone http :// llvm.org/git/llvm.git -b release_34 $LLVM_SRC

2 $ git clone http :// llvm.org/git/polly.git -b release_34

$LLVM_SRC/tools/polly

To build Polly, libgmp, CLooG and isl are required. libgmp should be available through the

operating system package management system or already installed. Polly requires a fixed version

71

Appendix B. Building The BAAR Environment

of CLooG and isl, which can be obtained by a script supplied with it. To obtain the source and

build it, create two directories outside the $LLVM SRC directory. These will be called $CLOOG SRC

and $CLOOG X86. Afterwards, run the following commands:

1 $ $LLVM_SRC/tools/polly/utils/checkout_cloog.sh $CLOOG_SRC

2 $ cd $CLOOG_SRC

3 $./ configure --prefix=$CLOOG_X86

4 $ make && make install

5 $ cp -r $CLOOG_SRC/include/cloog $CLOOG_X86/include

6 $ cp -r $CLOOG_SRC/isl/include/isl $CLOOG_X86/isl/include

If you get an error mentioning undefined ACLOCAL PATH or AC PROG LIBTOOL variables, it means

your system does not have libtool installed. Either install it with your operating system package

manager or compile it yourself and rerun the script. If you still get these errors, run the following

commands with $LIBTOOL INSTALL DIR pointing to your libtool installation:

1 $ export $LIBTOOL_INSTALL_DIR/share/aclocal

2 $ cd $CLOOG_SRC

3 $ libtoolize

4 $ cd isl

5 $ libtoolize

6 $ cd ..

7 $./ autogen

Afterwards, rerun the commands listed previously.

When the build completes, the requirements to build LLVM with Polly are met. Create another

directory, outside of any other directory created so far, which we will call $LLVM X86. Afterwards,

run the following commands for building:

1 $ cd $LLVM_X86

2 $ cmake -DCLOOG_INCLUDE_DIR=$CLOOG_X86/include

-DCLOOG_LIBRARY=$CLOOG_X86/libcloog -isl.la

-DISL_INCLUDE_DIR=$CLOOG_X86/isl/include

-DISL_LIBRARY=$CLOOG_X86/isl/libisl.la $LLVM_SRC

3 $ make -j4

72

B.1. Building LLVM Including Polly With CMake

Once these commands finish, the main LLVM tools and libraries as well as Polly for the host

are available in $LLVM X86.

B.1.2. Cross-Building LLVM Including Polly For The Intel Xeon Phi

Cross-building LLVM with Polly for the Intel Xeon Phi roughly follows the same procedure as

described for x86 based systems in Section B.1.1. However, libgmp may not be available on the

Xeon Phi and therefore also has to be cross-built in this process. Furthermore, some additional

preparations have to be taken care of to enable cross-building Polly’s other requirements.

Setup Environment For Cross-Building

Before compiling anything, the environment for cross-building has to be set up. At first, the

compiler has to be set to the Intel Compilers and the correct flags have to be set with the

following commands:

1 export CC=icc

2 export CXX=icpc

3 export CFLAGS="-mmic"

4 export CXXFLAGS=$CFLAGS

Additionally, CMake needs a text file which gives information about the compiler toolchain for

cross-compilation. Create a text file, it will be called $TOOLCHAIN FILE in the following. The

file has to include the following lines:

1 SET(CMAKE_SYSTEM_NAME Linux)

2 SET(CMAKE_SYSTEM_PROCESSOR k1om)

3 SET(CMAKE_SYSTEM_VERSION 1)

4

5 SET(CMAKE_C_COMPILER icc)

6 SET(CMAKE_CXX_COMPILER icpc)

7 SET(_CMAKE_TOOLCHAIN_PREFIX x86_64 -k1om -linux -)

8

9 SET(CMAKE_FIND_ROOT_PATH /usr/linux -k1om -4.7)

After these steps, the environment for cross-compiling for the Xeon Phi is ready.

73

Appendix B. Building The BAAR Environment

libgmp

libgmp is a requirement for CLooG, which itself is needed for Polly. It may already be available

on the Intel Xeon Phi, if it is not it has to be cross-built as well. For this, create a build directory

for it, which will be called $GMP MIC in the following, and perform the following commands to

obtain the libgmp source code and cross-build it:

1 $ cd $GMP_MIC

2 $ wget https :// gmplib.org/download/gmp/gmp -6.0.0a.tar.bz2

3 $ tar xfj gmp -6.0.0a.tar.bz2

4 $./gmp -6.0.0/ configure --host=x86_64 -k1om -linux --disable -assembly

--prefix=$GMP_MIC

5 $ make -j4 && make install

CLooG and isl

Assuming the CLooG source is available in $CLOOG SRC, create a directory for the Xeon Phi build

outside of it, it will be called $CLOOG MIC in the following. Execute the following commands to

cross-build CLooG:

1 $ cd $CLOOG_MIC

2 $ $CLOOG_SRC/configure --prefix=$CLOOG_MIC --host=x86_64 -k1om -linux

--with -gmp -builddir=$GMP_MIC

3 $ make -j4 && make install -i

Again, if you get an error mentioning undefined ACLOCAL PATH or AC PROG LIBTOOL variables, it

means your system does not have libtool installed, see Section B.1.1 for more information.

LLVM with Polly

To build LLVM with Polly, the previous steps (including Section B.1.1) all have to have com-

pleted successfully. If this is the case, create a directory outside any other directory previously

create, it will be called $LLVM MIC in the following. Afterwards, perform the following commands:

74

B.2. Building BAAR

1 $ sed -i’’ ’28,32 s/^/\/\// ’ $LLVM_SRC/lib/Target/X86/X86JITInfo.cpp

2 $ cd $LLVM_MIC

3 $ cmake -DCMAKE_TOOLCHAIN_FILE=$TOOLCHAIN_FILE

-DCMAKE_CROSSCOMPILING=True -DTARGET_TRIPLE=k1om -unknown -linux -gnu

-DLLVM_DEFAULT_TARGET_TRIPLE=k1om -unknown -linux -gnu

-DLLVM_TARGETS_TO_BUILD="X86"

-DLLVM_TABLEGEN=$LLVM_X86/bin/llvm -tblgen

-DGMP_LIBRARY=$GMP_MIC/lib/libgmp.so

-DGMP_INCLUDE_DIR=$GMP_MIC/include

-DCLOOG_INCLUDE_DIR=$CLOOG_MIC/include

-DCLOOG_LIBRARY=$CLOOG_MIC/lib/libcloog -isl.so

-DISL_INCLUDE_DIR=$CLOOG_MIC/include

-DISL_LIBRARY=$CLOOG_MIC/lib/libisl.so $LLVM_SRC

4 $ make -j4

5 $ sed -i’’ ’28,32 s/^\/\/*// ’ lib/Target/X86/X86JITInfo.cpp

The X86 target is utilized to get information required for vectorization (see Section 5.3). Note

that the LLVM X86 target does not compile for the Intel Xeon Phi with JIT enabled, because

JIT uses assembler instructions not supported by the Intel Xeon Phi. The LLVM build scripts

do not recognize the Intel Xeon Phi and default to X86 as target platform, which enables JIT.

Therefore, sed is used to comment the lines enabling JIT before the cross-build and uncomment

them after the build finished.

Once these commands finish, the main LLVM tools and libraries as well as Polly for the Intel

Xeon Phi are available in $LLVM MIC.

B.2. Building BAAR

B.2.1. Host Build

When LLVM and Polly are built as a requirement for BAAR, the mechanism itself can be

built. How to build the requirements and variables defined in this process are described in

Section B.1.1. For the next steps create two directories for the source code and the binaries,

these will be called $BAAR SRC and $BAAR X86 in the following. Unpack the BAAR source code

from the data medium to $BAAR SRC. Afterwards, run the following commands to build it:

75

Appendix B. Building The BAAR Environment

1 $ ln -s $LLVM_SRC/tools/polly/include/polly/ $LLVM_SRC/include /.

2 $ ln -s $LLVM_X86/tools/polly/include/polly/ $LLVM_X86/include /.

3 $ ln -s $LLVM_X86/lib/LLVMPolly.so $LLVM_X86/lib/libLLVMPolly.so

4 $ cd $BAAR_X86

5 $ cmake -DLLVM_SRC_DIR=$LLVM_SRC -DLLVM_BIN_DIR=$LLVM_X86 $BAAR_SRC

6 $ make

The first three commands are used to create symlinks to ensure CMake finds Polly’s include files

and library. Once the build finishes, the BAAR client and server are available in $BAAR X86/out/bin/

as x86 binaries. If the BAAR Server fails to build stating that ffi.h could not be found, install

libffi with your operating system’s package manager. The client does not require libffi to build

successfully, so you can ignore this error if the server runs on another target in your use case.

B.2.2. Cross-Building BAAR For The Intel Xeon Phi

Cross-building the offload mechanism is very similar to building it for the host. Assuming all the

previous steps were completed successfully, just create a directory outside any other previously

created directory. The directory will be the output directory for the build and called $BAAR MIC

in the following. Then run the following commands:

1 $ ln -s $LLVM_MIC/tools/polly/include/polly/ $LLVM_MIC/include /.

2 $ ln -s $LLVM_MIC/lib/LLVMPolly.so $LLVM_MIC/lib/libLLVMPolly.so

3 $ cd $BAAR_MIC

4 $ cmake -DCMAKE_TOOLCHAIN_FILE=$TOOLCHAIN_FILE

-DCMAKE_CROSSCOMPILING=True -DLLVM_SRC_DIR=$LLVM_SRC

-DLLVM_BIN_DIR=$LLVM_MIC $BAAR_SRC

5 $ make

Once these steps finish successfully, the whole environment is completely built. The following

chapter explains how BAAR is started to be able to automatically offload code to an Intel Xeon

Phi.

76

Appendix C. Starting The BAAR

Environment

This chapter is specific to the Paderborn Center for Parallel Computing’s (PC2) HPC cluster

OCuLUS1 and explains how to start BAAR to be able to reproduce the evaluation of Chapter 6.

First, copy baar server from $BAAR MIC/out/bin/, baar client from $BAAR X86/out/bin/

and knc-i1x8.h from $BAAR SRC/server/pass/ into your home directory.

Now we can start the BAAR Server on the Intel Xeon Phi. The ExtCompilerBackend used to

generate Xeon Phi binaries from LLVM IR utilizes the compiler of the system hosting the Intel

Xeon Phi over a secure shell connection. Therefore, we need to allocate the node hosting the

Xeon Phi accelerator card interactively and additionally the Xeon Phi accelerator card itself.

Afterwards, we establish a secure shell connection from the host node to the Xeon Phi and start

the server on it. This done by the following commands:

1 ccsalloc --res=rset=arch=MIC:hostname=phi001 -mic0+hostname=phi001 -I

2 ssh phi001 -mic0

3 ./ baar_server -backend=extcompiler -force -vector -width=8

-enable -polly -openmp

In another terminal window, we will compile a test program and start the client with it on

the previously allocated node. It should connect to the server running on the Xeon Phi using

sockets:

1http://pc2.uni-paderborn.de/

77

http://pc2.uni-paderborn.de/

Appendix C. Starting The BAAR Environment

1 ssh phi001

2 module add intel/compiler gcc /4.8.1 cmake /2.8.10.2

3 clang -S -emit -llvm test.c -o test.ll

4 ./ baar_client -host=phi001 -mic0 ./test.ll

The -help command line argument lists the commands available for BAAR Client and Server.

-polly-ignore-aliasing is a hidden command line argument for Polly, it instructs Polly to

parallelize code in cases where it could not be proven that pointers do not overlap. Starting

BAAR Client and Server with this argument extends the possible test cases.

78

Bibliography

[1] Auto-Vectorization in LLVM. Website: http://llvm.org/docs/Vectorizers.html. [On-

line; accessed 26-August-2014].

[2] Building LLVM with CMake. Website: http://llvm.org/docs/CMake.html. [Online;

accessed 26-August-2014].

[3] LLVM 3.1 Release Notes. Website: http://llvm.org/releases/3.1/docs/

ReleaseNotes.html#whatsnew. [Online; accessed 17-August-2014].

[4] LLVM Execution Engine Class Reference. Website: http://llvm.org/docs/doxygen/

html/classllvm_1_1ExecutionEngine.html. [Online; accessed 26-August-2014].

[5] LLVM’s Analysis and Transform Passes. Website: http://llvm.org/docs/Passes.html.

[Online; accessed 26-August-2014].

[6] The TOP500 Supercomputer. Website: http://www.top500.org/. [Online; accessed 16-

August-2014].

[7] Writing an LLVM Pass. Website: http://llvm.org/docs/WritingAnLLVMPass.html.

[Online; accessed 26-August-2014].

[8] Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1977.

[9] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen, Nathan

Giles, and Rajeev Barua. A compiler-level intermediate representation based binary analysis

and rewriting system. In Proceedings of the 8th ACM European Conference on Computer

Systems, EuroSys ’13, pages 295–308, New York, NY, USA, 2013. ACM.

[10] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bas-

toul. The polyhedral model is more widely applicable than you think. In Proceedings of the

19th Joint European Conference on Theory and Practice of Software, International Con-

ference on Compiler Construction, CC’10/ETAPS’10, pages 283–303, Berlin, Heidelberg,

2010. Springer-Verlag.

79

http://llvm.org/docs/Vectorizers.html
http://llvm.org/docs/CMake.html
http://llvm.org/releases/3.1/docs/ReleaseNotes.html#whatsnew
http://llvm.org/releases/3.1/docs/ReleaseNotes.html#whatsnew
http://llvm.org/docs/doxygen/html/classllvm_1_1ExecutionEngine.html
http://llvm.org/docs/doxygen/html/classllvm_1_1ExecutionEngine.html
http://llvm.org/docs/Passes.html
http://www.top500.org/
http://llvm.org/docs/WritingAnLLVMPass.html

Bibliography

[11] Amy Brown and Greg Wilson. The Architecture Of Open Source Applications. lulu.com,

June 2011.

[12] Martin Griebl, Christian Lengauer, and Sabine Wetzel. Code generation in the polytope

model. In In IEEE PACT, pages 106–111. IEEE Computer Society Press, 1998.

[13] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Grösslinger,

and Louis-Noël Pouchet. Polly-polyhedral optimization in LLVM. In Proceedings of the

First International Workshop on Polyhedral Compilation Techniques (IMPACT), volume

2011, 2011.

[14] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual, December

2009. Order Number 253669-033US.

[15] J. Jeffers, J.R. Jeffers, and J. Reinders. Intel Xeon Phi Coprocessor High Performance

Programming. Elsevier Science & Technology Books, 2013.

[16] Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley

Professional, 2nd edition, 2012.

[17] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program anal-

ysis & transformation. In Proceedings of the International Symposium on Code Generation

and Optimization: Feedback-directed and Runtime Optimization, CGO ’04, Washington,

DC, USA, 2004. IEEE Computer Society.

[18] B.P. Lester. The Art of Parallel Programming. Prentice Hall, 1993.

[19] Dmitry Mikushin, Nikolay Likhogrud, Eddy Zheng Zhang, and Christopher Bergström.

KernelGen the design and implementation of a next generation compiler platform for ac-

celerating numerical models on GPUs. Technical Report 2013/02, University of Lugano,

July 2013.

[20] David A. Padua. Encyclopedia of Parallel Computing. Springer, 2011.

[21] David A. Patterson and John L. Hennessy. Computer Organization and Design, Fourth

Edition, Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series

in Computer Architecture and Design). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 4th edition, 2008.

[22] Matt Pharr and William R Mark. ispc: A SPMD compiler for high-performance CPU

programming. In Innovative Parallel Computing (InPar), 2012, pages 1–13. IEEE, 2012.

[23] William Stallings. Operating Systems: Internals and Design Principles. Prentice Hall Press,

Upper Saddle River, NJ, USA, 6th edition, 2008.

80

Bibliography

[24] Kevin Streit, Clemens Hammacher, Andreas Zeller, and Sebastian Hack. Sambamba: A

runtime system for online adaptive parallelization. In Compiler Construction, pages 240–

243. Springer, 2012.

[25] Dennis M. Sullivan. Electromagnetic Simulation Using the FDTD Method. Wiley-IEEE

Press, 2013.

81

	Abstract
	Acknowledgements
	Declaration Of Authorship
	Preface
	Motivation
	Related Work
	Our Approach
	Goals Of This Thesis And Document Structure

	Introduction
	Automatic Parallelization
	Multi-Threading
	Vectorization

	The LLVM Compiler Infrastructure
	Overview
	LLVM Immediate Representation
	Pass And Pass Manager
	Execution Engine
	Polly

	The BAAR On-The-Fly Acceleration Environment
	BAAR Client
	BAAR Server

	Intel Xeon Phi

	Implementation Of The Xeon Phi Backend
	Introduction
	Running The Server On The Xeon Phi
	Preparations For Xeon Phi Support
	Native Xeon Phi Support
	Introduction
	Generating C/C++ Code From LLVM IR
	Initialization Of The ExtCompilerBackend
	Performing Function Calls With The ExtCompilerBackend

	Automatic Identification Of Suitable Function Calls
	Gathering Candidates By Profiling
	Scoring Functions For Suitability
	Runtime Decisions Based On Score And Argument Size

	Optimizing The Remote Part On Server Side
	Server Side Optimization
	Parallelization
	Vectorization

	Evaluation
	Abilities And Limitations Identified
	Alias Analysis
	Data Dependencies

	Performance
	Program Analysis And Acceleration
	Function Execution

	Runtime Decision

	Conclusion And Future Directions
	Appendix Contents Of The Attached Data Medium
	Appendix Building The BAAR Environment
	Building LLVM Including Polly With CMake
	Host Build
	Cross-Building LLVM Including Polly For The Intel Xeon Phi

	Building BAAR
	Host Build
	Cross-Building BAAR For The Intel Xeon Phi

	Appendix Starting The BAAR Environment
	Bibliography

