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Abstract

This thesis aims to discuss and enhance AndroitShmem, the proof-of-concept shared mem-

ory service for Androit. Androit itself is an effort to make the Android operating system

real-time capable and fulfil industrial needs in terms of usability and determinism.

The first two chapters give an overview of Android and its potential in the industry when

extending it with real-time capabilities. Android Framework parts and Android’s Linux

kernel extensions involved in this thesis’ improvements to AndroitShmem are explained.

Androit and AndroitShmem are comprehensively introduced.

The third chapter compares ashmem with a memory-mapped file in tmpfs with regard to

allocating shared memory in the real-time Android context. Shared memory allocation

using a memory mapped file in tmpfs is implemented in AndroitShmem. Furthermore,

its performance is shown to be equivalent to using ashmem and considerably better than

the previously used primary storage.

The fourth chapter profoundly introduces possible synchronisation techniques for An-

droitShmem and illustrates the problems of locks. A concept for synchronising client

access to the shared data using transactional memory is explained and implemented. The

implementation is then analysed and formally verified using the SPIN model checker.

In conclusion, this thesis takes AndroitShmem from its proof-of-concept state to being

practically usable and thus furthers the efforts to make Android real-time capable.
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1. Preface

1.1. Motivation

Android is the number one mobile platform for smartphones and tablets today. Its rapid rise

from its first stable release in September 2008 to becoming the top-selling operating system

for smartphones took just about two years. [21] The consistent look and feel along with a

sophisticated software development kit seem to please end-users as well as app developers like

numerous available apps and steep download figures suggest. [22]

Android is more than just another operating system for smartphones and tablets, it is a soft-

ware platform on top of Linux, giving you extensive possibilities to built your own connected

device. Android is open sourced, but its licensing model is also suitable for commercial organi-

sations which want to keep their Android developments closed (this does not apply to the Linux

kernel). [14]

The conjunction of the Linux kernel with an easy to use and program application platform makes

Android an interesting platform for embedded devices of all kinds. Linux provides a portable

and mature system core, as the Android platform on top of it allows efficient development cycles

of easy to use applications. This thesis will range in the exploration of using Android in an

industrial embedded domain.

When using Linux on an embedded system in an industrial domain, real-time capabilities are

crucial. Android was not created with mechatronic systems or real-time applications in mind,

however it is possible to patch certain versions of the Linux kernel supplied with the Android

source to make it real-time capable. [13] The userspace (non-kernel part) needs additional fea-

tures to let Android applications interact with real-time Linux processes. One main feature

needed is data exchange.

1



1. Preface

1.2. Current status

Mauerer et al. [13] developed an appliance enabling basic data exchange between real-time pro-

cesses and Android applications called AndroitShmem. The Linux kernel running at Android’s

core was previously extended by the ’preempt rt’ patchset to feature real-time processes. An-

droitShmem currently consists of a shareable data structure, a server process providing access

to the shared data structure, an example client written in C and a library to be used in Android

applications.

The shared data structure consists of variables of simple types only at this point. More advanced

data structures like linked lists are also possible, but require sophisticated synchronisation mech-

anisms between multiple processes accessing the data structure.

The AndroitShmem Server uses a file which is then mapped into memory to store the shared

data structure. Currently, the file to be mapped into memory is stored in secondary storage. The

communication between the server and the clients, as well as the mapping of the pointer to the

data structure into processes accessing it, is done through Binder. Binder is the Inter Process

Communication and Remote Method Invocation mechanism provided by Android. Basically

every interaction across multiple processes is done with it. [7]

The library consists of a C file implementing functions which are bound to Java methods using

the Java Native Interface and Android Native Development Kit. This way Android Java appli-

cations which use AndroitShmem are still easily creatable and can use the shared data structure

in an efficient way.

AndroitShmem is basically a proof of concept at this point. It provides the basic implementation

needed for data exchange between real-time and non-real-time clients, but lacks a sophisticated

synchronisation (although some synchronisation parts are implemented). Furthermore, storing

the shared data in a file in main memory instead of secondary storage could lead to considerable

performance improvements.

1.3. Goals of this thesis and structure of this document

The first goal of this thesis is to improve AndroitShmem’s performance by replacing secondary

storage used for the shared data by primary storage (Chapter 3). The possible approaches for

this improvement will be explored. A concept will be developed and implemented. Its effects

will be measured and compared to the current implementation.

Secondly, this thesis aims to introduce a sophisticated synchronisation mechanism for processes

2



1. Preface

sharing memory through AndroitShmem (Chapter 4). It will take a look at basic mechanisms

which enable synchronisation between processes sharing data e.g. atomic operations, spinlocks

and semaphores. The knowledge of these mechanisms will be used to discuss non-blocking

algorithms. The synchronisation mechanism proposed in [13] will be used to develop a concept

of a synchronisation mechanism for AndroitShmem. This concept will be implemented and its

results thoroughly analysed. A formal verification of an equivalent model of the synchronisation

mechanism will prove its correctness.

As an introduction, Chapter 2 will explain fundamental notions and concepts of Android, real-

time systems and previous works by Mauerer et al. [13].

Chapter 5 will summarise the work done in this thesis and point out open topics to improve

AndroitShmem and real-time Android as a whole.

3



2. Introduction

This chapter will introduce concepts and terminology used throughout this thesis. Additionally,

it will describe the current state of the technologies this thesis aims to improve.

2.1. Android

Android [2] is a software platform built by the Open Handset Alliance1. It relies on the Linux

kernel as an abstraction layer between hardware and software, as well as core system services

like process management and drivers. It includes an operating system, middleware and key

applications. It is optimised for mobile devices.

Android makes it easy for developers to built feature rich applications, as they can use the same

APIs2 as core applications3 do. Applications can publish their functionality and make it usable

to other applications. Furthermore, functionality provided by core applications can be replaced

by third-party applications, making Android highly customisable.

Android treats core applications and third-party applications equal to give developers as much

liberty to extend the system as possible. This also means that if you want an application to be

treated special e.g. let it stay active even in low memory situations, you have to do it explicitly

and take special care.

2.1.1. Dalvik Virtual Machine and Zygote

Android applications are mainly written in the Java programming language. They are compiled

to Java Virtual Machine compatible bytecode before being converted to Dalvik Executables [16].

The Dalvik Executable format is specifically designed for memory and processor constrained

systems. Dalvik Executables are run in the Dalvik Virtual Machine [16], Android’s own virtual

machine to run the vast majority of Android applications.

1Founded by Google, www.openhandsetalliance.com
2Application Programming Interface
3e.g. web browser, calendar, text messaging, ...

4
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2. Introduction

The Dalvik Virtual Machine is optimised for low-memory requirements. It has a just-in-time

compiler and register-based architecture. In contrast, the Java Virtual Machine is stack-based.

The Dalvik Virtual Machine uses its own class library and does not claim to be compatible

to standard Java Virtual Machines, but even calling and being called by native applications is

implemented compatible to the Java Native Interface. [17]

To isolate applications for security, Android applications are not run in the same instance of a

Dalvik Virtual Machine. Instead, for every application a new instance of a virtual machine is

executed. Zygote [17] is a system service which was created to do this efficiently.

Zygote starts a Dalvik Virtual Machine at system startup, initialises it and preloads commonly

used libraries. After this, Zygote listens for requests to start a new Android application. If an

application start is requested, the preloaded virtual machine will be cloned. It is then ready to

be used by the new application.

2.1.2. Linux kernel extensions

Android extends the Linux kernel by several features to adapt it to mobile devices. The Android

specific IPC4 mechanism Binder, a new shared memory allocator called ashmem and the so called

lowmemorykiller are extensions dealt with in the following.

Binder

Almost whenever two applications on the Android platform interact, it happens through the

Binder IPC mechanism. Binder is a customised rewrite of OpenBinder5 for Android. Originally,

OpenBinder was developed by Be Inc. under the lead of Dianne Hackborn, who is now involved in

the development of Android. [7] It is object oriented and provides file exchange as well as remote

procedure calls between processes. Additionally, Linux file descriptors and object references can

be exchanged, allowing an efficient way of data exchange through shared memory.

Methods on a remote object can be called as if they were local methods by calling remote

methods synchronously. This means the sender will be blocked until it receives the result from

the called method on the remote object. For this, the Binder framework is able to start and

stop threads. [17] However, the receiver will not be blocked by a remote call in contrast to the

sender. This is achieved through a thread pool where threads are kept ready to handle requests.

To accomplish all these tasks, Binder is implemented as a kernel driver. This also avoids copy

4Interprocess Communication
5http://www.angryredplanet.com/ hackbod/openbinder/docs/html/
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2. Introduction

operations between the kernel and userspace.

To facilitate applications to publish and find functionality of other applications, there is a special

service which all applications can contact. This service is called Service Manager [4] (also called

Context Manager) and is itself contacted through its (publicly known) Binder interface. If an

application wants to publish functionality, it has to register itself at the Service Manager with

an unique identifier. An application requesting functionality of another application uses this

unique identifier to query the Service Manager.

Types of arguments to remotely callable methods always have to implement a special interface

called Parcelable. This enables actual arguments to be marshalled at the sender for transmis-

sion and unmarshalled at the receiver.

Binder uses a client-server model for communication. An example interaction between two

applications ’App A’ and ’App B’ could proceed like in the following description (see also

Figure 2.1).

1. App A wants to call method(object) of App B. For this App B has published this

functionality to the Service Manager. App A contacts the Service Manager to request

functionality of App B.

2. The Service Manager responds by sending the proxy (also known as client stub in other

RPC6 mechanisms) for making calls on App B to App A.

3. App A calls method(object) of App B on the previously acquired proxy. The actual

parameter object of the call is marshalled using the Parcelable interface implemented

by object and forwarded with the call to the Binder kernel driver. App A is blocked.

4. The Binder kernel driver relays the call to a thread in App B’s thread pool.

5. App B unmarshals the actual parameter and processes the call. The result is then mar-

shalled and send to the Binder kernel driver.

6. The Binder kernel driver forwards the result to App A. App A is unblocked and unmarshals

the result.

Sadly, documentation on Binder is scarce, so most information on Binder has to be derived from

the barely documented source code or third-party documents.

6Remote Procedure Call

6
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App A

Proxy of 
App B

App BService
Manager

Binder
kernel driver

1.

2.

method(object)
3.

4.

5.
6.

Figure 2.1.: App A calls a remote method of App B

ashmem

ashmem [19] stands for ’anonymous shared memory’. Android does not support POSIX7 inter-

faces to allocate shared memory intentionally, but uses ashmem instead. ashmem is a file-based

shared memory interface to userspace applications. It is optimised for memory constrained

environments.

ashmem gives the Linux kernel the ability to evict memory under memory pressure. Memory

pages are ’pinned’ by default, which means that the kernel must not evict them unless they are

’unpinned’ explicitly.

Where documentation on Binder is scarce, documentation on ashmem is virtually non-existent.

lowmemorykiller

Current versions of the Linux kernel have a feature called OOM8 killer. The kernels of major

Linux distributions are configured such that processes can request more memory than the system

has currently available. This makes memory use very efficient, because processes do normally

not use their allocated memory directly nor do they use all memory allocated throughout their

lifetime. The downside is that this can lead to conditions where memory is so low that core

kernel tasks cannot be executed any more.

The OOM killer actively avoids those situations. It gets active when the system runs out of

memory and selects a process to kill using a set of heuristics. [15]

7Portable Operating System Interface - Standardised API defining the interfaces between operating

system and applications
8Out of memory

7



2. Introduction

To solely rely on heuristics can lead to processes being killed which are important to the user or

even the system. For this purpose the behaviour of the OOM killer can be adjusted by changing

the value in the file /proc/<pid>/oom adj, where <pid> is replaced by the id of the process

for which the OOM killer’s behaviour should be adjusted. The higher the value in this file, the

higher is the probability of the corresponding process being killed. A process can be immunised

against the OOM killer by setting the value in oom adj to the constant OOM DISABLE (defined

in linux/oom.h, currently set to -17).

The documentation of version 3.5 of the Linux kernel (released in July 2012) states that

in the near future /proc/<pid>/oom adj will be replaced by /proc/<pid>/oom score adj,

allowing much finer grained control of the OOM killer’s behaviour (see:

Documentation/feature-removal-schedule.txt in the Linux kernel’s sources).

During the development of Android the lowmemorykiller [15] kernel driver was created. It

extends the OOM killer by the possibility to set six OOM levels instead of just one (memory

critically low). This way, the lowmemorykiller can get active and notify processes earlier and

group them into six classes corresponding to the OOM levels. The six OOM levels and assigned

process classes are defined and described in the ProcessList class of the Android source code.

When the free memory falls below the first level, unimportant background processes are notified.

They do not exit directly, but save their state. When free memory decreases further under the

next level, they had enough time to clean up their cache and can get exited cleanly. Simulta-

neously, more important background processes are notified to save their state. Once the free

memory falls under the next four levels one after the other, it goes on as before; a more impor-

tant class of processes gets notified and the class of processes notified at the previous level is

exited. The last and most important class of processes includes the currently visible application.

Android applications running in Zygote have a so called lifecycle. This means an application

can be in different states, depending on the application’s visibility. The Android framework’s

ActivityManagerService assigns Zygote processes to process classes dynamically according to

the corresponding application’s lifecycle. When a process enters a new process class, its oom adj

value gets adjusted correspondingly. The user’s interactions with the application is thus tied to

the framework’s decision which process to kill.

2.1.3. Android Init Language

”In Unix-based computer operating systems, init (short for initialisation) is the first process

started during booting, and is typically assigned PID number 1. It is started by the kernel using

a hard-coded filename [...]. Init continues running as a daemon until the system is shut down,

8



2. Introduction

and is the direct or indirect ancestor of all other processes.” [23] [6]

Android uses its own init program. At startup it parses a file called init.rc written in the An-

droid Init Language. The Android Init Language consists of four classes of statements: Actions,

Commands, Services, and Options.

Actions are a named sequence of Commands with a trigger. The trigger defines under which

Event the Action should be executed. Events can e.g. be the very early initialisation of init

itself or the mounting of the file system. A set of Commands allows to alter the partition layout,

create and write into files, change the network status and more. Services are any programs

started by init directly. Options are attributes to Services changing how and when a Service is

run.

Developers can extend init.rc by importing their own *.rc files into it. This allows customised

partition setups or custom Services being executed when a defined Event is triggered e.g. system

startup or a plugged in charger.

For more information on Android’s init process and its configuration see

system/core/init/readme.txt in the sources of the Android Open Source Project in version

4.0.4.

2.2. Real-time

”Real-time computing may be defined as that type of computing in which the correctness of the

system depends not only on the logical result of the computation but also on the time at which

the results are produced.” [18]

A real-time system is a computer system where at least some of the tasks are real-time tasks.

Real-time tasks are subject to real-time constraints, meaning they must guarantee response

within a limited amount of time. The point in time until which the response has to be given is

called deadline.

Real-time tasks may be further classified in hard real-time and soft real-time tasks. Hard real-

time tasks must meet their deadline, otherwise it is a system failure. E.g. it is unacceptable for

an aircraft computer to miss the deadline to lower the landing gear. Soft real-time tasks are less

critical. It makes sense to schedule them even if they miss their deadline, but the quality of the

task will suffer. An example would be the decoding of a video stream.

The industrial embedded domain couples computer systems and the real world tightly and puts

real-time demands on computer systems as such. Thus, real-time capabilities are the exclusive

9



2. Introduction

concern of Linux in this domain. To provide the userfriendliness of Android to the industrial

embedded domain, it has to become real-time capable.

2.2.1. Androit

Androit [13] is the real-time Android implementation proposed by Mauerer et al.. They followed

the approach to separate Android Java applications running on the Dalvik Virtual Machine and

real-time applications running natively (see Figure 2.2). This way, the Dalvik Virtual Machine

need not to be replaced or modified to become real-time capable, which would be a fundamental

change to the Android framework. The Linux kernel is extended by the ’preempt rt’ patchset to

make it support real-time tasks. This patchset was chosen above the numerous other available

patchsets, because it is predicted to become integrated into the mainline Linux kernel in the

near future. [13] To make the Android Java and real-time domain work together, data exchange

is essential. AndroitShmem is an appliance which was created to make data exchange between

these two domains work adequately. Its ideas are described in more detail in the following

section.

With this approach Android applications are still easily programmable and usable. They func-

tion as a user interface to real-time applications running natively as real-time Linux tasks.

2

pable JVM (see Ref. [16]), and adapt the Android
userland where necessary.

o Augment the DVM with real-time capabilities,
leveraging techniques and design patterns from ex-
isting RT-JVM implementations.

Following a code analysis, we estimated that the effort
for any of these approaches exceeds not only our con-
strained developer resources, but would also in general
provide an insufficient return on investment. Instead, we
decided to largely separate the Java and RT components,
as the architecture diagram in Figure 1 summarises.

Application Framework

Libs
Android Runtime

Applications

Linux Real-Time

Core Libs

Dalvik VM

Real-Time
Applications

Communication
Channel

FIG. 1. Architecture diagram of our real-time Android im-
plementation.

The architecture mandates that RT components are
written in C (or any other low-level language that can
target the machine directly without intermediate transla-
tion by a non-RT VM). We have used transactional tech-
niques [7]

:
[1] to allow for data exchange between the ap-

plication domain (based on Java and the Android APIs)
and the real time domain.

::::::::
real-time

:::::::::
domain.

:

C.
:::::
Data

::::::::::
exchange

::
A

:::::::
careful

:::::::
design

:::
for

::::
the

:::::
data

::::::::::
exchange

:::::
path

:::::::::
between

:::::::::::::
user-interface

::::
and

::::::::::
real-time

:::::::::
domains

:::
is

:::::::
crucial

:::
to

:::::
not

:::::::::
introduce

::::::::
priority

:::::::::
inversion

::::::
when

::::
the

::::::::::
real-time

::::::::
process

::::::
would

:::::
have

:::
to

:::::
wait

:::
for

::::
the

:::
UI

::::::::
process

:::
to

::::::
finish

::::::::
writing

:::::
data.

::::
We

::::
thus

::::
use

:::
an

::::::::::
algorithm

:::::::
similar

::
to

::::::
Linux

:::::::::
seqlocks

:::::::::
combined

:::::
with

::
a
:::::::::::::::::
publish-subscribe

::::::::
pattern

::::::
which

:::::::
allows

:::
for

:::::::::
lock-free

:::::::::::::::
communication

:::
in

::::::
both

::::::::::
directions

:::::
and

:::
is

::::::
always

:::::::::
wait-free

::::
for

::::
the

::::::::::
real-time

:::::
part.

::::::
Data

:::
is

:::::::
stored

::
in

::
a
:::::::
special

:::::::
shared

:::::::::
memory

::::::
region

:::::::
which

::::
can

:::
be

:::::::
locked

::::
into

:::::::::
memory.

:

::::::
When

::::
the

:::::::::
real-time

::::::::
process

::::::
wants

::
to

:::::::::
produce

:::::
data,

:::
it

:
is
::::::::::::::

incrementing
:::
an

:::::::
atomic

::::::::
counter

:::::::
before

::::
and

::::::
after

::::
the

:::::
write

:::::::
access.

:::::
The

:::::::
reader

::::
will

:::::
retry

::::::::
reading

:::::
data

:::::
until

:::
it

::::
sees

::
a

::::::::
constant

:::::
and

:::::
even

::::::::
counter

:::::
value

:::::::
before

::::
and

::::::
after

::
its

:::::
read

:::::::
access.

::::
In

:::
the

:::::::::
opposite

::::::::::
direction,

::::
i.e.

::::::
when

::::
the

:::::::::::::
user-interface

:::::
part

::
is

::::::
acting

:::
as

::::::::::
producer,

::
it
::::
will

:::::::
create

::
a

::::::::
modified

::::::
copy

::
of

::::
the

:::::
data

:::
to

::
a
::::::::

second
:::::::
buffer.

:::::::::
Finally,

:
it
:::::

does
::::

an
:::::::
atomic

::::::
check

::::::::
whether

::::
the

:::::
copy

:::::::
source

::
is
:::::

still

:::::::::
consistent

:::::
and

::::::::::
unchanged

:::::
and

::::::::
switches

::::
the

::::::
active

:::::::
buffer.

This ensures that the HMI layer can issue directives to
the control part (e.g., to adapt algorithmic parameters),
while the RT layer can pass data (e.g., information about
noteworthy events) to the HMI part. It was ensured by
using appropriate algorithms that the data exchange can
not introduce unbounded latencies.

III. IMPLEMENTATION AND EVALUATION

A. Basis Component Integration

While the vanilla kernel supports neither
:::::::
neither

:::::
fully

::::::::
supports

:
real-time aspects nor any of

::
all

:
the extensions

necessary for the Android userland, the corresponding
patch stacks are provided as source additions (respec-
tively as git repositories [3]) to selected versions of the
Linux kernel

Unfortunately, preempt rt is only available for a lim-
ited number of base kernels, see Table I. Patches
required for the Xoom board (and supplied by Mo-
torola/Google [13] in their board support package (BSP)
are based on Linux 2.6.36 [20], with no ports for other
kernel releases.1 The Android patch stack is available for
nearly every recent kernel release.

Component Version Release Date
Linux Kernel 2.6.33 24. Feb. 2010

2.6.36 20. Oct. 2010
2.6.39 19. May 2011
3.0 22. Jul. 2011

preempt rt 2.6.33
patch stack 3.0

:::::
3.2,4

Android 2.6.25,27,29,32 Immediately
patch stack 2.6.35–39 after kernel

3.0 releases

:::::
3.3,4

Xoom BSP 2.6.36

TABLE I. Versions and release dates of relevant basis compo-
nents.

The components that are most difficult to port across

1 Notice that the generic Nvidia Tegra platform infrastructure is
integrated into the mainline Linux kernel, and is at the time of
writing being actively developed by Google [9]. However, sup-
port for the Xoom board (on top of the platform code) is not
mainlined.

Figure 2.2.: Architecture diagram of Androit, taken from [13]

2.3. AndroitShmem

AndroitShmem is an appliance proposed by Mauerer et al. [13] to facilitate data exchange

between Android applications and real-time tasks on an Androit system. AndroitShmem consists

of a server, which allocates memory for the shared data structure and runs as a service to make it

10
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AndroitShmemServer

AndroitShmemService

Native LibraryNative Client

BpAndroitShmem

Java Client

Shared
Data

manages

instantiates
calls on calls on

uses

Binder
kernel driver

acquires handle from

Figure 2.3.: Shematic overview of AndroitShmem

accessible through Binder. Every process (real-time or non-real-time) which acquires a handle to

the shared data from the server is an AndroitShmem client and uses the server’s Binder interface.

Native clients get a pointer to the shared data and access it directly, whereas Java clients use

wrapper types provided by Java Native Interface. A shared library provided by AndroitShmem

makes the shared data easily accessible to Android Java applications. Figure 2.3 schematically

shows how clients acquire a handle to the shared data from the AndroitShmem server.

Interfaces

For the server and clients to be able to communicate through Binder, an interface was created.

This interface is called IAndroitShmem. It is implemented as a C++ class. The class extends

the IInterface interface, which is the base class for all Binder interfaces. IAndroitShmem

declares the virtual function getShmem(). It will later be used for clients, as well as for the

server internally to obtain a handle to the shared data structure.

IAndroitShmem is extended by two classes. The first one is the server local Binder interface

called BnAndroitShmem. BnAndroitShmem defines the function onTransact(). onTransact()

will be called by the Binder kernel driver whenever a call on the server’s Binder interface has to

be processed. It will then identify the type of the call and respond to it. In this case the only

possible call type is GET SHMEM and the appropriate response is the result of getShmem().

The second class extending IAndroitShmem is BpAndroitShmem, the remote Binder interface

or ’proxy’ to the server. It defines getShmem(), declared in IAndroitShmem, for clients. This

11
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IAndroitShmem
+<<virtual>> getShmem()

IInterface

BnAndroitShmem
+onTransact()

BpAndroitShmem

+getShmem()

AndroitShmemService
+<<static>> instantiate()
+getShmem()

Figure 2.4.: Simplified class diagramm of AndroitShmem interfaces

implementation of getShmem() queries the server for a handle to the shared data through Binder

(call type GET SHMEM) and returns it.

Figure 2.4 shows the hierarchy of Binder interfaces. Details which are unimportant for the

purposes of this thesis were omitted. The class AndroitShmemService will be explained in the

following.

Server

The server is implemented in a class called AndroitShmemServer. Its purpose is to instantiate

the shared memory service implemented in the class AndroitShmemService, start the thread

pool for processing Binder calls and log the status of the shared memory periodically.

AndroidShmemService extends BnAndroitShmem, the local Binder interface. On its instantiation

it opens a file in secondary storage and maps it into memory with the help of a class called

MemoryHeapBase provided by Android. MemoryHeapBase allows easy exchange of pointers to

the shared data between processes through Binder. The service’s getShmem() implementation

will just return a handle to the previously allocated memory.

AndroitShmemService registers itself as a service at Android’s Service Manager to publish its

functionality i.e. clients will then be able to obtain a proxy to the AndroitShmem service and

call getShmem() on it.

12
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Clients

Clients can be implemented natively or as Android Java applications. Native clients can query

Android’s Service Manager directly to acquire the proxy to AndroitShmemService as imple-

mented in BpAndroitShmem. The proxy then povides getShmem() for the client to obtain a

handle to the shared data. The shared data structure can then be accessed directly.

Java clients acquire a handle to the shared data with the help of a shared library implementing

JNI functions for the Java class SharedMem. SharedMem can then access the shared data through

Java wrapper classes provided by the Java New I/O library. Java programmers do not have to

get involved with Android’s Service Manager or Binder, they can obtain a handle to the shared

data very easily with the call of one function while communication with the server happens in

the background.

Clients access the shared data concurrently. It is crucial to synchronise access to the shared data

in a way that no real-time task has to wait for its access until a non-real-time task has finished

its work. Furthermore, the shared data has to be allocated in a way it will not be withdrawn

from the system under any circumstances, as this would be fatal in a real-time environment.

These will be the main topics of the next chapters.

2.4. Conclusion

This chapter introduced fundamental notions in the Android and real-time context. Androit, an

effort to combine both worlds, was presented. Additionally, the current state of AndroitShmem

was described.

The following chapter will cover the first improvement made to AndroitShmem in the course of

this thesis. It will improve its performance by using main memory instead of secondary storage

for the shared data.
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3. Using main memory as shared

storage

This chapter will base on the notions and concepts presented in the previous chapter. It will

comprehensively introduce an improvement made to AndroitShmem. The goal of this chapter

is to use the main memory as shared storage for the AndroitShmem server instead of secondary

storage, as it was previously the case. It will discuss two possible approaches. After this,

the implementation and performance measurements made in the course of this thesis will be

presented.

3.1. Fundamental notions

This section will introduce the concept of memory-mapping, as well as a file system which

temporarily stores data in main memory. The conjunction of both will be one approach to

allocate shared memory for AndroitShmem. It will be compared to the approach of using

ashmem in Section 3.2.

3.1.1. Memory-mapped file

One solution to share data between processes is using a file. Processes then have to open the

same file to read from and write to it to share information. There is one inconvenience: whenever

a process wants to update the shared data, it has to seek in the file. It would be much more

convenient to be able to use pointer arithmetic to update the shared data. [8]

A memory-mapped file [11] in Unix systems is a segment of virtual memory which has been

assigned to a file that is physically available in the file system. In other words the file is mapped

into the different address spaces of the data sharing processes. Thus, the file can be edited with

pointer arithmetic as if it was primary memory. This also leads to an increase in performance,

as no system call needs to be executed to alter parts of the file. A simple switch to the process’
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3. Using main memory as shared storage

local memory is sufficient instead of an expensive context switch.

3.1.2. tmpfs

tmpfs stands for ’temporary file system’ (see: Documentation/filesystems/tmpfs.txt in the

Linux kernel sources in version 3.5). It is a file system which keeps all files in virtual memory.

All files stored in a tmpfs mount are temporary, no files on hard disk will be created. This means

that on unmount (e.g. at reboot) everything stored in it will be lost. tmpfs stores everything in

the kernel’s internal caches and has the ability to swap out unneeded pages.

As long as files stored in a tmpfs mount are held in the kernel’s caches and not swapped out,

access to them should be considerably faster than access to files in persistent file system mounts,

as tmpfs stores them in primary instead of secondary storage.

3.2. Concept

This section discusses two different approaches of enabling the AndroitShmem server to use

primary storage for sharing data and presents a concept using the approach which exposes to

be superior for the purposes of this thesis.

3.2.1. tmpfs versus ashmem

As described above, Android does not support POSIX interfaces for allocating shared memory,

but uses ashmem (see: Section 2.1.2). This results in two feasible ways to implement shared

memory using main memory for this thesis’ purposes:

1. Set up a tmpfs mount for AndroitShmem, create a file for memory-mapping and let the

AndroitShmem server map this file to provide shared memory. Make sure the shared

memory does not get swapped out of main memory.

2. Allocate memory through ashmem, make sure allocated memory is not revoked under any

circumstances and let the AndroitShmem server manage this allocated memory as shared

memory. Additionally make sure the shared memory stays in main memory.

The first approach requires more effort to allocate the shared memory, because the tmpfs has

to be established and the file created. This has to be done before the AndroitShmem server is

started. At best, AndroitShmem’s requirements are directly met after system start up. This

means that the init process at boot up has to be altered. Since it is favourable to start the
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3. Using main memory as shared storage

AndroitShmem server at system start up and set its oom adj value to OOM DISABLE, the init

process will be altered anyhow. Furthermore, Android allows inclusion of custom init scripts

into the init process in an easy way.

The second approach does not require any additional efforts to allocate the shared memory.

Source code analysis showed that memory allocated through ashmem is pinned by default. This

means that the kernel may not revoke this memory. As no documentation on this behaviour

is available, a deeper source code analysis would be mandatory to make sure this is the case.

Furthermore, the lack of an openly available documentation implies that there are no statements

about the stability of ashmem. It is not clear, if it is completely stable or will undergo changes

in the future which might affect its suitability for AndroitShmem.

As it is critical to provide a stable environment for real-time applications, the first approach

is the superior one. It relies on well known, documented and stable techniques. Additionally,

ashmem itself uses a tmpfs instance in the background, therefore also performance-wise the first

approach should be in no way inferior.

3.2.2. Using tmpfs

The approach for allocating the shared memory in main memory will be to use tmpfs and a

memory-mapped file. To establish a tmpfs mount, the Android init process will be altered. This

will be done by including a custom script into Android’s standard init script in the file init.rc.

The custom script will create a directory and mount a tmpfs instance in it. It will then create

the file to be memory-mapped later and set its permissions in a way that no normal user can

access it. Additionally, a shell script will be run which starts the AndroitShmem server and

makes sure it will not be killed by the kernel under any circumstances. The AndroitShmem

server will map the previously created file into memory and use this memory for sharing.

3.3. Implementation

As tmpfs exposed to be the superior approach for allocating shared memory for the purposes of

this thesis, this section will follow this approach. It will present the implementation written in

the course of this thesis, which is based on the concept developed in the previous section.
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3. Using main memory as shared storage

3.3.1. Init process adjustments

The Android framework makes it easy to adjust the init process to your needs by custom init

scripts. Listing 3.1 shows how external scripts can be included into Android’s init.rc.

1 import / i n i t . ${ ro . hardware } . r c

2 import / i n i t . androitshmem . rc

3

4 . . .

Listing 3.1: Abstract from init.rc

Line 1 includes hardware-specific init scripts, line 2 was added to include the custom init script-

file init.androitshmem.rc.

Next the contents of init.androitshmem.rc have to be defined. It is shown in Listing 3.2.

Lines 1 to 6 define an Action with the trigger init. init is a trigger that occurs directly after

init set up the most important properties for the init process itself. It is used to set system-global

variables and set up important filesystem mount-points. Additionally to the trigger the Action

consists of four Commands. The first Command in line 3 creates the directory /mnt/shm. It

is readable and writeable for and belongs to the user and group root. Other users or groups

do not have access. Line 4 mounts a tmpfs instance to the previously created directory with

the same access rights. Note that this implies that nothing can be executed from this mount.

Line 5 writes a zero to the file /mnt/shm/map and thus creates this file. This file will be used

as the storage for the shared data by the AndroitShmem server. Line 6 sets access rights such

that only the user root can read from and write to the recently created file.

Lines 8 to 10 define a second Action with the trigger boot. This trigger occurs after the filesystem

has been set up and is used to do basic network initialisation, set permissions to system core

files and start system Services. Beside the trigger the Action consists of the Command ’start

androitshm’, which causes init to start the Service androitshm.

The Service androitshm itself is defined in lines 13 to 16. Line 13 declares the Service name

androitshm for the shell script located in /system/bin/init.androitshmem.sh. The Options

in lines 14 to 15 tell init to start this Service as user and group root. The Option oneshot in

line 16 tells init not to restart the Service when it exits. Lines starting with a hash are comments

and will be ignored by the parser.
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3. Using main memory as shared storage

1 on i n i t

2 # c r e a t e AndroitShmem mount p o i n t

3 mkdir /mnt/shm 0600 root root

4 mount tmpfs tmpfs /mnt/shm mode=0600 , g id=0

5 wr i t e /mnt/shm/map 0

6 chmod 0600 /mnt/shm/map

7

8 on boot

9 # s t a r t the s e r v i c e ’ androitshm ’ d e f i n e d below ( AndroitShmemServer )

10 s t a r t androitshm

11

12 # d e c l a r e AndroitShmemServer

13 s e r v i c e androitshm /system/ bin / i n i t . androitshmem . sh

14 user root

15 group root

16 oneshot

Listing 3.2: init.androitshmem.rc

The shell script init.androitshmem.sh is defined in Listing 3.3. Line 1 defines this file as a

shell script, using Android’s default shell located at /system/bin/sh. Line 3 starts the Androit-

Shmem server located in /system/bin. The ’&’ starts the server in the background such that

further commands can be issued concurrently. Line 4 writes the constant number ’-17’ to the

file /proc/$!/oom adj. During execution ’$!’ will be substituted to the the process id of last

process launched in background, in this case this is the AndroitShmem server. The constant

number ’-17’ stands for the constant OOM DISABLE and tells the lowmemorykiller not to kill the

AndroitShmem server under any circumstances (see section 2.1.2).

1 #! / system / bin / sh

2

3 / system/ bin /AndroitShmemServer &

4 echo −17 > / proc /$ ! / oom adj

Listing 3.3: init.androitshmem.sh

After these adjustments the tmpfs mount with the file to be memory-mapped and the An-

droitShmem server get initialised at system startup. Furthermore, the lowmemorykiller is told

not to kill the AndroitShmem server. But so far the file in the tmpfs mount is not used by

AndroitShmem.
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3.3.2. AndroitShmem adjustments

Since the AndroitShmem server is the central manager of the shared memory, it is the only

component of AndroitShmem that has to be adjusted to work with the tmpfs mount. Further-

more, the server already used the Android framework’s class MemoryHeapBase to map a file into

memory and make it shareable through Binder. Thus, only minor adjustments have to be made.

66 . . .

67 shmemHeap = new MemoryHeapBase ( ”/mnt/shm/map” ,

s izeof ( struct andro i t : : shared ) ) ;

68 . . .

Listing 3.4: Excerpt from AndroitShmemServer.cc

Listing 3.4 shows the only line that has to be edited. On instantiation of the MemoryHeapBase

object, the constructor gets passed the new location of the file to be mapped into memory i.e.

/mnt/shm/map as previously defined in init.androitshmem.rc.

One line of code is additionally important to mention, it is shown in Listing 3.5. Line 73 locks

the shared memory into the AndroitShmem server’s main memory using the function mlock().

This means that the corresponding memory pages will not get swapped out to secondary storage.

Otherwise it could occur that real-time processes would have to wait for the memory page to

get loaded into main memory again, which would be an unacceptably costly operation.

74 . . .

75 r e s = mlock (shmemHeap−>getBase ( ) , shmemHeap−>g e t S i z e ( ) ) ;

76 . . .

Listing 3.5: Excerpt from AndroitShmemServer.cc

This section finishes the implementation of a mechanism which enables the AndroitShmem server

to use main instead of secondary memory for shared storage. The next section evaluate these

efforts by measuring performance and comparing the results.

3.4. Performance measurements

Performance was measured in an emulator running Android 4.0.4 on a conventional desktop

computer. The measure was nanoseconds taken to alter the shared data. As shown in Listing 3.6,

the shared data consisted of a structure composed of an integer, a floating point and an array
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1 struct d a t a s t r u c t {

2 int i n t e g e r ;

3 f loat fp ;

4 long a r b i t r a r y [ 1 0 2 4 ] ;

5 } ;

Listing 3.6: Shared data used for performance measurements

of long integer with 1024 entries. To prevent the the system from caching the variables’ values,

every component of the struct was declared volatile. The struct was used to perform some

sample shared data accesses by an AndroitShmem client, which had to acquire a pointer to the

shared data from the AndroitShmem server to access it. In every access the client altered the

values of the integer, the float and every entry of the array once. Measurements were taken for

the initial implementation with a memory-mapped file in secondary storage, a memory-mapped

file in primary storage using tmpfs as described above and shared memory acquired through

ashmem. Furthermore, three different types of measurements were taken: the first access of a

client to the shared data after Android was just started up completely, an access of a client after

the shared data was accessed previously and ten consecutive accesses by a client after the shared

data was also already accessed before, acquiring the pointer to the shared data just once. Every

measurement was taken ten times.

To get a value in nanoseconds representing how long a run took, two times were taken by

the client and then subtracted. The first time was taken after the pointer to the shared data

structure had been acquired, directly before the shared data was accessed. The second time was

taken directly afterwards. The time was taken from a high resolution timer provided by the

CPU supporting a resolution of one nanosecond. The results were revised such that the time it

took to get the time value itself is not included.

3.4.1. First access

Table 3.1 shows the measurements’ results for the first access to the shared data structure after

Android booted up completely. Using primary storage took just under 60% of the time taken

when using secondary storage, which is quite an improvement. The results also show that there

is no considerable performance difference between tmpfs and ashmem.
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@
@
@
@@

secondary storage primary storage (tmpfs) primary storage (ashmem)

average 313335 ns 182915 ns 187017 ns

minimum 274979 ns 176633 ns 169209 ns

maximum 341325 ns 191852 ns 202066 ns

Table 3.1.: Time taken by a client for the first access to manipulate the shared data

3.4.2. Subsequent access

The measurements’ results for a subsequent access can be found in Table 3.2. Again with primary

storage taking just over 40% of the time taken when using secondary storage, using primary

storage is a considerable improvement. The time taken for subsequent (i.e. not first) accesses

is notably shorter than the time taken for first accesses, because the resources needed for the

manipulation are already cached. The shared data’s variables are marked volatile however, as

mentioned before. The differences between the time taken when using tmpfs in comparison to

ashmem are again only some microseconds and not considerable.

@
@
@
@@

secondary storage primary storage (tmpfs) primary storage (ashmem)

average 101417 ns 44400 ns 41651 ns

minimum 86745 ns 40747 ns 39493 ns

maximum 112733 ns 47948 ns 43852 ns

Table 3.2.: Time taken by a client to manipulate the shared data once, after the shared

data was accessed before

3.4.3. Consecutive accesses (subsequent)

Table 3.3 contains the measurements’ results when manipulating the shared data structure ten

times in a loop after the shared data has been accessed before. With taking just over 70%

of the time of secondary storage, using primary storage again obtains an improvement. The

improvement is not as big as one might expect from previous results, because despite declaring

the variables as volatile, the Linux kernel caches the memory-mapped file internally. This

behaviour is not deactivatable without far reaching interventions. Again, differences between

using tmpfs over ashmem are negligible.
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@
@
@
@@

secondary storage primary storage (tmpfs) primary storage (ashmem)

average 178259 ns 132790 ns 131795 ns

minimum 164436 ns 120510 ns 127076 ns

maximum 198441 ns 138757 ns 138705 ns

Table 3.3.: Time taken by a client to manipulate the shared data ten times, after the

shared data was accessed before

3.5. Conclusion

This chapter discussed how to provide shared data stored in primary storage. A concept was

developed and implemented. Furthermore, it was shown how the init process of Android can be

adapted to include custom scripts. The measurements’ results were presented to evaluate the

implementation.

Overall it was shown that the concept of using tmpfs in combination with memory-mapping

leads to a stable and performant shared memory solution. Access times to the shared data

could be improved considerably. Additionally, it was shown that ashmem cannot provide a

better performance than tmpfs for the purposes of this thesis. In sum, the approach of using

the stable and well-tested tmpfs proved to be superior to the approach of using the virtually

undocumented and therefore obscure ashmem.

The following chapter will deal with synchronisation. The most typical synchronisation tech-

niques will be discussed. A concept of how to synchronise realtime and non-realtime clients

accessing AndroitShmem will be presented, implemented and analysed.
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AndroitShmem clients read from and write to the shared data concurrently, thus synchronisa-

tion is essential to maintain data integrity. After moving the shared data from secondary to

primary storage in the last chapter, objects used for synchronisation can efficiently be stored in

and accessed from it. This chapter will discuss basic synchronisation mechanisms and use this

knowledge to take a deeper look at the synchronisation mechanism proposed in [13] for Androit-

Shmem. The implementation developed in the course of this thesis is based on the proposed

synchronisation mechanism and will be explained in detail. Additionally, the implementation

will be analysed and verified by using a model which was created for this thesis.

4.1. Fundamental notions

This section will discuss basic synchronisation mechanisms as an introduction to the more com-

plex synchronisation mechanism designed for AndroitShmem, which will be presented in Sec-

tion 4.2.

4.1.1. Synchronisation mechanisms

In the following, commonly used synchronisation mechanisms will be explained in general.

Atomic operations are a required basis for the more powerful locks. Locks enforce limits on

access by multiple processes to a resource. Processes cooperate with each other by sharing a

lock. The resource may only be accessed if the lock could be acquired. Spinlocks, semaphores,

mutexes and reader/writer locks are types of locks which will be explained below.

Atomic operations

The simplest form of synchronisation are atomic operations. Atomic operations are guaranteed

to be executed without any interruption, as if they consisted of a single machine instruction.

Hardware support is explicitly needed to disable interrupts and prevent other processors in
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1 f unc t i on lock ( int ∗ l o ck ) {

2 while ( t e s t−and−s e t ( lock , 1) == 1)

3 ;

4 }

Listing 4.1: Example spinlock locking using test-and-set()

a multicore processor from execution. All processors supported by the Linux kernel support

atomic operations. [12]

An example atomic operation is test-and-set(), which writes a new value to a variable and

returns the old one. Operations like this are needed to implement more high-level synchronisation

mechanisms like spinlocks.

Spinlocks

Spinlocks [12] are locks which cause a process to wait in a loop and check repeatedly until the

lock becomes available. They should only be used for short-term waits, because the process

stays active and does not do anything useful. This is also known as busy waiting. They do not

produce much overhead, as no context switch to another process is executed.

A simple spinlock locking procedure is outlined in Listing 4.1, it uses an atomic test-and-set()

function where the first parameter is the memory position to write to and the second is the value

to be written.

Semaphores

A semaphore [18] [12] is a specially protected integer variable with a process queue on which

only three operations may be performed: wait(), signal() and initialise(). They are used

to control entry to and exit from critical sections. More specifically, they track how many

units of a common resource are available for access by multiple processes. On initialisation,

the semaphore’s value is set to a non-negative integer value. When a process wants to enter

the critical region protected by the semaphore, it executes wait() on the semaphore. wait()

decrements the value of the semaphore by one. If the value is negative afterwards, the process

executing wait() is blocked and enqueued into the semaphore’s process queue, which means

it ”waits” for the semaphore to become available. After a process leaves the critical region, it

executes signal() on the semaphore, incrementing the semaphores value by one. If the value

was negative before i.e. at least one process is waiting in the semaphore’s process queue, a
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process is dequeued and then unblocked.

It is important to note that wait() and signal() must not be interrupted during execution

and thus require atomic operations to be implemented.

Mutexes

Mutexes [18] [20] are a special case of semaphores. The semaphore is initialised with a value of

one, additionally only the process which decreased the value can increase it to one again. Thus,

maximal one process can be in the protected region at any time.

Reader/Writer locks

It is often not a problem to let multiple processes read from a data structure at a time, as writing

to the data structure can only be done by a single process while no other process accesses it.

Mutexes are too restrictive in this case.

This is where reader/writer locks [12] are used. They differentiate between read and write access

to data structures and allow any number of processes to perform read operations concurrently.

Write access is restricted to one process only. Furthermore, read access is not permitted while

write access is in progress.

4.1.2. Negative aspects of locks

Locks may be powerful tools to control concurrency, but they introduce several negative aspects:

• They cause blocking, meaning processes trying to access a currently taken lock have to

wait until the lock is released.

• Deadlocks can be introduced. At least two processes are involved in this. Both wait for

the lock the other one has to finish, while not releasing the lock held before getting the

other.

• Livelocks can occur. They are similar to deadlocks, but their states constantly change in

respect to another, none progressing.

• Lock handling adds overhead to every access to the protected resource, even when chances

to collisions are very rare.

• Contention for a lock limits scalability and adds complexity.

• Convoying can be introduced, meaning if a process holding a lock is descheduled, all
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processes competing for this lock have to wait.

• They can introduce priority inversion, meaning a low priority process can detain a higher

priority process when the lower priority process holds the common lock. Its implications

are further discussed below.

[20] [18]

Priority inversion

Priority inversion [18] is a phenomenon that can occur in any system using priority-based pre-

emptive scheduling. In real-time systems it becomes a critical issue to deal with.

Any system using priority-based preemptive scheduling should always run the process with the

highest priority. Priority inversion denotes a situation in which a higher priority process has to

wait for a lower priority process. This is the case when a lower priority process has locked a

resource the higher priority process needs for execution. On attempting to acquire the common

lock, the higher priority process will be blocked until the lower priority process releases the lock.

In the worst case there may be some medium priority processes preempting the lower priority

process. In this case the higher priority process would even have to wait for the preempting

medium priority processes to finish, leading to a even more serious condition referred to as

unbounded priority inversion [18].

Several approaches exist that avoid unbounded priority inversion, but the problem of priority

inversion itself remains when using a common lock between higher and lower priority processes.

These aspects show that locks have to be used cautiously. Furthermore, the problem of priority

inversion shows that shared locks between real-time and non-real-time processes must be avoided

whenever possible.

4.1.3. Non-blocking algorithms

To avoid the negative aspects of locks, non-blocking algorithms [10] were introduced. Non-

blocking algorithms ensure that mutual exclusion does not cause processes competing for a

shared resource have to wait indefinitely for their execution. Non-blocking algorithms may

guarantee two qualities of progress: lock-freedom and wait-freedom.
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Lock-freedom

Lock-freedom is the weaker of both guarantees. It allows individual processes to be perpetu-

ally denied necessary resources and thus not finishing their tasks, but guarantees system-wide

progress. An algorithm is lock-free if it satisfies that when the program processes are run

sufficiently long at least one of the processes makes progress (for some sensible definition of

progress). [10]

Wait-freedom

Additionally to guaranteeing system-wide progress, wait-freedom guarantees no process to be

perpetually denied necessary resources. An algorithm is wait-free if for every operation the

number of steps the algorithm will take before the operation completes is bounded. For realtime

processes this quality is critical. Naturally, all wait-free algorithms are lock-free. [10]

A non-blocking algorithm for controlling access by multiple processes to shared data is transac-

tional memory.

Transactional memory

The main idea of transactional memory [10] is to control concurrent access to the shared data

analogously to database transactions.

In transactional memory a transaction is a sequence of steps executed by a single process.

Transactions must be serialisable [10], meaning that they appear to execute sequentially, in a

one-at-a-time order. This defines transactions to be atomic, which is a coarse grained property

because transactions may include calls to several objects. Transactions may not introduce

deadlocks or livelocks.

Transactions do not block by being executed speculatively i.e. they make tentative changes to the

involved objects. If no synchronisation conflicts emerged while doing so, the tentative changes

are made permanent. In other words the changes are committed. If else synchronisation conflicts

emerged, the transaction is aborted and the changes discarded. On abort the transaction can

be retried.

An important class of atomic operations for implementing transactional memory in software

and non-blocking algorithms in general is read-modify-write [10]. Read-modify-write operations

simultaneously read a memory location and write a new value into it. The new value can either

be a completely new value or a function of the old one. A very frequently used representative

of this class is compare-and-swap().
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1 int compare and swap ( int∗ reg , int o ld va lue , int new value ) {

2 int o l d r e g v a l u e = ∗ reg ;

3 i f ( o l d r e g v a l u e == o l d v a l u e )

4 ∗ reg = new value ;

5 return o l d r e g v a l u e ;

6 }

Listing 4.2: CAS for int values implemented in C (not atomic)

Compare-and-swap

compare-and-swap() or short CAS is an atomic function which reads the contents of a memory

location and compares it to a given value. On equality it writes a given new value into it.

Additionally, it returns the contents of the memory location read at the beginning. Every

modern processor architecture supports CAS or an equivalent instruction. In C its code could

look like shown in Listing 4.2, but note that the C code does not provide the crucial atomicity. [10]

4.2. Concept

The synchronisation mechanism for AndroitSchmem has to be designed cautiously such that

priority inversion is not introduced and the real-time part is wait-free under reasonable assump-

tions. To achieve this, real-time writers will use a global sequence counter to maintain integrity

and signal that a real-time write is in progress to non-real-time readers. Non-real-time writers

will use the concept of transactional memory to update the shared data, which was introduced in

the previous section. [13] A mutex for the real-time and one for the non-real-time writers ensure

that only one real-time or non-real-time writer each can write to the shared data. Table 4.1

gives an overview of the concept and shows how clients are synchronised with each other. The

next sections will explain this concept in detail.

4.2.1. Real-time part

Writer

Before a real-time writer makes changes to the shared data, it acquires the real-time writers’

mutex and increases the sequence counter by one (initially zero). This way it is made sure that

no real-time write is in progress and the sequence counter is increased to an odd value. Processes
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Synchronised real-time real-time non-real-time non-real-time

by writer reader writer reader

real-time (first) sequence transactional sequence

writer lock counter memory counter

real-time sequence not sequence not

reader counter necessary counter necessary

non-real-time transactional sequence (second) sequence

writer memory counter lock counter

non-real-time sequence not sequence not

reader counter necessary counter necessary

Table 4.1.: Synchronisation concept overview

wanting to read from the shared data can infer from the odd value of the sequence counter that

a (real-time) write is in progress. Then the real-time writer can safely make changes to the

shared data.

After making changes, the real-time writer increases the sequence counter by one again and

releases the real-time writers’ mutex. This finishes the real-time write. The increase of the

sequence counter set it to an even value, meaning that no real-time write is in progress. Fur-

thermore, an increase of the sequence number denotes an update to the shared data.

Reader

Real-time readers will wait until the sequence counter has an even value and save this value

temporarily. Then they read information from the shared data. After this, they compare the

previously saved value from the sequence counter with the current one. If the values match,

the data was consistently read and the readers can proceed. Otherwise, the shared data was

updated while reading and the information as well as the sequence counter have to be reread.

This is repeated until the information was consistently read.

4.2.2. Non-real-time part

Writer

As mentioned before, non-real-time writers will use transactional memory to make changes to

the shared data. Therefore non-real-time writers will not make changes to the shared data
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directly, but to a copy.

At first, a non-real-time writer acquires the non-real-time writers’ mutex and waits for the

sequence counter to have an even value. It then saves this value temporarily and begins working

on a copy of the shared data. Afterwards, it compares the previously saved and current value

of the sequence counter to check for consistency. If the copy is still consistent with the current

data after the changes were made, the copy is exchanged with the current data and the sequence

counter increased by two to signal a data update. This has to happen atomically. If the copy is

not consistent any more, the copy has to be updated to the current values, the sequence counter

reread and the changes redone. This is repeated until the shared data could consistently be

updated.

To be able to exchange the copy of the shared data and the current one atomically, the copy

has to reside in the shared memory at the AndroitShmem server. This way not the whole data

structure, but only a pointer to the currently active one has to be updated atomically. This is

possible with atomic functions like CAS (explained in Section 4.1.3).

Reader

A non-real-time reader behaves exactly like a real-time reader. Furthermore, real-time and

non-real-time readers can naturally access the shared data concurrently without interference.

4.3. Implementation

This section will discuss the implementation of the concept presented in the previous section.

The implementation was developed in the course of this thesis.

4.3.1. Preliminary considerations

This section will explain the choices made on how to implement the synchronisation mechanism

for AndroitShmem.

Non-real-time writer

An important point is that on success the non-real-time writer has to compare the sequence

counter, update it and exchange the pointer to the active data copy all at once in a single atomic

operation. Otherwise, consistency cannot be guaranteed under every possible circumstance.
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... 1 0 1 0

2023 22 21...

actual sequence counter first copy active

real-time write
in progress

Figure 4.1.: Illustration of an exemplary sequence counter value

CAS is not sufficient to perform this operation, as it only supports one variable to compare and

write to. A fitting operation for this would be DCAS (double compare-and-swap), which behaves

like CAS extended to two variables. Unfortunately DCAS is not available on any widespread

computer architecture nowadays. It can be implemented using CAS as presented in [9], but this

approach would be costly for the purposes of this thesis. To circumvent this issue, the pointer

to the active data structure as well as the sequence counter will be encoded into one integer

variable. This way CAS can be used to perform the update atomically.

Previously, the first bit of the sequence counter was used to denote if a real-time write is

in progress (value either odd or even). This signal will be shifted into the second bit to be

able to use the first bit to denote which of the two copies of the data structure is the active

one. Figure 4.1 illustrates how bits of a sequence counter value are reserved to store special

information.

Mutexes

In Linux systems mutexes are generally supplied by the pthread1 library, which is implemented

in Android’s own implementation of the standard C library namely Bionic. As stated in

bionic/libc/docs/OVERVIEW.TXT in the Android 4.0.4 source code, Bionic’s implementation

of the pthread library does not support process-shared mutexes as needed by AndroitShmem

to synchronise real-time and non-real-time writers respectively when accessing the shared data.

When looking deeper into the actual implementation of pthread, this exposes not to be entirely

true. In bionic/libc/bionic/pthread.c (l. 839 ff.) of the Android 4.0.4 source code the

documentation states ”our current implementation of pthread actually supports shared mutexes

but won’t cleanup if a process dies with the mutex held.”. Furthermore, shared mutexes are used

in core parts of the Android framework like the Surfaceflinger and Audioflinger, the window and

audio compositor respectively. Therefore, the shared mutexes implemented in Bionic’s pthread

1POSIX Thread
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library can safely be used, but have to be rechecked in future versions of Android.

Atomic functions

The Android toolchain, used to build applications for Android as well as Android itself, includes

the popular GCC2 [5]. GCC supports built-in functions that can be used inside program code

and are implemented by the compiler specifically for the target architecture. Among these are

atomic functions as needed to implement the previously presented concept, making them easy

to use.

4.3.2. Realisation

IAndroitShmem.h

To make the synchronisation mechanism easily usable to all clients accessing AndroitShmem

and implement it in one place, it will be implemented in the header file of IAndroitShmem. This

file is included in every AndroitShmem component.

In a first step, the shared C-structure has to be extended as shown in Listing 4.3. data struct

declares how the shared data looks like, the actual payload. In this case it just contains some

examplary variables. shared is the shared structure that contains objects used for synchronisa-

tion, as well as the payload. The objects for synchronisation are encapsulated in an inner struct.

Among these are the two mutexes for real-time and non-real-time writers respectively and the

sequence counter. Furthermore, shared contains the shared data as declared by data struct

twice to support transactional memory. All of these parts were explained in detail in Section 4.2.

On start of the AndroitShmem server, the shared data structure has to be initialised to make

synchronisation work correctly. The function init shared() as shown in Listing 4.4 fulfils this

purpose and will be called during the initialisation of the AndroitShmem server. Line 3 defines a

mutex attribute, which is initialised and gets the process-shared state attribute set. Afterwards,

it can be used to initialise the shared mutexes declared in the structure shared (lines 7-11).

Lines 13 to 18 set sample values on the shared data. init shared() returns the collected

return values from the initialisation of the mutexes in form of an integer value. If everything

went fine, the value returned is zero.

Real-time and non-real-time readers have to wait for the sequence counter to have its second bit

unset (no real-time write in progress) and store it. They also have to compare a stored sequence

counter value to the current one. These operations are also implemented in IAndroitShmem.h.

2GNU Compiler Collection

32



4. Synchronisation

1 struct d a t a s t r u c t {

2 int i n t e g e r ;

3 f loat fp ;

4 long a r b i t r a r y [ 1 0 2 4 ] ;

5 } ;

6

7 struct shared {

8 struct {

9 pthread mutex t r t w lock ;

10 pthread mutex t nonrt wlock ;

11 unsigned int sequence ;

12 } pro t e c t ;

13 struct d a t a s t r u c t data [ 2 ] ;

14 } ;

Listing 4.3: Shared C-structure as implemented in IAndroitShmem.h

1 stat ic int i n i t s h a r e d ( struct shared ∗ shared ) {

2 int r e s u l t ;

3 pthread mutexatt r t a t t r ;

4

5 shared−>pro t e c t . sequence = 0 ;

6

7 pth r ead mutexa t t r i n i t (& a t t r ) ;

8 pthread mutexat t r se tpshared (&attr , PTHREAD PROCESS SHARED) ;

9 r e s u l t = pthread mutex in i t (&shared−>pro t e c t . r t wlock , &a t t r ) ;

10 r e s u l t += pthread mutex in i t (&shared−>pro t e c t . nonrt wlock , &a t t r ) ;

11 pthread mutexatt r des t roy (& a t t r ) ;

12

13 for ( int i = 0 ; i < 2 ; i++) {

14 shared−>data [ i ] . i n t e g e r = 42 ;

15 shared−>data [ i ] . fp = 2 3 . 4 2 ;

16 for ( int j = 0 ; j < 1024 ; j++)

17 shared−>data [ i ] . a r b i t r a r y [ j ] = 1024 − j ;

18 }

19

20 return r e s u l t ;

21 }

Listing 4.4: Function to initialise the shared data structure (IAndroitShmem.h)
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Listing 4.5 shows these functions. seq begin() reads the sequence counter value from the shared

structure and checks if the second bit is set (lines 4-6). If it is set, there is currently a real-

time write in progress, therefore the reader has to wait and reread the sequence counter (lines

7-8). cpu relax() as used in line 7 is a procedure that has to be implemented architecture

specific. It should give the CPU a hint that it currently executes a wait loop to be able to

optimise accordingly. On x86 CPUs this is implemented as ’asm volatile("rep; nop" :::

"memory");’, which is the same instruction commonly used to wait in spinlocks. As soon as

the second bit in the sequence counter’s value is unset, the value is returned. seq doretry()

compares a given, previously stored sequence counter value to the current one. If the values

match, it returns false. This would mean the data could consistently be read and no retry has

to be done. If the values do not match, true is returned meaning a retry has to be done. Both

functions are declared inline, to avoid the overhead of the function calls.

1 stat ic i n l i n e unsigned s eq beg in ( const struct shared ∗ shared ) {

2 unsigned int sequence ;

3

4 sequence = shared−>pro t e c t . sequence ;

5

6 while ( sequence & 2) {

7 cpu re l ax ( ) ;

8 sequence = shared−>pro t e c t . sequence ;

9 }

10

11 return sequence ;

12 }

13

14 stat ic i n l i n e bool s e q d o r e t r y ( const struct shared ∗ shared , const unsigned

int s t a r t ) {

15 unsigned int sequence ;

16 bool i n c o n s i s t e n t = f a l s e ;

17

18 sequence = shared−>pro t e c t . sequence ;

19

20 i f ( sequence != s t a r t )

21 i n c o n s i s t e n t = true ;

22

23 return i n c o n s i s t e n t ;

24 }

Listing 4.5: Sequence counter handling functions (IAndroitShmem.h)
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Additional helper functions for beginning and ending real-time writes, as well as beginning and

ending non-real-time writes will be explained when they are needed further below.

real-time write

The sample native client should represent a real-time client, it therefore has to be extended

accordingly. Listing 4.6 shows how a real-time writer accesses the shared data synchronised

and writes to it. It presents a shortened version of the function implemented in

AndroitShmemClient.cc, excluding error handling and debug message output to have a clearer

view on the essential parts.

Before writing to the shared data, the real-time writer has to call begin rt write() on the previ-

ously acquired handle to it. begin rt write() is a small function defined in IAndroitShmem.h,

which acquires the real-time writers’ lock to make sure only one real-time writer is writing and

then increases the sequence counter by two. Afterwards, the second bit is set in the sequence

counter, denoting to other clients that a real-time write is in progress. The real-time writer can

then safely determine which copy of the shared data is active by looking at the first bit of the

sequence counter (line 7). After this it can write to it, increasing the value of an integer in the

shared data by one in this case (line 8). When the real-time client has finished writing, it has to

call end rt write() defined in IAndroitShmem.h. It will again increase the sequence counter

by two and release the real-time writers’ lock. The second bit is unset afterwards, denoting

no real-time write is in progress anymore. The increase of the sequence counter additionally

indicates that the shared data was updated.

1 void doWrite ( ) {

2 struct shared ∗ conta ine r = getSharedData ( ) ;

3 int a c t i v e d a t a ;

4

5 b e g i n r t w r i t e ( conta ine r ) ;

6

7 a c t i v e d a t a = conta iner−>pro t e c t . sequence & 1 ;

8 conta iner−>data [ a c t i v e d a t a ] . i n t e g e r ++;

9

10 e n d r t w r i t e ( conta ine r ) ;

11 }

Listing 4.6: Examplary write access to the shared data by a real-time client

The helper functions begin rt write() and end rt write() use the GCC builtin
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sync add and fetch() to increase the sequence counter. Therefore, the counter is increased

atomically and without compiler optimisations which could reorder reads from and writes to it.

This ensures consistent states during these increases.

Non-real-time write

AndroitShmem’s shared library for clients makes the shared data easily accessible to Android

Java applications via Java Native Interface calls. It should be used to implement non-real-time

applications with an easy to use user interface and has to be extended to support writing to the

shared data.

Listing 4.7 shows a shortened version of the C++ implementation of the corresponding Java Na-

tive Interface function updateByteBuffer(), which the Java client can use to update the values

of the shared integer and float variables. It excludes error handling to make the example of how

to write to the shared data with a non-real-time client easier to read. Before any write accesses,

the non-real-time writer has to call begin nonrt write() on the shared data. This function is

defined in IAndroitShmem.h and acquires the non-real-time writers’ lock to make sure only one

is writing at a time. The counterpart to end the write process is end nonrt write(), which

is also defined in IAndroitShmem.h and releases the lock. After making sure there is only one

non-real-time writer active, it can determine which copy of the shared data is inactive by looking

at the first bit of the sequence counter and inverting it (line 11). This copy is then used to write

to with the goal of committing it after a successful write. To be able to check if the write was

successful in the end, the value of the sequence counter before touching the shared data is stored

in line 13. Afterwards, the new values for the integer and float variables can be written to the

inactive copy of the shared data (lines 15 to 16). It is important to note that although it is

not intended to write to the other variables, they have to be updated to the values currently

stored in the active copy of the shared data (lines 18 to 19). Otherwise, it might be the case

that the shared data is ’updated’ to outdated values eventually. After the actual writing, the

client tries to commit the now updated inactive copy to make it active (line 21). This uses a

built-in version of the atomic compare-and-swap() function. It compares the current value of

the sequence counter to the previously stored one. If the values do not match, it returns false

and causes the client to retry the write operation, the current sequence counter stays untouched.

In the case of a match, the sequence counter is increased by four and additionally gets its first

bit inverted. The increase by four signals that an update to the shared data was made, it is the

smallest increase the non-real-time client can make, as the bits representing one and two are

reserved. The invert of the one first bit makes the previously inactive copy of the shared data

the client wrote to the active one. All in all, this shows how the non-real-time client writes to
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the shared data using transactional memory.

1 extern ”C”

2 void Java com androit SharedMem updateByteBuffer (JNIEnv ∗ , j o b j e c t , j f l o a t

updateFloat , j i n t updateInt ) {

3 struct shared ∗ conta ine r ;

4 unsigned int s t a r t s e q ;

5 int update data ;

6

7 conta ine r = getSharedData ( ) ;

8

9 b e g i n n o n r t w r i t e ( con ta ine r ) ;

10

11 update data = 1 − ( conta iner−>pro t e c t . sequence & 1) ;

12 do {

13 s t a r t s e q = seq beg in ( conta ine r ) ;

14

15 conta iner−>data [ update data ] . fp = ( f loat ) updateFloat ;

16 conta iner−>data [ update data ] . i n t e g e r = ( int ) updateInt ;

17

18 for ( int i = 0 ; i < 1024 ; i++)

19 conta iner−>data [ update data ] . a r b i t r a r y [ i ] = conta iner−>data [1−

update data ] . a r b i t r a r y [ i ] ;

20

21 } while ( ! sync boo l compare and swap(&conta iner−>pro t e c t . sequence ,

s t a r t s e q , ( s t a r t s e q +4)ˆ1) ) ;

22

23 end nonr t wr i t e ( conta ine r ) ;

24 }

Listing 4.7: Examplary write access to the shared data by a non-real-time client

Reading the shared data

Reading the shared data in a synchronised manner is essentially the same procedure for real-

time and non-real-time clients. As the version for the non-real-time client becomes a bit longish

because it includes code to handle the transition from native to Java code, a shortened version

of the real-time read as implemented in AndroitShmemClient.cc will be presented here.

Listing 4.8 shows how a real-time client reads information from the shared data. It first saves
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1 void doRead (void ∗ arg ) {

2 struct shared ∗ conta ine r = getSharedData ( ) ;

3 unsigned int s t a r t s e q ;

4 int a c t i v e d a t a ;

5

6 do {

7 s t a r t s e q = seq beg in ( conta ine r ) ;

8 a c t i v e d a t a = conta iner−>pro t e c t . sequence & 1 ;

9

10 LOGD( ”AndroitShmem read content : i n t e g e r=%d , f l o a t=%f ” , conta iner−>

data [ a c t i v e d a t a ] . i n t ege r , conta iner−>data [ a c t i v e d a t a ] . fp ) ;

11

12 } while ( s e q d o r e t r y ( conta iner , s t a r t s e q ) ) ;

13 }

Listing 4.8: Examplary read access to the shared data by a real-time client

the current value of the sequence counter and then determines the active copy of the shared

data by looking at the first bit of it (lines 7 to 8). This suffices as preparation to read from

the shared data. In this case the contents of the integer and float variables are printed out as

a debug message (line 10). After having read the data, the client has to check if this could

consistently be done by using the function seq doretry() from IAndroitShmem.h (line 12). If

this is the case, the condition of the do-while statement is false and the reading process finished.

If it is not, the the loop will be reexecuted and the data reread. The loop is repeated until the

data was consistently read.

4.4. Analysis

After the implementation of the synchronisation mechanism was presented in the previous sec-

tion, this section will describe how it was tested and analysed. The correctness of the imple-

mentation will be proven by verifying an equivalent model which was created in the course of

this thesis.

4.4.1. Testing

To test the synchronisation mechanism, a native client and an Android Java application as

shown in Figure 4.2 were implemented. Both are capable to write to and read from the shared
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Figure 4.2.: Simple AndroitShmem Java client, implemented for testing purposes

data. The native client representing the real-time and the Java application the non-real-time

part, using the corresponding synchronisation mechanisms. Both clients were invoked in several

varieties, logged extensive debug messages and included sleep instructions to be able to cause

many possible interleaves during execution of the synchronisation technique and make sure

everything went fine. These clients were also helpful to show that this technique is practical and

to make some general observations.

4.4.2. General observations

Locks were used sparingly, furthermore the real-time and non-real-time part do not share a lock.

Therefore, priority inversion is not introduced. Nevertheless, the non-real-time client can delay

the real-time client when it commits data to the shared memory while the real-time client is

reading. In this case the real-time client has to reread the information. If non-real-time clients

commit data very frequently such that the real-time client can never consistently read the data,

it would be stuck in an infinite loop caused by the lower priority non-real-time client. While this

is a threat in theory on multiprocessor systems, it is not relevant in reality. The non-real-time

clients’ purpose is to host an easy-to-use user interface to set variables for the real-time clients’

executions and observe the system. Therefore, the write access of a non-real-time client is always

instantiated by a human and can be assumed to be infrequent enough for the real-time read to

take finitely bound time. The user interface could even enforce infrequent writes with a short

delay after initiating one, while still remaining practical. In fact, as a real-time client never has

to wait for a non-real-time client when writing data, in an AndroitShmem system with a single

real-time process the real-time part would be wait-free. Having a single real-time threat is the
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case AndroitShmem was intended for.

In the same way as explained above, a too frequently writing real-time process can cause non-

real-time processes to infinitely loop while trying to read from or even write to the shared data.

Assuming the real-time processes are not faulty, the system would still make progress and thus

be lock-free. It is in the responsibility of the designer of the real-time process to handle this

danger thoughtfully. It is advisable to avoid this case in general, as on an uniprocessor system

this would mean that no non-real-time process gets enough computation time to do reasonable

work as long as the real-time processes are running.

An additional concern is the absence of deadlocks. There are only two locks, fulfilling the same

purpose for the real-time and non-real-time side respectively. They make sure there is only one

writer active of either kind. As the write process itself just depends on the corresponding lock

and it is directly released afterwards, no deadlock is introduced by the synchronisation technique

as a whole.

4.4.3. Formal verification

As it is not possible to test every possible interleave of executions that can appear while running

AndroitShmem clients, the correctness of the synchronisation technique was proven by creating

a model in Promela and verifying it using SPIN.

Promela and SPIN

Promela [3] is short for ”Process/Protocol Meta Language”. It is a language for writing models of

processes. These models can then be used to verify the logic of parallel systems. The verification

is done by SPIN [3], short for ”Simple Promela Interpreter”. It is a tool for automatically

verifying the correctness of models written in Promela. For this, SPIN uses model-checking.

More precisely, it generates C code of a program that exhaustively visits every state the model

can be in, while checking assertions. The programmer defines these assertions and when they

should be checked. In simple words, SPIN can be used to verify that given requirements of a

program consisting of several processes are true regardless of how the execution of these processes

is interleaved.

The model

The model has to be held as simple as possible, as otherwise the number of possible states

quickly becomes too big to be checked in reasonable time. In Section 4.4.2 it was already argued

40



4. Synchronisation

that neither deadlocks nor infinite loops are introduced under reasonable assumptions. Thus, it

remains to show that the synchronisation technique ensures consistency of the data. The only

purpose of the two locks was to ensure that only one writer of each type can be active at a time.

All in all it is a reasonable choice to omit the locks in the model, it suffices to start at most

one writer of each type. Furthermore, as SPIN checks every possible interleave of execution and

the readers do not change any shared information, it would suffice to start one reader to show

that a reader always reads data consistently. In this case there are two different readers for the

real-time and non-real-time part which are checked, although they essentially behave the same

way.

Listing 4.9 includes an excerpt of the model to illustrate how the Promela model looks like. It

shows the part of the model which represents the real-time writer process. The model is as close

to the actual code as possible, to ensure the synchronisation technique is correctly verified. Lines

5 to 9 represent begin rt write(). It is inlined, because Promela does not support procedures.

Furthermore, the locking of the real-time writers’ lock is omitted, as explained before. Line 7

increases the global sequence counter by two, which essentially is what begin rt write() does

when locking is omitted. It is enclosed in an atomic block, which causes that everything in

this block is seen as one atomic operation by the verifier. The block additionally includes an

assertion in line 6 and an assignment in line 8. The assertion checks if the second bit is unset

when the real-time write begins. The second bit has to be unset, because this bit is reserved to

represent an ongoing real-time write and we only allow one at a time. If the assertion is violated,

the verifier would show an error. This would mean the second bit was incorrectly set during

execution. The assignment in line 8 stores the value of the increased sequence counter to use it

in an assertion later on. Lines 6 and 8 were not part of the original begin rt write(), but were

included to verify the synchronisation technique. Line 11 determines which copy of the shared

data is active, just like the actual real-time client would do. Afterwards, it can write to it. Lines

14 to 17 represent end rt write() minus the locking. The assertion in line 15 was added to

verify the model. It checks if the bit, indicating which copy of the shared data is active, has

changed since it was stored for the write process. It additionally checks if the sequence counter

has the same value as previously set. Both values have to be unchanged, otherwise the verifier

would show an error as the assertion would be violated. This would mean the sequence was

altered although no process was allowed to. Note that there is no payload data being written

to. This is unnecessary, because data integrity is ensured by the sequence counter. It has only

to be verified that the sequence counter behaves correctly.

The rest of the model can be found on the attached data medium. It would be tedious to discuss

the whole model here, because it is an equivalent translation of the implementation, presented at
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1 proctype r t w r i t e r ( ) {

2 b i t a c t i v e d a t a ;

3 byte a s s e r t s e q ;

4

5 atomic {

6 a s s e r t ( ( sequence & 2) == 0) ;

7 sequence = sequence + 2 ;

8 a s s e r t s e q = sequence ;

9 }

10

11 a c t i v e d a t a = sequence & 1 ;

12 /∗ Write to a c t i v e data copy . . . ∗/

13

14 atomic {

15 a s s e r t ( ( a c t i v e d a t a == ( sequence & 1) ) && ( sequence == a s s e r t s e q ) ) ;

16 sequence = sequence + 2 ;

17 }

18 }

Listing 4.9: Excerpt of the model, showing the real-time write process

length in Section 4.3.2, into Promela. It just additionally includes assertions to ensure integrity

of the sequence counter at all times and follows Promelas peculiarities.

The result

The model was used as input by SPIN to generate a C program. With this program, the actual

verification could be done. Its output is shown in Listing 4.10. As line 10 states there were no

errors, therefore no assertions were violated during the full state search. Lines 25 to 34 reveal

that every process reached all of its states, meaning there was no dead code. The rest of the

output is statistic about the verification process itself e.g. how many states or state transitions

occurred (lines 11-13).

As the verification did not produce any errors and all assertions were positively checked, the

model of the synchronisation technique is correct. As the model was equivalently translated

from the original implementation, it can be concluded that the implementation is also correct.

All in all the synchronisation technique was formally verified in this section.
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1 ( Spin Vers ion 6 . 2 . 2 −− 6 June 2012)

2 + P a r t i a l Order Reduction

3

4 Ful l s t a t e s p a c e search f o r :

5 never c la im − ( none s p e c i f i e d )

6 a s s e r t i o n v i o l a t i o n s +

7 c y c l e checks − ( d i s ab l ed by −DSAFETY)

8 i n v a l i d end s t a t e s +

9

10 State−vec to r 44 byte , depth reached 95 , e r r o r s : 0

11 5387 s ta t e s , s t o r ed

12 5664 s ta t e s , matched

13 11051 t r a n s i t i o n s (= sto r ed+matched )

14 391 atomic s t ep s

15 hash c o n f l i c t s : 0 ( r e s o l v e d )

16

17 Stat s on memory usage ( in Megabytes ) :

18 0 .370 equ iva l en t memory usage f o r s t a t e s ( s to r ed ∗( State−vec to r +

overhead ) )

19 0 .479 ac tua l memory usage f o r s t a t e s

20 128.000 memory used f o r hash t ab l e (−w24)

21 0 .534 memory used f o r DFS stack (−m10000 )

22 128.925 t o t a l a c tua l memory usage

23

24

25 unreached in proctype r t r e a d e r

26 (0 o f 19 s t a t e s )

27 unreached in proctype nonr t r eade r

28 (0 o f 18 s t a t e s )

29 unreached in proctype r t w r i t e r

30 (0 o f 9 s t a t e s )

31 unreached in proctype n o n r t w r i t e r

32 (0 o f 28 s t a t e s )

33 unreached in i n i t

34 (0 o f 7 s t a t e s )

35

36 pan : e l apsed time 0 .01 seconds

Listing 4.10: Verification output
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4.5. Conclusion

This chapter first introduced many important notions and concepts in the context of synchro-

nising cooperative processes in Section 4.1. It explained locking mechanism and the associated

problems. The presented way to avoid these problems was non-blocking algorithms, more specif-

ically transactional memory as a fitting mechanism for this thesis’ purposes in the context of

AndroitShmem. Afterwards, in Section 4.2, a sophisticated concept to synchronise Androit-

Shmem clients as suggested in [13] was explained using the basic concepts introduced in the

previous section. In Section 4.3 the concept was slightly adjusted for implementation. Imple-

mentation choices and the realisation of the implementation were explained. Section 4.4 analysed

the implementation in terms of practicability and did a formal verification of the synchronisa-

tion mechanism. In summary, a sophisticated synchronisation mechanism for AndroitShmem

was comprehensively introduced, successfully implemented and formally verified in this chapter.
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5.1. Conclusion

This thesis introduced fundamental notions and concepts of Android in Chapter 2. Among

these were the Dalvik Virtual Machine in conjunction with Zygote, Linux kernel extensions

made during the development of Android and the Android Init Language, which is used to

configure Android’s custom init system. Additionally, real-time systems were explained as a

basis to present Androit, the combination of Android and a real-time capable Linux kernel.

AndroitShmem, the part of Androit enabling communication between real-time processes and

Android applications, was presented in its proof-of-concept state.

Chapter 3 thoroughly discussed the first improvement made to AndroitShmem during this the-

sis which was enabling AndroitShmem to use the main instead of secondary memory as shared

storage. Before the concept was developed and presented, required notions and concepts were

introduced. This included memory-mapping a file and the tmpfs file system, which in conjunc-

tion were one of the two possible approaches to realise the improvement. The second possible

approach was to use Android’s own shared memory allocator ashmem. During the development

of the concept both approaches were discussed. Storing a file in a tmpfs mount and memory-

mapping it exposed to be the superior approach for the purposes of this thesis, because ashmem

appeared to be virtually not documented and therefore obscure. The concept using tmpfs was

implemented by extending Android’s init configuration and the AdroitShmem code. It was

followed by performance measurements, which showed a considerable improvement in Androit-

Shmems performance when compared to the initial implementation, and underlined that using

tmpfs was the superior approach.

The second improvement made to AndroitShmem was comprehensively introduced in Chapter 4.

The improvement was to implement a sophisticated synchronisation mechanism. Different basic

synchronisation mechanisms were explained in this chapter. Among these were several types

of locks. The negative aspects of locks were pointed out e.g. the possibilities of deadlocks

and lifelocks or the complexity the handling of locks causes. This lead to the introduction of
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non-blocking algorithms with the example of transactional memory. Transactional memory is

an important part of the synchronisation mechanism for AndroitShmem proposed in [13]. This

synchronisation mechanism was explained in detail. Considerations on how to implement it

and choices on which techniques to use were explained. Afterwards, the implementation of the

synchronisation mechanism developed in the course of this thesis was profoundly presented. To

evaluate the implementation, it was tested and analysed. An equivalent model of the implemen-

tation was written for this thesis. It was presented and formally verified. Therefore, it could be

concluded that the implementation was correct and the shared data provided by AndroitShmem

is kept in an consistent state at all times. Overall, this chapter enabled AndroitShmem clients

to access the shared data in an efficiently synchronised way.

In sum, this thesis successfully improved AndroitShmem and has taken it from its proof-of-

concept state to being practically usable. Therefore a missing crucial requirement of making

Android real-time capable was fulfilled in this thesis.

5.2. Prospect

5.2.1. Further improvements

Version 4.7 of GCC introduced a new set of built-in atomic functions which supports the same

operations as the previously existing one, but additionally allows the programmer to choose

the memory model. [1] Previously, the memory model was very strict i.e. the order of loads

from and stores to memory locations was strictly set by the compiler when using the built-in

atomic functions. From GCC 4.7 on, the programmer can choose a more relaxed memory model,

allowing the architecture and the compiler to reorder loads an stores more freely. This could

potentially be used in AndroitShmem and may increase its performance further. Unfortunately

as of this writing, the Android toolchain does not support GCC in version 4.7. Therefore, this

improvement requires an updated Android toolchain.

5.2.2. Practicability

The synchronisation mechanism implemented in Chapter 4 was not tested on a real real-time

system yet. Furthermore, it was only tested with sample clients accessing primitive variables.

Future work has to observe how AndroitShmem and the synchronisation mechanism behave in

a real environment with full-featured applications sharing data using it. Especially the assump-

tions made in Section 4.4.2 and the mentioned issues when having too frequent writing clients
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in the same section have to be examined.
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A. Contents of the attached data

medium

The attached data medium includes the commented source code of AndroitShmem in its initial

proof-of-concept state and in its form after the improvements of this thesis were implemented and

evaluated. Furthermore, snapshots of all referenced websites, as well as copies of all referenced

text files are included. In addition, a digital copy of this thesis is included.
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