"Dark Silicon and Dependability"

by Jörg Henkel

CES – Chair for Embedded Systems, KIT Karlsruhe

... with Muhammad Shafique and Hussam Amrouch

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

ces.itec.kit.edu

Overview

- What is Dark Silicon
- Interplay of Power Density, Temperature and Dependability
- Mitigating Dark Silicon

What is Dark Silicon?

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

ces.itec.kit.edu

Lets go back to 1865 ...

In economics, the Jevons paradox (/ 'dʒɛvənz/; sometimes Jevons effect) occurs when technological progress increases the efficiency with which a resource is used (reducing the amount necessary for any one use), but the rate of consumption of that resource rises because of increasing demand.

[Src: Wikipedia]

So, how is this related to Dark Silicon?

Dennard Scaling ... (or failure thereof)

(Src: "Dennard Scaling")

Dark Silicon: Depends on Point of View ...

Dark silicon as a function of power constraint ...

Temperature, Power and TDP

Example:

- 16 cores with area 5.3 mm²
- Threshold temperature: 80°C
- Power budget: 90 W

<mark>11.27 W</mark>	<mark>11.27 W</mark>	<mark>11.27 W</mark>	59.5 °C
78.9 [°] C	79.5 [°] C	77.8 [°] C	
<mark>11.27 W</mark>	11.27 W	<mark>11.27 W</mark>	<mark>59</mark> .4 °C
79.5 °C	80.0 °C	77.6 [°] C	
<mark>11.27 W</mark> 77.8 [°] C	<mark>11.27 W</mark> 77.6 [°] C	60.9 °C	58.1 °C
59.5 °C	59.4 °C	58.1 °C	57.0 °C

<mark>7.52 W</mark>	<mark>7.52 W</mark>	<mark>7.52 W</mark>	<mark>59.5</mark> °C
71.6 [°] C	72.2 [°] C	71.4 [°] C	
<mark>7.52 W</mark>	<mark>7.52 W</mark>	<mark>7.52 W</mark>	<mark>7.52 W</mark>
72.5 [°] C	73.2 [°] C	72.6 [°] C	70.3 [°] C
<mark>7.52 W</mark>	<mark>7.52 W</mark>	<mark>7.52 W</mark>	59.6 °C
72.3 ^o C	72.9 [°] C	71.4 [°] C	

					100
<mark>5.64 W</mark> 67.8 [°] C	<mark>5.64 W</mark> 68.5 [°] C	<mark>5.64 W</mark> 68.5 [°] C	<mark>5.64 W</mark> 67.8 [°] C		90
<mark>5.64 W</mark> 68.5 [°] C	<mark>5.64 W</mark> 69.5 [°] C	<mark>5.64 W</mark> 69.5 [°] C	<mark>5.64 W</mark> 68.5 [°] C		80
<mark>5.64 W</mark> 68.5 [°] C	<mark>5.64 W</mark> 69.5 [°] C	<mark>5.64 W</mark> 69.5 [°] C	<mark>5.64 W</mark> 68.5 [°] C		70
<mark>5.64 W</mark> 67.8 [°] C	<mark>5.64 W</mark> 68.5 [°] C	<mark>5.64 W</mark> 68.5 [°] C	<mark>5.64 W</mark> 67.8 [°] C		60
				[^o C	50]

Highest Temperature: 80.0°C

8 active cores

18 active cores

Highest Temperature: 7862°C

HHighesstTemperature:69858°CC

16 active cores

S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, J. Henkel, "TSP: Thermal Safe Power - Efficient power budgeting for Many-Core Systems in Dark Silicon", (CODES+ISSS), 2014.

Temperature Effects

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

ces.itec.kit.edu

High Power

Density

Temperature Effects

Dark Silicon

mitigate

Thermal Gradients

- Due to: a) Low-frequency power change, b) Workload change, c) Power management
- Affects MTTF

Spatial Thermal Gradient Analysis

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

ces.itec.kit.edu

Example: Thermal Cycling in FPGAs

Activity migration between two cores at the rate of 154 MCycle

Time [sec]

Summary:

Dark Silicon is a thermal problem due to high power density:

- Average temperature
- Peak temperature
- Spatial thermal gradients
- Temporal thermal gradients
- => Accelerate Aging and Jeopardize Dependability!

Aging Effects

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

ces.itec.kit.edu

Temperature and Aging Decrease Dependability

Technology scaling has made aging-induced reliability degradation a major concern

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

Temperature and Aging decrease Dependability

Thermal:

- Accelerate aging mechanisms
- Degrade performance
- Increase leakage power
- Necessitate expensive cooling

Aging Effects: Electro-Migration, Variability

Process variations and electromigration can result in hillocks and holes

$$MTTF = Aj^{-n}e^{\left(\frac{\varphi}{kT}\right)}$$

- Lead to open failures or short circuit failures respectively
- Failures may be temperature dependent due to material expansion
 - Holes may function normally at high temperatures but fail at low temperatures
 - Hillocks may function normally at low temperatures but short circuit at high temperatures

Hole/crack

Hillock

Aging Effects: NBTI

- Negative Bias Temperature Instability
 - Breakdown of Si-H bonds at the silicon-oxide interface due to voltage/thermal stress
 - \rightarrow causes interface traps
- Affects mostly P-MOSFETs because of negative gate bias
 - Effect in N-MOSFETS is negligible
- Despite research focus: NBTI is not yet fully understood!

Aging Effects: NBTI

NBTI manifests itself as a shift in V_{th}

- Causes increase in transistor delay
- Delay faults are responsible for NBTI induced bit-flips and resulting circuit failure
- Recovery effect in periods of no stress
 - When voltage and temperature are low, V_{th} can shift back towards its original value
 - Full recovery from a stress period only possible in infinite time
 → In practice overall V_{th} shift increases monotonously over longer periods, e.g. months/years

Aging Effects: NBTI and Temperature

- Temperature plays important aspect in NBTI modeling
- Higher temperatures increase shift in threshold voltage
- ▲*Vth* approximately 50% higher at 75°C than 55°C
- NBTI effect at 75°C is approximately equal to alternating between 85°C and 25°C

24

So, how to *accurately* model temperature (aging etc.) effects ... ?

Temperature through abstraction levels

Temperature/Aging Effects Ex: 6T SRAM cell

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

ces.itec.kit.edu

Example: Register File

It has: relative small area footprint + frequently accessed

→ High power density → high temperature → higher temperature/aging effects

The hotspot is located at the register file in for most of the applications

Reliability relevant parameters

- Static Noise Margin (SNM) Susceptibility to Noise
- Read Access Time (RAT): Providing correct data in time
- Critical Charge (Qcrit): Susceptibility to radiation

- Key reliability aspects
 - Static Noise Margin (SNM) Susceptibility to Noise during read operations

Aging Imapct in 6-T SRAM Cells

- Key reliability aspects
 - Read Access Time (RAT): Providing correct data in time
 - Critical Charge (Qcrit): Susceptibility to radiation
 - Static Noise Margin (SNM) Susceptibility to Noise

Aging Imapct in 6-T SRAM Cells

NBTI Impact on aging: 6-T SRAM Cell

- Static Noise Margin (SNM) is one of the critical reliability metrics in an SRAM cell.
- It represents the immunity of SRAM against noise during the read or write operation
- NBTI highly affects the SNM making the SRAM more susceptible to failure [Src:

during read operation in the case of α = 0.3 over 11 years

SRAM transfer characteristics during read operation in the case of α = 0.5 over 11 years

SRAM transfer characteristics during read operation in the case of α = 0.5 during the first year

[Src: IBM, KIT]

Summary: Temperature/Aging in 6-T SRAM Cell

- On-chip temperatures directly stimulate underlying mechanisms behind aging phenomena and/or directly influence dependability (instantaneously or long term)
- In the following: how multiple simultaneous temperature/aging mechanisms may interact.

Interaction of Temperature/Aging Effects

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

ces.itec.kit.edu

Interaction of Aging Effects

Register File Failure Maps

Hussam Amrouch, Victor van Santen, Thomas Ebi, Volker Wenzel, Jörg Henkel, "Towards Interdependencies of Aging Mechanisms", IEEE/ACM Int'l Conference on CAD (**ICCAD**), 2014.

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

Analyzing Temperature

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

ces.itec.kit.edu

IR-Camera for thermal Evaluation

- DIAS Pyroview IR Camera
 - Spatial resolution macro lens: around 50µm
 - Limited by camera IR spectral range of 8µm- 14µm
 - Temperature range configurable -20 °C to 120 °C or 0°C to 500°C
 - Sampling rate of 50Hz
 - Camera transmits 50 frames per second over ethernet in real time
 - 384x288 pixels
 - Comprehensive SDK for accessing camera functionality

Analyzing Temperature of CPUs

Challenges:

Infrared thermography of ASIC chips requires:

- Removing the chip cooling unit to expose the measured die.
- Building an alternative IR-transparent cooling unit to avoid burning up that:
 - allows the infrared radiation emitted from the chip to reach the thermal camera.
 - concurrently prevents the chip from burning up.

Analyzing Temperature: Basic Setup

- It continuously chills the measured chip from its bottom side, i.e. through the PCB to which the chip is attached.
- Thermoelectric technology has been employed as it is can provide a stable and controlled source of cooling.

Water heat sink cooling the hot side of the Peltier device

Bottom-side cooling

No layer on top of the measured chip

→ the camera can directly and clearly capture the infrared emissions

Example of the captured infrared thermal image of the Atom Intel Dual-Core (45nm) running at 1.8Ghz

Thermal (real-time) Video of an 8-Core Processor

sor

Mitigating Dark Silicon: Overview

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

ces.itec.kit.edu

Mitigating Dark Silicon

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

Handling Dark Silicon

Tradeoff between NTC, Sprinting/Boosting, STC

Power Management Paradigms

Mitigating the Power Density and Dark Silicon: Dark Silicon Patterning

minimizing peak temp => more effective use of the power budget
=> allows for further parallelization and multi-threading

Mitigating the Power Density and Dark Silicon: Dark Silicon Patterning

Spatial and Temporal shutdown -> minimizing peak temp

Mitigating Dark Silicon

Thermal Safe Power (TSP)

(Abstract from temperature using efficient power budgets)

STC / NTC vs. Boosting

(Constant frequency vs. control-loop based boosting)

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015

Dark Silicon Management

(Patterning and Resource

Management)

82

76

70

64

[°C]

Instruction Vulnerability

- Spatial vulnerability: probability of an error depending upon the area of specific processor resources used by the instructions
- Temporal vulnerability: probability of a fault depending upon the vulnerable periods of an instruction in a certain pipeline stage

Motivation: Varying Instruction Vulnerability & Error Masking Properties

Turning Dark Silicon Problem into a Solution!

- Leverage available dark silicon chip with reliability-wise specialized cores offering distinct degree of reliability, i.e., protection against soft errors
 - Multiple "iso-ISA reliability-heterogeneous cores"
 - Higher protection against soft error => more power and area

Example: Reliability Heterogenous Cores

Turning Dark Silicon Problem into a Solution!

- Within the chip's TDP constraint, only a subset of cores can be powered-on at run-time and remaining cores stay dark
- A run-time system to manage reliability under thermal constraints.

ASER: Adaptive Soft Error Resilience

Design-Time: reliability-heterogeneous core customization

- Formulated as the Bounded Knapsack Problem
- Run-Time: adaptive soft error resiliency manager allocates set of cores to concurrent applications under the given TDP constraint

Reliability Heterogenous Cores: Synthesis Results

	frequency = 250 MHz			frequency = 1 GHz				
	area[# of	Power[mW]		area[# of	Power[mW]]	
	gate Eq.*10 ⁵]	leakage	dynamic	total	gate Eq.*10 ⁵]	leakage	dynamic	total
C1	4,83	4,36	78,19	82,55	5,00	4,76	269,58	274,34
C2	4,99	4,50	79,75	84,25	5,20	4,98	274,91	279,89
C3	13,62	12,26	223,39	235,65	14,26	13,83	767,73	781,56
C4	5,41	4,88	86,46	91,35	5,58	5,23	298,21	303,44
C5	13,77	12,40	224,96	237,36	14,46	14,08	773,52	787,60
C6	5,56	5,03	88,02	93,05	5,77	5,52	303,45	308,98
C7	14,19	12,79	231,73	244,51	14,94	14,35	796,26	810,61
C8	14,35	12,93	233,30	246,23	15,02	14,56	801,79	816,34

- TSMC 45nm technology library
- Different process corners & frequencies

Reliability Savings are 20%-60% compared to state-of-the-art

C1	Baseline core
C2	Pipeline TMR
C3	Cache TMR
C4	Register File TMR
C5	Pipeline TMR + Cache TMR
C6	Pipeline TMR + Register File TMR
C7	Cache TMR + Register File TMR
C 8	Pipeline TMR + Cache TMR + Register File TMR

Mitigating Dark Silicon

Thermal Safe Power (TSP)

(Abstract from temperature using efficient power budgets)

STC / NTC vs. Boosting

(Constant frequency vs. control-loop based boosting)

Dark Silicon Management (Patterning and Resource Management)

Reliability: trade-off aging <-> SER

Hayat: Harnessing Dark Silicon and Variability for Aging Optimization

Conclusions

 "Dark Silicon" is a problem triggered through high power density => hardware is operated at thermal limits

- Temperature decreases reliability
- "Dark Silicon" can be minimized/exploited through:
 - Efficient dark silicon management under peak power and thermal constraints
 - New thermal safe power budgets
 - Scalable power and thermal management
 - Increasing different forms of heterogeneities: functional, power, reliability, etc.
 - Increasing reliability
 - **...**

Power/energy efficiency and reliability should jointly be optimized at multiple HW and SW layers of the system stack

If all this is considered, good chance there is no Dark Silicon problem at all!

Some of our recent publication on Dark Silicon

- Dennis Gnad, Muhammad Shafique, Florian Kriebel, Semeen Rehman, Duo Sun, Jörg Henkel:"Hayat: harnessing dark silicon and variability for aging deceleration and balancing", DAC 2015.
- Heba Khdr, Santiago Pagani, Muhammad Shafique, Jörg Henkel: "Thermal constrained resource management for mixed ILP-TLP workloads in dark silicon chips", DAC 2015:179
- S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, J. Henkel, "TSP: Thermal Safe Power - Efficient power budgeting for Many-Core Systems in Dark Silicon", IEEE International Conference on Hardware-Software Codesign and System Synthesis (CODES+ISSS), 2014, Best Paper Award.
- Hussam Amrouch, Victor van Santen, Thomas Ebi, Volker Wenzel, Jörg Henkel, "Towards Interdependencies of Aging Mechanisms", IEEE/ACM Int'l Conference on CAD (ICCAD), 2014.
- Muhammad Shafique, Siddharth Garg, Tulika Mitra, Sri Parameswaran, Jörg Henkel, "Dark Silicon as a Challenge for Hardware/Software Co-Design", IEEE International Conference on Hardware-Software Codesign and System Synthesis (CODES+ISSS), 2014.
- M. Shafique, S. Garg, D. Marculescu, J. Henkel, "The EDA Challenges in the Dark Silicon Era", ACM/ IEEE/EDA 51st Design Automation Conference (DAC), 2014.
- F. Kriebel, S. Rehman, D. Sun, M. Shafique, J. Henkel, "ASER: Adaptive Soft Error Resilience for Reliability-Heterogeneous Processors in the Dark Silicon Era", ACM/IEEE/EDA 51st Design Automation Conference (DAC), 2014.
- H. Bokhari, H. Javaid, M. Shafique, J. Henkel, S. Parameswaran, "darkNoC: Designing Energy Efficient Network-on-Chip with Multi-Vt Cells for Dark Silicon", ACM/IEEE/EDA 51st Design Automation Conference (DAC), 2014.
- Semeen Rehman, Muhammad Shafique, Florian Kriebel, Jörg Henkel, "Reliable software for unreliable hardware: embedded code generation aiming at reliability". IEEE International Conference on Hardware-Software Codesign and System Synthesis (CODES+ISSS), 2011, Best Paper Award.

Acknowledgements

Partly Funded by InvasIC: http://invasic.de/ Partly Funded by Dependable Embedded Systems: http://spp1500.itec.kit.edu/

Thank you for Attention!

Tools Download: http://ces.itec.kit.edu/download/

J. Henkel, Keynote @ CADS 2015, Tehran, Oct 8th. 2015